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Resonantly enhanced Raman scattering in dielectric nanostructures has been recently proven to be an efficient
tool for nanothermometry and for the experimental determination of their mode composition. In this paper we
develop a rigorous analytical theory based on the Green’s function approach to calculate the Raman emission
from crystalline high-index dielectric nanoparticles. As an example, we consider silicon nanoparticles which
have a strong Raman response due to active optical phonon modes. We relate enhancement of Raman signal
emission to the Purcell effect due to the excitation of Mie modes inside the nanoparticles. We also employ our
numerical approach to calculate inelastic Raman emission in more sophisticated geometries, which do not allow
a straightforward analytical form of the Green’s function. The Raman response from a silicon nanodisk has been
analyzed with the proposed method, and the contribution of various Mie modes has been revealed.
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I. INTRODUCTION

Nonplasmonic nanostructures made from high-index di-
electrics and semiconductors have recently attracted a great
interest, owing to their low-loss optical response and electric
and magnetic Mie resonances in the visible spectrum range
[1–4]. Such nanostructures have recently revealed many fea-
tures, which previously were available only for their plasmonic
counterparts. Examples include single-molecule sensing [5,6],
efficient harmonic generation [7–9], and, among others, pho-
tothermal activity [10]. This progress has stimulated the devel-
opment of all-dielectric photonic devices, including nanoan-
tennas, metasurfaces, and optical interconnects [1,3,4]. How-
ever, plasmonic structures have a higher level of local electric
field enhancement due to the resonant excitation of localized
surface modes, and are actively used for enhancing the Raman
signal from external sources, e.g., molecules or nanocrystals
[11–14]. In stark contrast with metal, nonplasmonic materials
often support their own internal Raman response, which—as
proven—can be exploited as an additional degree of freedom
for optical characterization [15–17].

Semiconductors, which are often considered the main
relevant materials for all-dielectric photonics [18], have a
strong inherent Raman response due to their crystalline lattice
structure. In particular, crystalline silicon (Si) has a sharp
Raman line around 520 cm−1 [19], caused by the interaction of
light with optical phonons. Recently it has been experimentally
demonstrated [17] that this Raman response can be resonantly
enhanced through the excitation of Mie resonances inherent to
nonplasmonic nanostructures. In particular, this has allowed
for developing efficient nanothermometry [10] based on the
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Raman emission from high-index dielectric nanoparticles.
Nevertheless, the proper theoretical approach for the descrip-
tion of the Raman emission from resonant Mie nanostructures
has not been established yet.

In this paper we develop a rigorous analytical theory based
on the Green’s function approach for the calculation of Raman
emission from crystalline high-index dielectric nanoparticles.
We rigorously show that Raman scattering in silicon nanores-
onators is enhanced by the Purcell effect associated with the
resonant excitation of Mie modes. This result fits well with
recent studies of the Purcell enhancement in Mie resonators
[20–22]. The paper is organized as follows: In Sec. II we
delineate the general theoretical approach for the description
of the Raman emission from localized Raman sources based
on the Green’s function approach. In Sec. III we apply the
proposed method to calculate the Raman emission intensity
from Si nanoparticles and derive the analytical expression
for Raman emission intensity at the lowest magnetic dipole
resonance. Moreover, we discuss the effect of higher order Mie
modes excitation. Here we utilize commercial packages for
simulation of the Raman emission, which shows a consistent
agreement with the analytical results. In Sec. IV we apply
the proposed method for numerical calculation of the Raman
emission for the Si nanodisk, whose geometry does not allow
the simple analytical Green’s function approach. We comment
on the influence of different resonant modes of the nanodisk
on the intensity of Raman emission.

