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2Department of Physics, University of Oradea, 410087, Oradea, Romania

3Faculty of Medicine and Pharmacy, Department of Preclinical Sciences, University of Oradea, 410087, Oradea, Romania
4BME-MTA Exotic Quantum Phases Research Group, Budapest University of Technology and Economics, 1521 Budapest, Hungary

(Received 27 September 2017; revised manuscript received 22 November 2017; published 5 February 2018)

We investigate the spin-resolved transport properties, such as the linear conductance and the tunnel
magnetoresistance, of a double quantum dot device attached to ferromagnetic leads and look for signatures of
the SU(4) symmetry in the Kondo regime. We show that the transport behavior greatly depends on the magnetic
configuration of the device, and the spin-SU(2) as well as the orbital and spin-SU(4) Kondo effects become
generally suppressed when the magnetic configuration of the leads varies from the antiparallel to the parallel one.
Furthermore, a finite spin polarization of the leads lifts the spin degeneracy and drives the system from the SU(4)
to an orbital-SU(2) Kondo state. We analyze in detail the crossover and show that the Kondo temperature between
the two fixed points has a nonmonotonic dependence on the degree of spin polarization of the leads. In terms
of methods used, we characterize transport by using a combination of analytical and numerical renormalization
group approaches.
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I. INTRODUCTION

Transport properties of double quantum dots (DQDs)—
the simplest realizations of artificial molecules [1]—reveal a
plethora of phenomena not present in single quantum dot setups
[2–6]. In particular, in the regime of weak coupling between
DQD and external electrodes, the interplay of Fermi statistics
and charging effects can result in the Pauli spin blockade effect
[7–9]. On the other hand, in the strong coupling regime, the
many-body electron correlations can result in exotic Kondo
effects [10–14], such as the two-stage [14–22] or SU(4) Kondo
phenomena [23–32]. In the latter case, the ground state of the
system needs to exhibit a fourfold degeneracy, which in the case
of DQDs is assured by the spin and orbital degrees of freedom.
In fact, the presence of the SU(4) Kondo effect in double
quantum dots has recently been confirmed experimentally by
A. Keller et al. [33]. By applying Zeeman and pseudo-Zeeman
fields to break the ground-state degeneracy, it was shown that
the measured enhancement of the conductance was indeed due
to the formation of the SU(4)-symmetric Kondo state.

The emergence of the Kondo effect can, however, be
hindered by the presence of external perturbations [34] or
correlations in the leads [35]. In particular, when a quantum
dot is attached to ferromagnetic electrodes, the Kondo effect
becomes affected due to the development of an exchange field
�εexch induced by spin-dependent hybridization [36–40]. Such
an exchange field results in a splitting similar to the Zeeman
splitting in an external magnetic field [41], still, its sign and
magnitude can be tuned by a gate voltage [42–44]. For single-
level quantum dots, when the exchange field is getting larger
than the corresponding Kondo temperature TK , the Kondo
resonance starts to split. The local density of states exhibits then
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only small satellite peaks at energies corresponding to |�εexch|
[39–41], instead of a pronounced Abrikosov-Suhl resonance
[12,45,46]. For multidot structures, the transport behavior is
generally more complex and results from a subtle interplay of
the relevant energy scales, with the exchange field playing an
important role [47,48].

In this paper, we investigate the linear conductance and the
tunnel magnetoresistance in a double quantum dot device and
analyze how transport is affected by the presence of ferro-
magnetic electrodes. We construct the full stability diagram,
and identify the regions where the spin-SU(2), orbital-SU(2),
and the full SU(4) Kondo states develop. The mere presence
of the spin polarization in the leads lifts the spin degener-
acy through the exchange field, which, at some particular
points in the stability diagram drives the system through a
crossover from an SU(4) to an orbital-SU(2) Kondo state
[49]. We analyze this crossover in detail by using the scaling
renormalization group (RG) approach [12]. Furthermore, we
investigate the effect of temperature on the linear conductance
and identify ways to pinpoint the regions where Kondo states
emerge by analyzing the system’s behavior in the two possible
magnetic configurations of the leads (parallel or antiparallel).
Because an accurate analysis of such effects requires resorting
to nonperturbative methods, here we employ the numerical
renormalization group (NRG) method [50,51]. We also note
that a similar SU(4)-SU(2) crossover caused by an external
magnetic field has been recently studied [34]. In our case,
however, the crossover takes place due to the proximity effect
with ferromagnetic leads in the absence of a magnetic field.

