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Decay rate of magnetic dipoles near nonmagnetic nanostructures
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In this article, we propose a concise theoretical framework based on mixed-field susceptibilities to describe
the decay of magnetic dipoles induced by nonmagnetic nanostructures. This approach is first illustrated in
simple cases in which analytical expressions of the decay rate can be obtained. We then show that a more
refined numerical implementation of this formalism involving a volume discretization and the computation of a
generalized propagator can predict the dynamics of magnetic dipoles in the vicinity of nanostructures of arbitrary
geometries. We finally demonstrate the versatility of this numerical method by coupling it to an evolutionary
optimization algorithm. In this way we predict a structure geometry which maximally promotes the decay of
magnetic transitions with respect to electric emitters.
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I. INTRODUCTION

During the last two decades, the development of nano-
optics has provided a wealth of strategies to tailor electric
and magnetic fields down to the subwavelength scale [1]. In
particular, optical nanoantennas have allowed one to modify
the intensity, dynamics, or directionality of light emission from
fluorophores placed in the near-field of nano-objects using
concepts from the radio-frequency domain [2–8]. These stud-
ies have been performed nearly exclusively on fluorophores
supporting electric dipole (ED) transitions, the latter being
∼a0/λ0 ∼ 104–105 larger than their magnetic dipole (MD)
counterpart in the optical frequency range (a0 being the Bohr
radius and λ0 the transition wavelength) [9]. Recently, delicate
experiments have addressed light emission from rare-earth-
doped emitters supporting both strong MD and ED transitions
[10,11]. Three-dimensional maps of the luminescence of Eu3+-
doped nanocrystals scanned in the near field of gold stripes
have revealed variations in the relative intensities of ED and
MD transitions [10,12]. In these experiments, the fluorescence
intensity, photon statistics, and branching ratios are directly
related to the decay rates of the ED or MD radiative transitions,
the latter being ultimately connected to the electric or magnetic
part of the local density of electromagnetic states (EM-LDOS)
[10,13–15]. Independently of the nature of the transition, the
alteration of the EM-LDOS by a nanostructure arises from the
back action of the electric or magnetic field on the transition
dipole [2,16–19].

Analytical expressions for the decay of magnetic transitions
have been derived for the simple case of single [20–22] or
also multiple spheres [18,23]. For more complex geometries or
arrangements of nanostructures, standard numerical tools such
as the finite difference time domain (FDTD) or finite element
method (FEM) can be employed to calculate magnetic decay
rates. To do so, a kind of numerical experiment is performed
where the radiated power of a dipole emitter is compared for
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the cases with, and in absence of, a nanostructure [24–28].
Whereas the underlying physics is well understood, a unified
description of the dynamics of a fluorophore supporting MD
transitions in the presence of nonmagnetic nanostructures of
arbitrary shape is still lacking.

The confinement of the magnetic field around nonmagnetic
nano-objects arises from the spatial variations of the electric
near field in the immediate proximity of a nanostructure. When
the surface is illuminated by a plane wave or an evanescent
surface wave, both experimental data and numerical simula-
tions reveal spatial modulations in the electric and magnetic
near-field intensities. For example, the magnetic field inten-
sity recorded above subwavelength-sized dielectric particles,
excited by a p-polarized surface wave, has a strong and dark
contrast while a completely opposite behavior is observed for
the electric field intensity [29–31]. If now the nanostructure is
no longer illuminated by a plane wave but by a dipole source,
the response fields (electric or magnetic) are different and
shape the decay rate and the corresponding dipolar lumines-
cence. From a mathematical point of view, the magnetic near
field can be described by a set of mixed-field susceptibilities
capable of connecting an electrical polarization, oscillating at
an optical frequency ω0, to a magnetic field vector oscillating at
the same frequency [32,33]. In fact, these field susceptibilities
are a generalized form of the usual Green’s dyadic tensor
[34,35]. Historically, they were introduced by Agarwal to
describe energy transfers in the presence of dielectric or
metallic planar surfaces [36]. Mixed-field susceptibilities can
be used to evaluate the optical magnetic near field or the optical
response of nanostructures possessing an intrinsic magnetic
polarizability, such as metallic rings or split rings [33,37]. In
recent works, they have been used to separately study the
magnetic and electric part of the LDOS close to a surface
[38] and for the calculation of the EM-LDOS in proximity
of periodic arrays of magnetoelectric point scatterers [39].