II. RAMAN SCATTERING FROM DIELECTRIC
NANOSTRUCTURES

In this section we apply the Green’s function method to
develop a model of Raman signal enhancement from a single
spherical dielectric nanoparticle of radius a with refractive
index n = √

ε; ε is the dielectric permittivity. In previous
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FIG. 1. Geometry of the problem. We consider elastic and inelas-
tic scattering of a plane wave by a Si spherical nanoparticle of radius
a = 110 nm in air. The incident field excites the Raman polarization,
which generates the Raman signal over the nanoparticle volume.
Components of Raman polarization (or Raman dipole moment) are
connected with incident field components through the Raman tensor,
which is determined by the lattice symmetry properties.

experimental articles, it has been shown that the refractive
index of bulk crystalline silicon works well for nanoparticles
with sizes comparable to those we analyze in this paper
[23–25]. We assume that the Raman signal is generated by
inelastic scattering of a plane wave impinging the nanoparticle
along the z-axis direction, as shown in Fig. 1. We fix the
electric field polarization along the x axis (E0||x). Although
Raman scattering is a spontaneous quantum process, it al-
lows a classical description, which we employ below. We
characterize the lattice vibrations by the phonon coordinate
Q(r,t) = q(r) exp(−i�t) within the classical description of
Raman scattering based on the Raman polarizability tensor
[26]. The weak distortions of the crystalline lattice result in
the fluctuations of the polarizability tensor α̂ of nanoparticle
material allowing the following expansion:

αij (r,ω,Q) = α0
ij (r,ω) +

∑
k

∂αij (r,ω)

∂Qk

∣∣∣∣
Qk=0

Qk(r,t), (1)

where αij are polarizability tensor components and Qk are the
components of phonon coordinates. The first term here stands

for the elastic scattering, while the second one is responsible
for the generation of Raman polarization. We emphasize
that the expansion (1) is written for the local polarization
of media related to optical excitation of lattice oscillations.
The typical scale of this polarization is several interatomic
distances, which allows us to consider them as point sources.
The approach describing the Raman sources in the point dipole
approximation is discussed in [27], and it has been successfully
applied to model the Raman response of graphene layers [28].
In the spectral representation, the Raman polarization can be
described as

PR(r,ω,ωs) = α̂R(r,ω,ωs)E1(r,ω). (2)

Here αR
ij (r,ω,ωs) = ∑

k

∂α0
ij (r,ω)

∂qk
|
qk=0

qk(r) is the Raman

tensor, and ωs = ω − � denotes that Eq. (2) stands for the
Stokes component of Raman scattering, and E1(r,ω) is the
electric field inside the nanoparticle. The Raman tensor is fully
defined by the structure of the phonon mode spectrum, hence
the tensor is defined by the symmetry of crystalline lattice as
well as the spectrum of phonon modes. In general, there can
be several independent phonon modes in the crystal that have
their own phonon coordinates Qσ , where σ labels the phonon
mode number. Consequently, the Raman tensor α̂R,σ should
be defined for the each mode σ .

The total intensity of the Raman signal generated by a
particular phonon mode σ can be calculated by means of the
power flow integration over the entire sphere:

I σ
R = 1

2
Re

∮
[E(r,ωs) × H∗(r,ωs)]dS

= 1

4

∮
[E∗(r,ωs) × H(r,ωs)

+ E(r,ωs) × H∗(r,ωs)]dS. (3)

Here E(r,ωs) and H(r,ωs) are the electric and magnetic
components of the field generated by the Raman polarization
Pσ

R(r) induced by the incident electric field E0. The amplitudes
of electric and magnetic fields can be expressed via the Green’s
function of the system:

E(r,ωs) = ω2
s μ0

∫
V

dV ′Ĝ(r,r′,ωs)Pσ
R(r′), (4)

H(r,ωs) = −iωs

∫
V

dV ′[∇ × Ĝ(r,r′,ωs)]Pσ
R(r′), (5)

with μ0 being the free-space magnetic susceptibility. One
can exploit Eqs. (4) and (5) in order to rewrite the intensity
according to Eq. (6). With the help of the Green’s function
properties (see Appendix A), we simplify it even further,
obtaining Eq. (7):

I σ
R = ω3

s μ0

4i

∮
∂V,

∫∫
V ′,V ′′

dSdV ′dV ′′[Pσ∗
R (r′)Ĝ∗(r′,r) × ∇ × Ĝ(r,r′′)Pσ

R(r′′) − Ĝ(r,r′′)Pσ
R(r′′) × ∇ × Pσ∗

R (r′)Ĝ∗(r′,r)], (6)

I σ
R = ω3

s μ0

2

[∫∫
V ′,V ′′

dV ′dV ′′Pσ∗
R (r′)Im[Ĝ(r′,r′′)]Pσ

R(r′′) − k2
s

∫∫∫
V ′,V ′′,V

dV ′dV ′′dV Im(ε)Pσ∗
R (r′)Ĝ∗(r′,r)Ĝ(r,r′′)Pσ

R(r′′)
]
.