This paper is organized as follows. In Sec. II, we introduce
the Hamiltonian of the system under investigation. The renor-
malization group analysis for the SU(4) → SU(2) crossover
together with the scaling equations that describe the crossover
are presented in Sec. III, while Sec. IV gives details on the NRG
procedure and presents how the quantities of interest, such as
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FIG. 1. Schematic of a double quantum dot (DQD) system with
ferromagnetic leads. Each dot, with energy level εj and Coulomb
correlation U , is coupled to a pair of left and right leads with coupling
strength �σ

rj . The Coulomb correlations between the dots are denoted
by U ′. The magnetizations of the leads are assumed to form either a
parallel (P) or antiparallel (AP) magnetic configuration.

the linear conductance, are computed for different magnetic
configurations of the device. Results of the NRG calculations
for the SU(4) → SU (2) crossover are presented in Sec. V,
whereas the general behavior of the linear conductance and the
tunnel magnetoresistance is discussed in Sec. VI. The paper is
concluded in Sec. VII.

II. MODEL FOR THE DOUBLE DOT SETUP

The setup we consider consists of two capacitively coupled
quantum dots, each one coupled to external leads (see the
sketch in Fig. 1). Each dot is described by the single-impurity
Anderson model (SIAM). We denote by εj , with j = {1,2},
the energy of an electron residing in dot j . Each dot can
accommodate up to two electrons, and they interact with
each other through an on-site interaction U and an interdot
interaction U ′. Their occupation is denoted by njσ = d

†
jσ djσ ,

with d
†
jσ creating a spin-σ electron in dot j . The double dot

Hamiltonian then reads

HDQD =
∑
jσ

εjnjσ +
∑

j

Unj↑nj↓

+U ′(n1↑ + n1↓)(n2↑ + n2↓) . (1)

In the absence of an external magnetic field, B = 0, if the
energy levels are degenerate, i.e., ε1 = ε2, and when U = U ′,
the HDQD Hamiltonian is SU(4) invariant1 [29]. When the
orbital degeneracy is lifted, corresponding to a situation when
ε1 �= ε2, HDQD remains SU(2) invariant in the spin sector.
For more realistic situations [33], when U ′/U < 1, the SU(4)
symmetry is in general lost. Still, in this case, the system
exhibits a special point in the {ε1,ε2} parameter space where
an emergent SU(4) symmetry can occur [29], i.e., {ε1,ε2} ≈

1The SU(4) symmetry can be constructed as SU(4) = SUspin(2) ×
SUorbital(2), since HDQD is SU(2) invariant in both the spin and orbital
sectors.

{−U ′/2, − U ′/2}.2 This special point will be discussed in
more detail in Secs. III and V.

The double dot setup is attached to four external fer-
romagnetic leads, modeled as reservoirs of noninteracting
quasiparticles,

HLeads =
∑
rjkσ

εrjkσ c
†
rjkσ crjkσ . (2)

Here, c
†
rjkσ is the creation operator for an electron with

momentum k and spin σ in the lead r = {L,R} attached
to dot j . Consequently, the corresponding local density of
states ρσ

rj becomes spin dependent. Furthermore, this affects
the broadening function that describes the coupling between
the dots and the leads, i.e., �σ

rj = πρσ
rj |vrj |2, where vrj is the

amplitude of the tunneling. The tunneling Hamiltonian is given
by

HTun =
∑
rjkσ

vrj (c†rjkσ djσ + d
†
jσ crjkσ ). (3)

It is more convenient to express the couplings in terms of
spin polarization of a given lead, prj , as �σ

rj = (1 + σprj )�rj ,

where �rj = (�↑
rj + �

↓
rj )/2. In the present work, we assume

that the magnetizations of the leads are collinear and can take
two configurations: (i) parallel (P) and (ii) antiparallel (AP).
We also consider that the density of states is flat with the
bandwidth given by 2D0, and we set D0 ≡ 1 as the energy
unit. The total Hamiltonian describing the double dot system
coupled to ferromagnetic leads is then given by

H = HDQD + HLeads + HTun. (4)

In the following, we will solve it using the Wilson’s NRG
method [50].