In this article, we first extend Agarwal’s theory by present-
ing an analytical scheme yielding the total decay rate of a
MD transition �m in terms of mixed electric-magnetic field
susceptibilities. From this concise mathematical framework,
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FIG. 1. (a) and (b) Illustration of two possible kinds of optical
coupling between an oscillating magnetic dipole and a nanostructure
defined by arbitrary optical permittivity ε(ω0) and permeability μ(ω0),
with αe and αm the electric and magnetic polarizabilities. The present
study focuses on the first case in which the magnetic dipole is coupled
to a nonmagnetic nanostructure, as shown in (a). (c) Decay rate of a
magnetic dipole m(ω0) oriented along OZ and scanned at z0 = 30 nm
above the depicted nanostructure.

we develop a flexible and powerful numerical tool to compute
the decay rate of magnetic dipoles near dielectric or metallic
nanostructures of arbitrary shapes (see an example in Fig. 1).
In a second step, we explore the decay-rate maps generated by
the coupling between rare-earth atoms and dielectric nanos-
tructures. We highlight and discuss the differences between
electric and magnetic decay-rate topographies. Finally, we
demonstrate the versatility of our mathematical framework by
coupling it to an evolutionary optimization algorithm to predict
a metallic nanostructure yielding an optimum contrast between
the magnetic and electric parts of the EM-LDOS.

II. MAGNETIC FIELD SUSCEPTIBILITY FOR
NONMAGNETIC STRUCTURES

The two possible kinds of coupling between a mag-
netic dipole transition and a subwavelength-sized sphere are
schematized in Figs. 1(a) and 1(b). The first one is the coupling
with a standard material (bulk metal, dielectric, or semicon-
ductor) which does not possess any intrinsic magnetic response
[i.e., for which the magnetic permeability is equal to unity (cgs
units)] while the second one is the direct magnetic coupling
such as the one involved in the presence of artificial left-
handed materials, i.e., materials with simultaneously negative
permeability and permittivity [40,41]. We address exclusively
the first situation and therefore assume that μ(ω0) = 1 at all
wavelengths. We consider the geometry depicted in Fig. 1. The
electric and magnetic fields generated at r by a magnetic dipole

m(ω0) located at r0 are defined by [36]

E0(r,ω0) = ik0∇r ∧ G0(r,r0,ω0)m(ω0), (1)

and

H0(r,ω0) = {
Ik2

0 + ∇r∇r
}
G0(r,r0,ω0) · m(ω0), (2)

where k0 = 2π/λ0 is the wave vector in vacuum, I the iden-
tity matrix, and G0 = exp(ik0|r − r0|)/|r − r0| represents the
scalar Green’s function. From these two equations, we can
define two field susceptibilities,

E0(r,ω0) = SEH (r,r0,ω0) · m(ω0), (3)

and

H0(r,ω0) = SHH (r,r0,ω0) · m(ω0), (4)

in which the dyadic tensors SEH (r,r0,ω0) and SHH (r,r0,ω0)
are constructed by identification with Eqs. (1) and (2). For
the mixed dyad SEH (r,r0,ω0) this identification yields the
expression of the nine analytical components,

SEH (r,r0,ω0) = ik0

⎛
⎜⎝

0 − ∂G0
∂z

∂G0
∂y

∂G0
∂z

0 − ∂G0
∂x

− ∂G0
∂y

∂G0
∂x

0

⎞
⎟⎠. (5)