(7)
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Equation (7) is obtained for a general type of radiative
sources distributed over the nanoparticle volume and defined
by the polarization vector Pσ

R(r). The Raman scattering is
almost a totally incoherent process, and the coherence scale
is defined by the phonon propagation length, which is in the
order of tens of nanometers for typical materials [28,29]. This
allows us to use the ideally incoherent approximation and, thus,
we assume that the Raman sources are fully incoherent:〈̂

ασ ′
R (r′,ω),̂ασ ′′

R (r′′,ω)
〉

= vα̂σ ′
R (r′,ω)̂ασ ′′

R (r′′,ω)δσ ′σ ′′δ(r′ − r′′), (8)

where δσ ′σ ′′ is the Kronecker symbol and v is the normalizing
volume. Hence, the averaging over the phonon correlations
simplifies the expression in Eq. (7):

〈
I σ
R

〉 = ω3
s μ0v

2

[ ∫
dV ′Pσ∗

R (r′)Im[Ĝ(r′,r′)]Pσ
R(r′)

− k2
s

∫∫
V ′,V

dV ′dV Im(ε)Pσ∗
R (r′)Ĝ∗(r′,r)

× Ĝ(r,r′)Pσ
R(r′)

]
. (9)

Finally, Eq. (9) defines the total emission intensity of the
Raman signal from the nanoparticle. The physical meaning of
Eq. (9) is that the radiated Raman power equals the total power
generated inside the nanoparticle [the first term in Eq. (9)], and
the second term accounts for the Raman power dissipated in
the nanostructure due to the ohmic losses. As we are interested
in the Raman emission from all-dielectric materials where the
losses are negligibly low, we omit the second term in Eq. (9),
e.g., the crystalline silicon for wavelengths higher than the
600 nm range satisfies this requirement.

In order to simplify the expression for Raman intensity even
further, we introduce the Purcell factor in terms of the Green’s
function:

Fσ
p (ω,r) = 6πc

ω

[
nσ∗

R ImĜ(ω,r,r)nσ
R

]
, (10)

where nσ is the unit vector of Raman polarization Pσ
R = P σ

R nσ
R .

In that way, the intensity of the Raman emission defined by the
mode with polarization σ can be expressed through the Purcell
factor averaged over nanoparticle volume with the weight of
the Raman polarization amplitude Pσ

R(r):

〈
I σ
R

〉 = vω4
s μ0

12πc

∫
dV Fσ

p (ωs,r)
∣∣P σ

R (r,ωs,ω)
∣∣2

. (11)

This expression reflects the spontaneous character of Raman
emission. The full incoherence of different phonon modes
requires the summation over σ in order to obtain the total
Raman emission intensity SR = ∑

σ I σ
R . Thus, the intensity

of radiation emission is proportional to the square of dipole
moment and enhanced by the local density of states, which is
defined by the imaginary part of the Green’s function. Note
that both polarization amplitude PR(r,ωs,ω) and the Purcell
factor can be resonantly enhanced due to the Mie resonances
in the all-dielectric nanostructure. However, the resonance of
the Raman polarization occurs at the pumping frequency ω, as
it is defined by the field distribution at the pumping frequency
E0(r,ω) [see Eq. (2)], while the emission of Raman signal

occurs at shifted frequency ωs , at which the Purcell factor
should be calculated.