III. THE SU(4) TO SU(2) CROSSOVER IN THE KONDO
REGIME

We shall first focus on the special point {ε1,ε2} =
{−U ′/2, − U ′/2} that displays the emerging SU(4) Kondo
physics (provided U � U ′ [29]) in the limit when the leads
are nonmagnetic. For finite spin polarization of the leads, the
system’s behavior greatly depends on its magnetic configu-
ration. In the case of antiparallel configuration, the effective
spin-resolved couplings between given dot and corresponding
leads become spin-independent and the ground-state properties
of the system are not affected by spin polarization.3 On the
other hand, in the parallel configuration, the couplings are spin-
dependent, which results in lifting of the spin degeneracy such
that only the orbital SU(2) symmetry is preserved. Therefore,
in the rest of this section, we shall focus on the case of the
parallel magnetic configuration and study the effect of finite p

2For the system to remain SU(4) invariant, it is mandatory for the
polarization of the leads to be zero and that there is no hopping
between the dots.

3This is the case for left-right symmetric systems. Finite asymmetry
can result in spin dependence of the couplings, but then the transport
behavior is similar to that in the parallel configuration with some new
effective spin polarization [52].
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FIG. 2. Second-order diagrams contributing to the renormaliza-
tion of the coupling matrix displaying processes when a virtual
particle is scattered in the upper band edge (a) or a virtual hole in
the lower band edge (b) of the lead electrons.

on the system’s low-temperature behavior. As already pointed
out, by changing the polarization of the external leads from
nonmagnetic with p = 0 to fully polarized with p = 1, it is
possible to capture the SU(4) → SU(2) Kondo crossover.

To comprehend the essential physics, we map the Hamilto-
nian (4) to the Kondo model by projecting onto the subspace
with single occupancy 〈n〉 � 1 by using the Schrieffer-Wolff
transformation [12]. We assume that the dots are symmetrically
coupled, vLj = vRj = vj and pLj = pRj = p. We then make
a change of basis by performing a unitary transformation on
the leads operators and use an even/odd combination,(

cejkσ

cojkσ

)
= 1√

2

(
1 1

−1 1

)(
cLjkσ

cRjkσ

)
. (5)

In this even-odd basis, the odd channel becomes decou-
pled and the double dot remains coupled only to the even
channel. In what follows, we shall drop the correspond-
ing subscript, i.e., cejkσ → cjkσ . We introduce the tensor
product notations (σ̂ μ ⊗ τ̂ ν)jσ ;j ′σ ′ = ∑

kk′ c
†
jkσ σ

μ

σσ ′τ
ν
jj ′cj ′k′σ ′

and (Ŝμ ⊗ T̂ ν)jσ ;j ′σ ′ = d
†
jσ ( 1

2σ
μ

σσ ′)( 1
2τ ν

jj ′ ) dj ′σ ′ , where σμ =
{I2,σx,σy,σz} are the regular Pauli matrices for μ = 1 → 3
and the unit matrix when μ = 0, acting on the spin degrees of
freedom, and similar for τ ν but acting on the orbital part. Then,
disregarding the potential scattering, the anisotropic Kondo
Hamiltonian can be written as

HK =
∑

σσ ′αα′
jj ′ii ′
μν

J
μ;ν
jσ ;j ′σ ′(σ̂ μ ⊗ τ̂ ν)jσ ;j ′σ ′(Ŝμ ⊗ T̂ ν)iα;i ′α′ . (6)

Altogether there are 15 terms in Eq. (6) and the exchange
couplings J

μ;ν
jσ ;j ′σ ′ depend on all the parameters of the original

Hamiltonian, i.e., εj , U , and �σ
rj . In the limiting case when

U = U ′ and p = 0, it is straightforward to show that all
the couplings are equal, J → J , and the charge and spin
contributions combine in an SU(4)-symmetric way. The 15 =
42 − 1 generators for the SU(4) Lie algebra are {I2,σ } ⊗
{I2,τ } − I2 ⊗ I2. On the other hand, when p = 1, i.e., the leads
are frozen, for example, in the spin-↑ state, HK remains SU(2)
invariant in the orbital sector.