Equations (1) and (2) define the so-called illumination field.
Since the materials considered in this article do not directly
respond to the optical magnetic field, the coupling with the
nanoparticle is entirely described by the first equation. A
complete theoretical investigation of this illumination mode
requires the accurate computation of the optical field distri-
bution inside the nanostructure for every location r0 of the
magnetic dipole. As discussed in the literature, the recent
developments of real-space approaches for electromagnetic
scattering and light confinement established powerful tools for
the calculation of the electromagnetic response of complex
mesoscopic systems to an arbitrary illumination field [35].
Particularly, the technique of the generalized field propagator
described in Ref. [34] provides a convenient basis to derive
the electromagnetic response of an arbitrary system to a
great number of different external excitation fields [42]. Our
approach is based on the computation of a unique generalized
field propagator K(r′,r′′,ω0) that contains the entire response
of the nanostructure to any incident electric field E0(r′′,ω0).
Consequently, the self-consistent electric field E(r0,r′,ω0)
created inside the nanosystem by a magnetic dipole located
at r0 can be written as

E(r0,r′,ω0) =
∫

v

K(r′,r′′,ω0) · E0(r′′,ω0)dr′′, (6)

in which the integral runs over the volume v of the particle. As
demonstrated in Ref. [34], the dyadic K writes

K(r′,r′′,ω0) = Iδ(r′ − r′′) + S(r′,r′′,ω0) · χ (r′′,ω0), (7)

where δ is the three-dimensional Dirac function, and
S(r′,r′′,ω0) is the optical field-susceptibility tensor of the
nanostructure of electric susceptibility χ (r′′,ω0).

Equation (6) gives access to the electric field inside the
nanostructure and therefore to the polarization P(r0,r′′,ω0) =
χ (r′′,ω0) · E(r0,r′′,ω0) induced for each position r0 of the
magnetic dipole. The magnetic field generated outside of the
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particle can then be calculated by introducing the second
mixed-field susceptibility SHE(r,r′,ω0)= SEH (r′,r,ω0) [36],

H(r0,r,ω0) =
∫

v

SHE(r,r′,ω0) · P(r0,r′,ω0)dr′, (8)

which, in a concise form, leads to

H(r0,r,ω0) = SHH
p (r,r0,ω0) · m(ω0), (9)

where SHH
p (r,r0,ω0) defines the magnetic field susceptibility

associated with the nanostructure (p),

SHH
p (r,r0,ω0) =

∫
v

dr′
∫

v

dr′′SHE(r,r′,ω0)

·χ (r′,ω0) · K(r′,r′′,ω0) · SEH (r′′,r0,ω0).

(10)

Here, the center dot “·” signifies the matrix product. This
general relationship, derived from the theory of linear response,
brings to light the complex link between the electrical response
of matter (contained in χ and K) and the magnetic response
of vacuum, through the mixed propagators SEH and SHE .
The combination of these response functions shows in a
concise way how a nanostructure, which originally does not
possess any magnetic response in the optical spectrum, can
nevertheless yield a magnetic-magnetic response. Equation
(10) summarizes with mathematical clarity the back action of
the electromagnetic near field on a magnetic quantum emitter
via the curl of the electric field, mediated by the presence of a
nonmagnetic nanostructure.

III. MAGNETIC DIPOLE DECAY RATE CLOSE TO SMALL
DIELECTRIC PARTICLES

Equation (10) allows us to obtain a general expression for
the decay rate �m(r0,ω0) associated with a magnetic dipole
transition of amplitude meg [13],

�m(r0,ω0)

= �0
m(ω0)

{
1 + 3

2k3
0

u · Im
[
SHH

p (r0,r0,ω0)
] · u

}
,

(11)

where �0
m(ω0) = 4k3

0m
2
eg/3h̄ represents the natural decay rate

of the magnetic transition and u labels the dipole orientation.
The next objective of this article is to supply a full analytical

treatment of �m(r0,ω0). To achieve this goal, we deliberately
reduce the physical model to a simple two-level system coupled
to a single spherical nanoparticle, as shown in Fig. 2(a). We
have chosen to illustrate our method with dielectric materials
as they offer an interesting alternative to metals with reduced
dissipative losses and large resonant enhancement of both
electric and magnetic near fields [43–45].