III. SPHERICAL SILICON NANOPARTICLES

We illustrate the results obtained in the previous section by
studying the Raman emission from a Si nanosphere excited
by a plane wave. The generated Raman emission is defined
by the optical phonon modes of silicon [30] with three
orthogonal polarizations σ = x,y,z. The corresponding modes
have different Raman tensors α̂

(x,y,z)
R = α · R̂(x,y,z), where α is

the phonon-polarization independent scalar. Here we fix the
orientation of the cubic crystalline lattice according to the
coordinate basis (see Fig. 1), which gives us expressions for R
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FIG. 2. (a) Elastic scattering cross section of the nanoparticle with
radius a = 110 nm. The scattering cross section is normalized over the
geometrical one (πa2). Mode decomposition with magnetic dipolar
(MD), electric dipolar (ED), and magnetic quadrupolar modes (MQ)
is also presented. (b) Spectrum of electric energy stored inside the
nanoparticle. It is normalized to electromagnetic energy stored in the
same volume in a free space W0 = 1/2|E0|2. MD and MQ resonances
are plainly visible, however ED does not contribute to the total energy.
Insets: The electric field amplitude distribution profiles inside the
nanosphere at the MD and MQ resonances.
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tensor [19]:

Rz =
⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠, Ry =

⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠,

Rx =
⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠.

In order to study the Raman emission from the Si spherical
nanoparticle, we start with the identification of the mode
structure by considering elastic scattering of a plane wave. The
scattering spectrum obtained within the Mie theory is shown
in Fig. 2(a). One can clearly see the peaks corresponding to the
excitation of the magnetic dipole (MD), electrical dipole (ED),
and magnetic quadrupole (MQ) modes. The total scattering
cross section is shown along with the contribution of each
mode.

The intensity of Raman emission is proportional to the
intensity of the electric field inside the sphere. Thus, it is
reasonable to plot the electric energy stored inside the sphere,

which is defined by the volume integration of the energy
density W = 1/2[|E|2d(ωε)/dω]. The calculated spectrum is
shown in Fig. 2(b). One can see that the contribution of the
ED mode into the total energy stored inside the nanosphere
is low compared to MD and MQ modes. Thus, one should
not expect significant enhancement of the Raman scattering
at the ED resonance. The Raman polarization PR(r,ωs,ω) can
be computed through Eq. (2), based on the field distribution
inside the nanosphere in accordance with Mie theory:

E1 =
∞∑

n=1

En[cn(ω)Mo1n(k2) − idn(ω)Ne1n(k2)], (12)

where Ne1n and Mo1n are vector spherical harmonics, En =
inE0

2n+1
n(n+1) , k2 is the wave vector taken inside the sphere,

and the coefficients cn and dn are frequency dependent (see
Appendix B).

The Purcell enhancement factor (10) can be found through
the Green’s function of the dielectric sphere [31], given by the
expressions

Ĝ(22)(ω,r,r′) = ik2

4π

∞∑
n=1

n∑
m=0

(2 − δ0)
2n + 1

n(n + 1)

(n − m)!

(n + m)!

(
Me

omn(k2) ⊗ [
M′(1)

e
omn(k2) + c(2)

n (ω)M′
e
omn(k2)

]

+ Ne
omn(k2) ⊗ [

N′(1)
e
omn(k2) + d (2)

n (ω)N′
e
omn(k2)

])
, r < r ′, (13)

Ĝ(22)(ω,r,r′) = er ⊗ er

k2
δ(r − r′) + ik2

4π

∞∑
n=1

n∑
m=0

(2 − δ0)
2n + 1

n(n + 1)

(n − m)!

(n + m)!

([
M(1)

e
omn(k2) + c(2)

n (ω)Me
omn(k2)

] ⊗ M′
e
omn(k2)

+ [
N(1)

e
omn(k2) + d (2)

n (ω)Ne
omn(k2)

] ⊗ N′
e
omn(k2)

)
, r � r ′. (14)

Here Me
omn(k2) and Ne

omn(k2) are vector spherical harmonics
(see Appendix B) with superscript (1) obtained by replacing
spherical Bessel functions jn(ρ) by a spherical Hankel function
of the first kind h(1)

n (ρ). We adopt the simplified notation
that Ne

omn(k) ⊗ N′
e
omn(k) = Nomn(k) ⊗ N′

omn(k) + Nemn(k) ⊗
N′

emn(k) and similarly for other terms; δ0 = 1 when m = 0
and δ0 = 0 when m �= 0.