To capture the crossover we performed the RG analysis
[12] for the exchange couplings J in between these two fixed
points. The second-order processes (particle and holelike) that
renormalize the couplings are displayed in Fig. 2. Keeping
in mind that the polarization of the leads affects only the
spin sector, we can group the couplings into five distinct
classes. Furthermore, we define dimensionless couplings by

introducing the local density of states ρ0 = 1/2D0 as

j1 = ρ0J
μ={0,3};ν �=0
j↑;j ′↑ , j2 = ρ0J

μ={0,3};ν �=0
j↓;j ′↓ ,

j3 = ρ0J
μ={1,2};ν
jσ ;j ′σ , j4 = ρ0J

3;0
j↑;j↑ ,

j5 = ρ0J
3;0
j↓;j↓ , (7)

subject to initial conditions j 0
1 = j 0

4 = ρ0J
0(1 + p), j 0

2 =
j 0

5 = ρ0J
0(1 − p), and j 0

3 = ρ0J
0
√

1 − p2, where J 0 =
v2( 1

ε+U
− 1

ε
) and v is the isotropic coupling.4 Here, 2D0 is

the bandwidth for the conduction electrons. To second order
in j, the scaling equations are easily derived by progressively
reducing the bandwidth D [12] as

dj1

d ln D
= −2j 2

3 − 2j 2
1 ,

dj2

d ln D
= −2j 2

3 − 2j 2
2 ,

dj3

d ln D
= −3

2
j3(j1 + j2) − 1

2
j3(j4 + j5),

dj4

d ln D
= −4j 2

3 ,

dj5

d ln D
= −4j 2

3 . (8)

The SU(4) fixed point is captured by setting p = 0, implying
that all the couplings are the same ji = j , in which case the
set (8) of equations collapses to a single one:

dj

d ln D
= −4j 2 , p → 0. (9)

In contrast, when the leads are fully spin polarized, p = 1, the
coupling j4 remains marginal, the couplings j2 = j3 = j5 = 0,
while j = j1 rescales accordingly to the regular SU(2) Kondo
physics

dj

d ln D
= −2j 2 , p → 1. (10)

In a general situation with 0 � p � 1, we can solve the RG
equations (8) numerically. A typical solution is presented
in Fig. 3(a) for p = 0.8, and as expected all the couplings
diverge at the same characteristic energy scale [12]. In the
limit when p → 0 the curves in Fig. 3(a) collapse to a single
one. We define the Kondo temperature TK as the characteristic
energy where the scaling equations (8) diverge. In general, in
the SU(N ) Kondo model [12], apart from some higher-order
corrections [53], the Kondo temperature is given by

T
SU(N)
K � D0 e−1/(Nj ), (11)

the expression that can be easily obtained by solving Eqs. (9)
and (10) analytically. On the other hand, when the polarization
of the leads is changed in between these limits, 0 < p < 1,
TK changes in a nonmonotonic way. In Fig. 3(b), we represent
the evolution of TK with the spin polarization p of the leads,

4In the present calculation, we consider the fully symmetrical
situation in which the tunneling amplitudes between each dot and
the leads are all identical.
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FIG. 3. (a) The renormalization of the coupling constants as the
bandwidth is changed. We used p = 0.8 and ρ0J

0 = 0.026. For this
choice of parameters, TK/D0 = 6.6 × 10−5. (b) The evolution of TK

as a function of spin polarization p. The Kondo temperature is defined
here as the energy scale at which the couplings diverge.

which shows that TK is the same at p = 0 and p = 1, in
agreement with Eq. (11).5 When U � U ′, depending on the
ratios �/U and �/U ′, the two characteristic energy scales,
T

SU(2)
K and T

SU(4)
K , can be well separated, but otherwise the

physics remains the same.
To conclude this section, the set (8) of RG equations

describes consistently the SU(4) → SU(2) crossover and cap-
tures the essential Kondo physics in between the two fixed
points. In Sec. V, we supplement the RG analysis with more
exact numerical renormalization group calculations [50,54]
and focus on computing measurable quantities such as the
conductance and the tunnel magnetoresistance.