In this case, a set of simple analytical equations can
be derived that include all the physical effects men-
tioned above. Indeed, we have K(r′,r′′,ω0) = Iδ(r′ − r′′),
χ (r′′,ω0) = αe(ω0)δ(r′′), where αe(ω0) is the dynamical dipo-
lar polarizability of the sphere, and finally

SHH
p (r,r0,ω0) = αe(ω0)SHE(r,0,ω0) · SEH (0,r0,ω0). (12)
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FIG. 2. (a) Single dielectric sphere of polarizability αe =
1688 nm3 (corresponding to n = 2, r = 15 nm), raster scanned by
a magnetic dipole at constant height z0 = 20 nm. (b) Cross section
of �m computed at λ0 = 500 nm for the three orientations ux , uy ,
and uz of the dipole. (c), (d) Corresponding maps computed in the
plane (x0,y0,z0 = 20 nm). The maps have been computed from the
complete expression of Eq. (13). Maps are 600 × 600 nm2, and the
scale bar is 200 nm.

This relation can be further simplified by replacing both SEH

and SHE by their analytical expressions. In a plane defined
by x0 = 0, i.e., r0 = (0,y0,z0), we get the following simple
expression when r = r0 [cf. Eq. (11)],

SHH
p (r0,r0,ω0)

= αe(ω0)Ae2ik0r0

{
−k4

0

r4
0

− 2ik3
0

r5
0

+ k2
0

r6
0

}
, (13)

where r0 = |r0| and the matrix A is defined by

A =

⎛
⎜⎝

y2
0 + z2

0 0 0

0 z2
0 −y0z0

0 −y0z0 y2
0

⎞
⎟⎠ . (14)

In consequence,SHH
p has the dimension of an inverse volume.1

A concise expression of the normalized magnetic decay rate
�m = �m/�0

m can then be deduced by replacing this relation
into (11),

�m(r0,ω0) = 1 + αe(ω0)u · A · u

×
{

sin(2k0r0)

(
−3k0

2r4
0

+ 3

2k0r
6
0

)

− cos(2k0r0)
3

r5
0

}
, (15)

in which the polarizability dissipation term Im αe(ω0) has been
neglected. We set x0 = 0 to obtain the simplest equations

1αe has a dimension of r3,A of r2, and all terms in the curly brackets
of Eq. (13) are homogeneous to r−8.
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FIG. 3. (a) Random distribution of dielectric spheres of polariz-
ability αe = 1688 nm3 (corresponding to n = 2, r = 15 nm), raster
scanned by a magnetic dipole at constant height z0 = 20 nm. (b) and
(c) show normalized decay maps for ux and uz orientation of the
magnetic dipole, respectively. Computed with λ0 = 500 nm. Maps
are 1600 × 1600 nm2, and the scale bar is 200 nm.

possible. Adding it as a free parameter is straightforward,
yet renders Eqs. (14) and (15) more complex. The case of
a single dipolar dielectric sphere presented in Fig. 2 shows
that the contrast patterns are extremely sensitive to the dipole
orientation. The contrast is generally positive on top of the
particle except when the dipole is aligned perpendicularly
to the scanning plane (x0,y0), in which case it vanishes, the
sphere becoming invisible for the magnetic dipole. Such a
peculiar behavior explicitly appears in Eqs. (14) and (15) for
small interaction distances, in particular, when the magnetic
dipole enters the very subwavelength range corresponding to
2k0r0 � 1.