For comparative analysis of both factors of Raman scatter-
ing enhancement, we plot the electric field intensity |E|2/|E0|2
spectrum, which is proportional to the electric energy, and the
Purcell factor averaged over all polarizations, in Fig. 3. The
Purcell factor was calculated for the shifted Stokes frequency
ωS = ω − �. Both quantities demonstrate resonant behavior
in the vicinity of Mie resonances.

Next, we perform explicit calculations for the Raman
enhancement in the vicinity of the MD resonance taking into
account only one term in the expansion of the exciting field
and Green’s function:

〈SR〉 = 9vω3
s k2μ0

20
|E0|2|c1(ω)|2

× [
Re

(
c

(2)
1 (ωs)

)] ∫ a

0
r2j 4

1 (k2r)dr. (15)

Both exciting electric field and dyadic Green’s function depend
on the resonant Mie coefficients c

(2)
1 (ω),d (2)

1 (ω),c1(ω),d1(ω),

which is reflected in Eq. (15). Thus, for a given excitation
frequency ω the Raman signal will be resonantly enhanced
either when |c1(ω)| or c

(2)
1 (ωs) reaches their maximal values. As

shown in Fig. 4, two significant peaks, one of which is shifted
by optical phonon frequency, should appear for each resonance.
One peak appears when the Raman frequency ωs = ω − � is
resonant, and depicts the enhancement in c

(2)
1 (ωs) due to the

Purcell factor. The second peak in Fig. 4, in the vicinity of
600 nm, occurs when the exciting field is enhanced and c1(ω)
becomes resonant.

The intensity of Raman emission from a Si nanoparticle
with radius a = 110 nm for different excitation wavelength
given by Eq. (11) is presented in Fig. 4. Normalizing volume
v is defined by the intrinsic phonon correlation length of the
material. This picture is in accordance with the spectrum of
electric energy at the excitation wavelength shown in Fig. 2(a).
The double-resonant character is not observed for MD mode
as the phonon energy is much smaller than the peak width due
to the relatively low Q factor of the MD mode. However, the
splitting for MQ mode, which is high Q enough, is observed.

In order to support these results, we have developed an ap-
proach based on numerical simulation and implemented it us-
ing the Comsol Multiphysics package. We model the incoher-
ent Raman emission by dividing a sphere into subdomains and
defining in each of them the Raman polarization in accordance
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FIG. 3. Purcell factor (black curve) and electric field intensity (red
curve) for the nanoparticle with radius a = 110 nm. The Purcell factor
is averaged over the nanoparticle volume and dipole polarizations.
Both factors are multiplied in the resulting Raman signal.

with the excited field distribution. We consider every sub-
domain as an elementary Raman dipole and independently
calculate the Raman signal from each domain. Afterwards, the
intensity from each domain is summed over the whole sphere.
The resulting intensity depends on subdomain volume, which
is equal to normalizing volume v. The results of the numerical
modeling are shown in Fig. 4 by the dashed-blue line. We see
that the numerical simulations are in a good agreement with
analytical ones. The difference in MQ amplitude is defined
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FIG. 4. Comparison of analytical and numerical results of the
incoherent Raman signal intensity spectrum normalized to Raman
intensity from the same volume of bulk silicon, given by SR0 =
(vω4

s μ0nV |αE0|2)/(12πc). Insets: The Raman electric field distri-
bution inside the sphere for X (up) and Z (down) phonon modes on
the MD resonance, and X, Y, Z for MQ resonance.

by the finite size of the subdomains in the numerical method,
with nonuniform Raman polarization Pσ

R(r) over the domain
and finite coherence length, while in analytical computation
we have point dipoles distribution, which are fully incoherent.
Moreover, there are additional limitations such as the mesh
domain size in numerical simulations and the finite size of the
element volume of integration of the analytical formula.

Based on these numerical calculations, the distribution of
Raman signal inside the nanosphere generated by one subdo-
main, is a unit source of Raman emission. The insets in Fig. 4
show the electric field distribution for a different excitation
wavelength corresponding to MD and MQ resonances for
different phonon polarizations. While a plane wave couples to
eigenmodes of the sphere with m = 1, even or odd for different
resonances [see Eq. (12)], the Raman signal can be coupled
to spherical harmonics of any arbitrary azimuthal number.
One can also compare the distribution of Raman electric field
at the frequency ωs with the electric field at the excitation
frequency ω. Due to the symmetry of the MD polarization and
the symmetry of Raman tensor, the field distribution of Raman
signal generated by a z-polarized phonon is rotated with respect
to the exciting field.

This approach allows us to calculate the Raman emission
from more complicated nanostructures. In particular, resonant
Si nanodisks are very often used as building blocks for all-
dielectric photonics devices, including oligomers and meta-
surfaces as they can be easily fabricated via planar technology.

IV. RAMAN SCATTERING BY SILICON NANODISKS

We apply the developed numerical method to compute the
intensity of Raman signal generated from a single Si nanodisk
with radius a = 110 nm and height h = 190 nm, in which
parameters are close to parameters of the sphere examined in
the previous section. In case of a spherical nanoparticle the
multipole harmonics with different azimuthal number m are
degenerate due to spherical symmetry of the problem. The
nanodisk has only axial symmetry, thus, the degeneracy is
partly lifted. These modes can be excited by a plane wave
incident from different directions: normal incidence, and side
incidence of p- and s-polarized plane waves, as shown in Fig. 5.
The scattering cross section is depicted in Fig. 6 for all three
cases. One can see that both MD and MQ modes are spectrally
splitted, which is more pronounced for MQ resonance due
to higher Q factor. We leave the discussion of higher order
resonances (electric quadrupole, octupole, etc.) out of the scope
of this paper, and they will be elaborated in a subsequent paper.

The resonant modes observed in the elastic scattering
influence the Raman scattering. Although some of these
modes may not be seen in the elastic scattering spectrum,
they can contribute into an overall Raman emission due to
breaking of the symmetry by the Raman polarization tensor.
Moreover, the resonant peaks can be additionally doubled
due to the Purcell factor enhancement similar to the case of
the nanosphere. In Fig. 7 the Raman intensity is shown as
a function of the excitation wavelength. It is obvious that the
intensity of Raman signal generation depends on the incidence
conditions. However, we also observe a multipeak structure
of the spectrum, which stems from the resonantly enhanced
emission by the Purcell effect at different phonon polarizations.
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FIG. 5. Geometry of the problem. We consider elastic and inelas-
tic scattering of a plane wave by a Si nanodisk of radius a = 110 nm
and height h = 190 nm in vacuum. Three cases of incident field are
shown: normal incidence and side incidence with p and s polarization.

In order to analyze it in more detail, we circumstantially
show the contribution of every phonon mode in the resulting
spectrum for normal incidence only (see inset in Fig. 7). We
observe that the total Raman emission curve, shown by the
dashed line in the inset, consists of three contributions from
different phonon polarization. The largest contribution comes
from X and Y phonons, with a single peak structure because
of the enhancement of the pumping field. There is no Purcell
contribution due to specific structure of X- and Y-phonon
tensor. For Z phonon, contrary to X and Y phonons, we see
the active resonant peak at the longer wavelength, due to the
Purcell enhancement of the emitted Raman signal, similar to
the splitting shown in Fig. 4. Moreover, the contribution of
the second nanodisk MQ mode is faintly noticeable on higher
wavelengths, yet weakly enhanced. For a lateral incidence,
the mode splitting is also observed for every phonon mode,
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a sphere.
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FIG. 7. Raman scattering by nanodisk with radius r = 110 nm
and height h = 190 nm spectrum for three cases of incident wave:
normal incidence, and side incidence for two polarizations. Inset:
Detailed phonon-mode decomposition for normal incidence. The Z
phonon has maximal contribution at ∼625 nm when the Purcell effect
for the left quadrupolar has its maximal influence. The X- and Y-
phonon modes are enhanced when the elastic field inside the sphere
is maximal.

and more careful analysis of a Purcell enhanced response is
possible.