As a second example, we consider in Fig. 3 a set of
p identical dielectric particles deposited on a transparent
substrate positioned at random locations ri (i = 1 to p). The
optical properties of such a system can be described by first
inserting the relation

χ (r,ω0) = αe(ω0)
p∑

i=1

δ(r − ri) (16)

in Eq. (10) and then in expression (11). The results are
presented in Figs. 3(b) and 3(c). When the particles are well
separated from each other, typically by one wavelength or
more, they display a contrast similar to the one described
in Fig. 2. This contrast is reinforced when several particles
are grouped together. Isolated particles and assemblies of
particles are surrounded by pseudoperiodic ripples that reveal
the interferences between the emitting magnetic dipole and the
sample.

IV. ELECTRIC AND MAGNETIC DIPOLE DECAY RATE
CLOSE TO COMPLEX DIELECTRIC NANOSTRUCTURES

Whereas Eqs. (10) and (11) provide analytical expressions
of the decay rate of magnetic dipoles placed close to very
simple nano-objects, these equations can be complemented by
an adequate discretization of the particle volume to describe
light emission from dipoles in the vicinity of nanostructures
of arbitrary geometries. To this end, we numerically imple-
ment the complete computation of the generalized propagator
K(r′,r′′,ω0) as described in Ref. [34], together with χ (r,ω0) =
[ε(ω0) − εenv]/4π (cgs units), where εenv defines the permittiv-
ity of the environment. We then use the propagatorK associated
with the nanostructure with the mixed-field susceptibilities
SHE and SEH in a discretized version of Eq. (10),

SHH
p (r,r0,ω0) =

N∑
i=1

Vcell

N∑
j=1

VcellSHE(r,ri ,ω0)

·χ (ri ,ω0) · K(ri ,rj ,ω0) · SEH (rj ,r0,ω0).

(17)

The sums (indexes i and j ) run over all N discretization cells
(of volume Vcell) forming the nanostructure. This numerical
procedure gives access to the optical response of complex
systems, such as the ones described in Fig. 4. In this example,
we have applied this technique to visualize the footprint
induced by a perfect square corral composed of 20 dielectric
structures in the initially flat ED and MD decay-rate maps.
The extension of the entire nanostructure is 1.1 μm, and the
refractive index is npad = 2. A modification of the decay rates
ranging between 20% and 50% is obtained when the magnetic
dipole is 30 nm above the nanostructures [Figs. 4(c) and 4(d)].
Although the coupling is more efficient with an electric dipole
[Figs. 4(a) and 4(b)], especially when it is perpendicular, the
coupling of the magnetic dipole with the dielectric structure
remains quite significant and could be easily observed. In
particular, the normalized contrast �m − 1 will be further
enhanced when increasing npad from 2 to 4 or 5 using high
optical index dielectric or semiconductor materials (TiO2, Si,
or even Ge). To demonstrate this enhancement, we show in
Figs. 4(e)–4(h) a flat silicon structure n ≈ 4.3 forming the
letters “Si,” on which a magnetic decay-rate enhancement of
more than a factor 5 can be observed. Moreover, we notice that
the maps of the ED and MD decay rates display very specific
features that will allow one to discriminate unambiguously
the electric or magnetic nature of the atomic transition. A
similar identification method has been proposed and demon-
strated using back-focal plane imaging of electric/magnetic
dipole luminescence from rare-earth-doped films [46,47]. Our
results suggest an alternative discrimination technique using
nanostructured substrates, which could be performed on less
complex optical detection schemes.

For instance, when the emitting dipole is oriented along the
(OX) axis [maps shown in Figs. 4(a), 4(c) 4(e), and 4(g)],
we observe a contrast reversal above the dielectric pads when
passing from an electric to a magnetic dipole. This striking
phenomenon is accompanied by a shift of the fringe pattern
inside the corral by half a wavelength. Finally, another type of
contrast change is observed when the dipole is perpendicular
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FIG. 4. (a)–(d) Maps of the decay rates of electric (ED) and
magnetic dipoles (MD) 30 nm above a square corral of 20 dielectric
nanocubes. The spacing between each cube of dimensions 100 ×
100 × 100 nm3 is 100 nm and the optical index is n = 2.0. The maps
(a)–(d) have a size of 2 × 2 μm2. (a) ED oriented along the OX axis;
(b) ED oriented along the OZ axis; (c) and (d) same computation for
a MD. (e)–(h) Maps of the (e), (f) ED and (g), (h) MD decay rate
30 nm above a silicon nanostructure (n = 4.3) composing the letters
“Si” (structure height H = 50 nm). The maps (e)–(h) are 1 × 1 μm2