V. CONCLUSIONS

In conclusion, we have derived a rigorous analytical theory
based on the Green’s function approach to calculate the Raman
emission from crystalline high-index dielectric nanoparticles.
For nanoparticles of simple geometry with well-known dyadic
Green function, analytical calculations can be performed and
significantly simplified in the case of nonabsorbing mate-
rial. It has been demonstrated for the Raman scattering by
the resonant Si spherical nanoparticle, as an example. The
strongest enhancement has been observed for magnetic res-
onances, because of the higher field confinement inside the
particle. We have also employed the numerical approach to the
calculation of inelastic Raman emission in more sophisticated
geometries. This approach can be applied for a particle of an
arbitrary shape. The Raman response from Si nanodisks has
been analyzed within the proposed numerical method and the
contribution of the various Mie modes has been revealed. We
have shown that the spectral dependence of the Raman signal
intensity on the incident wavelength can reveal the modal
structure of the particle more clearly than in elastic scattering.
The obtained results provide the basis for future studies of
the resonantly enhanced Raman scattering in high-index all-
dielectric nanostructures and its possible applications.
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APPENDIX A: POINT DIPOLE RADIATION

In order to obtain formula (7) we use the dyadic Green
function formalism [27]:

∇r ′′ × ∇r ′′ × Ĝ(r′′,r) − k2εĜ(r′′,r) = Îδ(r′′ − r), (A1)

where Î is the unity matrix, multiply by P(r) from the
right:

∇r ′′ × ∇r ′′ × Ĝ(r′′,r)P(r) − k2εĜ(r′′,r)P(r)

= Îδ(r′′ − r)P(r), (A2)

and then multiply by P∗(r′)Ĝ∗(r′,r′′) from the left:

P∗(r′)Ĝ∗(r′,r′′) · ∇r ′′ × ∇r ′′ × Ĝ(r′′,r)P(r)

− k2εP∗(r′)Ĝ∗(r′,r′′)Ĝ(r′′,r)P(r)

= P∗(r′)Ĝ∗(r′,r′′ )̂Iδ(r′′ − r)P(r). (A3)

Reciprocally for conjugated:

∇r ′′ × ∇r ′′ × Ĝ∗(r′,r′′) − k2ε∗Ĝ∗(r′,r′′) = Îδ(r′ − r′′),

(A4)

∇r ′′ × ∇r ′′ × P∗(r′)Ĝ∗(r′,r′′) − k2ε∗P∗(r′)Ĝ∗(r′,r′′)

= P∗(r′ )̂Iδ(r′ − r′′), (A5)

∇r ′′ × ∇r ′′ × P∗(r′)Ĝ∗(r′,r′′) · Ĝ(r′′,r)P(r)

− k2ε∗P∗(r′)Ĝ∗(r′,r′′)Ĝ(r′′,r)P(r)

= P∗(r′ )̂Iδ(r′ − r′′)Ĝ(r′′,r)P(r). (A6)

Subtracting (A3) from (A6) when integrating over V ′′ with
vector-dyadic relation transforming volume integration into
surface integration we get

P∗(r′)ImĜ(r′,r′′)P(r′′)

= 1

2i

∮
∂V

dS[P∗(r′)Ĝ∗(r′,r) × ∇ × Ĝ(r,r′′)P(r′′)

− Ĝ(r,r′′)P(r′′) × ∇ × P∗(r′)Ĝ∗(r′,r)]

+ k2
∫

V

dV Im(ε)P∗(r′)Ĝ∗(r′,r)Ĝ(r,r′′)P(r′′), (A7)

and then substitute (A7) into (6).

APPENDIX B: MIE SCATTERING AMPLITUDES

Vector spherical harmonics presented in Mie theory and
dyadic Green‘s function decomposition:

Memn(k) = −m

sin(θ )
sin(mφ)P m

n [cos(θ )]zn(ρ)eθ

− cos(mφ)
dP m

n [cos(θ )]

dθ
zn(ρ)eφ, (B1)

Momn(k) = m

sin(θ )
cos(mφ)P m

n [cos(θ )]zn(ρ)eθ

− sin(mφ)
dP m

n [cos(θ )]

dθ
zn(ρ)eφ, (B2)

Nemn(k) = zn(ρ)

ρ
cos(mφ)n(n + 1)P m

n [cos(θ )]er

+ cos(mφ)
dP m

n [cos(θ )]

dθ

1

ρ

d

dρ
[ρzn(ρ)]eθ

−m sin(mφ)
P m

n [cos(θ )]

sin(θ )

1

ρ

d

dρ
[ρzn(ρ)]eφ, (B3)

Nomn(k) = zn(ρ)

ρ
sin(mφ)n(n + 1)P m

n [cos(θ )]er

+ sin(mφ)
dP m

n [cos(θ )]

dθ

1

ρ

d

dρ
[ρzn(ρ)]eθ

+m cos(mφ)
P m

n [cos(θ )]

sin(θ )

1

ρ

d

dρ
[ρzn(ρ)]eφ, (B4)

where n = 0,1,2, . . . , m = −n, . . . n, e and o mean two
independent solutions for even and odd functions of azimuthal
angle. P m

n are associated Legendre polynomials, k2 = ω2

c2 ε,
ρ = ka = 2πa

λ

√
ε, a is nanoparticle radius. eρ,eθ ,eφ are unit

vectors of spherical basis.
From Mie theory we know fields inside the spherical

nanoparticle

E1 =
∞∑

n=1

En[cn(ω)Mo1n(k2) − idn(ω)Ne1n(k2)], (B5)

H1 = − k2

ωμ0

∞∑
n=1

En[dn(ω)Me1n(k2) + icn(ω)No1n(k2)], (B6)

where Ne
omn and Me

omn are vector spherical harmonics, subscript
“2” of k represents that the wave vector is taken inside the
sphere, En = inE0

2n+1
n(n+1) ,

cn(ω) = [ρ1hn(ρ1)]′jn(ρ1) − [ρ1jn(ρ1)]′hn(ρ1)

[ρ1hn(ρ1)]′jn(ρ2) − [ρ2jn(ρ2)]′hn(ρ1)
, (B7)

dn(ω) =
√

ε[ρ1hn(ρ1)]′jn(ρ1) − √
ε[ρ1jn(ρ1)]′hn(ρ1)

ε[ρ1hn(ρ1)]′jn(ρ2) − [ρ2jn(ρ2)]′hn(ρ1)
, (B8)

while coefficients presented in dyadic Green function (14) have
different numerator:

c(2)
n (ω) = [ρ1hn(ρ1)]′hn(ρ2) − [ρ2hn(ρ2)]′hn(ρ1)

[ρ2jn(ρ2)]′hn(ρ1) − [ρ1hn(ρ1)]′jn(ρ2)
,

d (2)
n (ω) = n2[ρ1hn(ρ1)]′hn(ρ2) − [ρ2hn(ρ2)]′hn(ρ1)

[ρ2jn(ρ2)]′hn(ρ1) − [ρ1hn(ρ1)]′jn(ρ2)n2
,

hn and jn are spherical Hankel and Bessel functions,

ρ1 = k1a = 2πa

λ
, ρ2 = k2a = 2πa

√
ε

λ
. (B9)
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Scattered fields are

Es =
∞∑

n=1

En

(−bn(ω)M(1)
o1n(k1) + ian(ω)N(1)

e1n(k1)
)
, (B10)

Hs = k1

ωμ0

∞∑
n=1

En

(
an(ω)M(1)

e1n(k1) + ibn(ω)N(1)
o1n(k1)

)
, (B11)

where

an(ω) = ε[ρ1jn(ρ1)]′jn(ρ2) − [ρ2jn(ρ2)]′jn(ρ1)

ε[ρ1hn(ρ1)]′jn(ρ2) − [ρ2jn(ρ2)]′hn(ρ1)
, (B12)

bn(ω) = [ρ1jn(ρ1)]′jn(ρ2) − [ρ2jn(ρ2)]′jn(ρ1)

[ρ1hn(ρ1)]′jn(ρ2) − [ρ2jn(ρ2)]′hn(ρ1)
. (B13)
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