large. (e) ED along OX; (f) ED along OY ; (g) and (h) same for
a MD. A logarithmic color scale is used due to the larger contrast
in the decay rates. All maps are computed at λ0 = 500 nm. Dashed
black lines indicated the contours of the nanostructures. Scale bars
are 200 nm.

to the sample. In this second case, as illustrated by the maps
shown in Figs. 4(b) and 4(d), we move from a highly localized
signal around the pads [map in Fig. 4(b)] to a broader response
distributed along the corral rows [map in Fig. 4(d)].

V. EVOLUTIONARY OPTIMIZATION OF METAL
NANOSTRUCTURES FOR MAXIMUM

MAGNETIC DECAY RATE

In order to demonstrate the versatility of our model, we
couple our numerical framework to an evolutionary opti-
mization (EO) algorithm. EO tries to find optimum solutions
to complex problems by mimicking the process of natural
selection. Its principal idea is briefly depicted in Fig. 5(a). Our
approach to couple EO to numerical simulations is described
in more detail in Ref. [48]. For technical information on the

implementation and the used algorithm parameters, see the
Supplemental Material (SM) [49]. In the SM, we also show
an additional single- as well as a multiobjective evolutionary
optimization problem, based on the decay-rate formalism. In
this section, we use the permittivity of gold [50] to demonstrate
that our formalism is not limited to dielectric materials.
The optimization goal is to find a gold nanostructure which
maximizes the ratio of magnetic over electric decay rate�m/�e

at a fixed location [r0 = (0,0,80) nm]. This is a particularly
tricky scenario, because metals are known to have a far stronger
response to electric dipole transitions than to magnetic ones.
We use the evolutionary algorithm to optimize the geometry
of a planar structure composed of 100 gold pillars (each
20 × 20 × 60 nm3), lying on a plane of 1000 × 1000 nm2

[see Fig. 5(b)]. We recall here that each subwavelength pillar
does not support a direct magnetic response on its own. To
render the positioning easier, the possible locations on the
plane lie on a discretized grid (steps of 20 nm). The structure is
placed in vacuum and the wavelength is fixed at λ = 500 nm.
We evolve a population of 150 individuals (nanostructures)
over 2500 generations. Each of the individuals is a parameter
set consisting of positions for the 100 gold pillars, hence
describing one possible structure. We tested the convergence
by running the same optimization several times, reproducibly
yielding similar structures and values for the decay-rate ratio.

The optimum structure found by the EO algorithm is shown
in Fig. 5(c). Mappings of the decay-rate ratio as well as the
electric and magnetic decay rates are shown in Figs. 5(d)–5(g).
Obviously, the algorithm succeeded in finding a gold nanos-
tructure which significantly promotes magnetic decay at the
target position [see Fig. 5(d)]. This is particularly remarkable,
because although gold structures easily provide very strong
electric dipole decay-rate enhancements, the magnetic LDOS
is known to be usually very weak in metallic nanoparticles
[26].

Two effects are being exploited by the optimized structure:
The first mechanism is the different confinement of the decay
rates for electric and magnetic dipoles close to the material. The
electric decay-rate enhancement in the proximity of the gold
pillars is high, but confined to a very small volume around the
material. The magnetic decay rate, on the other hand, is more
loosely enhanced around the gold clusters, leading to regions
in their vicinity where �e is almost not affected, while �m

still shows significant enhancement [cf. Figs. 5(e) and 5(f)].
The second effect is a modulation of the decay rate inside
a larger resonator due to interference, similar to the corral
shown in Figs. 1 and 4. At λ = 500 nm, the above presented
corral had a maximum of �e in its center [see Figs. 4(b) and
4(d)]. In contrast to this, the evolutionary algorithm distributed
a fraction of the material (outer, circular structure) such that
�m is maximum in its center, which can be seen in Fig. 5(g),
where the decay rate has been calculated for the isolated outer
structure.

We will conclude this section with some considerations on
the convergence. One might wonder why the structure does
not consist of perfect circles—this would very likely result in
even better performance. Concerning this question, we have to
keep in mind that (51 × 51)!/(51 × 51 − 100)! ≈ 10341 pos-
sibilities exist to distribute the 100 gold pillars on the available
positions on the plane. Yet, the evolutionary algorithm did
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100 gold-blocks
of 20x20x60 nm3
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B 10

B 100

B 50

...

...

B 1

selec�on
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evalua�on
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best solu�on
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(g)

(h)
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FIG. 5. (a) Evolutionary optimization cycle. (b) Sketch of the structure model for optimization: Free parameters are the positions of 100
gold blocks (Bi) on the XY plane (in vacuum). (c) Gold structure for optimum �m/�e contrast at the center [r0 = (0,0,80) nm], found by EO.
(d)–(g) Decay-rate analysis of the EO solution. (d) Mapping of the ratio of magnetic and electric decay rate 20 nm above the structure. (e), (f)
Relative electric and magnetic decay rates above the structure, respectively. (g) Ratio of magnetic and electric decay rate for only the outer part
of the structure, also leading to an enhancement of �m at the target location. At the bottom of (g), �m/�e is shown along a profile in the center
of the map. (h) Progress of the evolutionary algorithm. A logarithmic color scale is used for the maps (e) and (f). All results are computed at
λ0 = 500 nm and for a dipole orientation along OZ. Scale bars are 200 nm. Mapping (c) is 1000 × 1000 nm2, and (d)–(g) are 800 × 800 nm2

large [area indicated by a dashed square in (c)].

only evaluate 2500 × 150 < 4 × 105 different arrangements.
Therefore, the reason why the material is not distributed
on perfect circles is the heuristic nature of the evolutionary
optimization algorithm. The search for the best structure did
simply not converge to the very optimum. Comparing the
optimized structure to an idealized version reveals that the
possible improvement in �m/�e is only in the order of ≈1%
(see also SM). We conclude that, despite the residual disorder
in the geometry, the EO algorithm did converge very close to
the ideal structure. Hence, EO is a promising approach to this
kind of problem.

VI. CONCLUSIONS AND PERSPECTIVES

In summary, we have developed a concise theoretical
framework to describe the dynamics of light emission from
magnetic dipoles located in complex nanostructured environ-
ments. This method, based on mixed-field susceptibilities,
provides analytical expressions of the decay rate in the case
of very simple environments. When the magnetic dipole is
located close to nanostructures of arbitrary geometries, the
computation of the MD decay rate involves the discretization
of the nanostructure volume, the computation of a generalized
propagator, and finally the computation the decay rate from
mixed-field susceptibilities. This versatile framework is well
suited to describe the emission of light from emitters involving
both electric and magnetic dipole transitions as well as nano-

optical processes comprising confined electric and magnetic
fields. In addition, our framework is very flexible and can
easily be extended. For instance, nonlocality effects might be
included by following the descriptions of Ref. [51]. Owing to
its computational simplicity, the method can also be employed
within more complex numerical schemes. We demonstrated
this possibility by coupling the magnetic decay-rate calculation
to an evolutionary optimization algorithm, which we employed
to design a gold nanostructure for maximum contrast between
magnetic and electric EM-LDOS. We also applied our method
to the decay rate close to complex dielectric nanostructures.
Our results suggest that it could be possible to identify the
nature of the transition involved in the emission process
(ED vs MD) from the variations of the decay rate in the
vicinity of nanostructures. Finally, nanostructures possessing
a particularly high contrast regarding dipole orientations could
be designed using our evolutionary optimization.
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