IV. NUMERICAL RENORMALIZATION GROUP
AND THE CONDUCTANCE

In this work, we are interested in the linear response
transport properties of the system at low enough temperatures
such that the electron correlations give rise to the Kondo effect
[10,12]. The aim, in particular, is to elucidate the role of
spin-dependent tunneling on the transport properties in the
full parameter space, with a special focus on the SU(4) Kondo
regime [23]. In order to achieve this goal in the most accurate
manner, we employ the nonperturbative numerical renormal-
ization group (NRG) method [50,54]. In the NRG approach,

5Notice that based on Eq. (8) the initial exchange coupling is doubled
when p = 1 compared to its value for p = 0.

the conduction bands of the noninteracting electrons in the
leads are discretized in a logarithmic way with a discretization
parameter� (here we use� = 2). The discretized Hamiltonian
is then transformed to a tight-binding chain Hamiltonian with
exponentially decaying hoppings (Wilson chain).

We follow the same strategy as discussed in Sec. III and
use the even-odd basis. In this way each dot is coupled to a
single channel—the even channel—with a coupling strength,
�σ

j = �σ
Lj + �σ

Rj . The NRG Hamiltonian of the system is

HNRG = HDQD +
∑
jσ

√
�σ

j

ρ0π
(f †

j0σ djσ + d
†
jσ fj0σ )

+
∑
jnσ

ξn(f †
jnσ fjn+1σ + f

†
jn+1σ fjnσ ). (12)

Here, f
†
jnσ denotes the creation operator of a spin-σ electron

at site n (n = 0, 1, 2 . . . ) of the j th (j = 1,2) Wilson chain
and ξn are the respective hopping integrals. This Hamiltonian
is solved iteratively by retaining an appropriate number NK

of low-energy states at each iteration (here we keep at least
NK = 104 states). The discarded states, on the other hand, form
a complete many-body basis of the whole NRG Hamiltonian
[55] and are used to construct the full density matrix of the
system [56].

Along the NRG procedure, one needs to deal with a large
Hilbert space at each step of iteration, therefore it is crucial
to exploit as many symmetries of the NRG Hamiltonian as
possible. Here we make use of four Abelian symmetries,6

defined by the generators

Qj =
∑

σ

(
njσ − 1

2

)
+

∑
nσ

(
f

†
jnσ fjnσ − 1

2

)
,

Sj
z = 1

2
(nj↑ − nj↓) + 1

2

∑
n

(f †
jn↑fjn↑ − f

†
jn↓fjn↓), (13)

for the total charge and zth spin component of dot and chain
j , respectively. The quantities we are particularly interested in
are (i) the total spectral function

A(ω) =
∑
jσ

Ajσ (ω) = − 1

π

∑
jσ

ImGR
jσ (ω), (14)

with GR
jσ (ω) being the Fourier transform of the retarded

Green’s function, GR
jσ (t) = −i�(t)〈{djσ (t),d†

jσ (0)}〉, and
(ii) the linear conductance

G = e2

h

∑
jσ

4�σ
Lj�

σ
Rj

�σ
Lj + �σ

Rj

∫
dω

(
−∂f (ω)

∂ω

)
πAjσ (ω), (15)

where f (ω) denotes the Fermi-Dirac distribution function7

[59]. To get a clear picture, we assume equal spin polarizations

6At some particular points in the stability diagram, the symmetry is
higher in the spin and orbital space.

7To obtain the relevant spectral functions, we use the usual log-
Gaussian broadening kernel [56], however, the conductance is calcu-
lated directly from discrete data [57], which makes the results robust
against broadening artifacts [58].
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of the leads, prj ≡ p, and equal coupling strengths, �rj ≡
�/2. Then the expression (15) for the linear conductance
reduces to

GAP = 2e2

h
(1 − p2)�

∫
dω

(
−∂f (ω)

∂ω

)
πAAP(ω), (16)

for the antiparallel (AP) configuration, where AAP(ω) denotes
the spectral function in the AP configuration, with AAP

j↑ (ω) =
AAP

j↓ (ω). As can be seen, GAP is the linear conductance—up
to the prefactor (1 − p2)—of a DQD setup with nonmagnetic
leads. Consequently, in the antiparallel configuration, finite
spin polarization of the leads results in a reduction of the overall
conductance through the system, however, it does not affect its
ground-state properties. On the other hand, the conductance in
the parallel (P) configuration is given by

GP = e2

h

∑
σ

(1 + σp)�
∫

dω

(
−∂f (ω)

∂ω

)
πAP

σ (ω), (17)

where AP
σ (ω) = ∑

j AP
jσ (ω) is the spin-dependent spectral

function in the parallel configuration. The difference between
conductances in the two magnetic alignments can be described
by the tunnel magnetoresistance, which is defined as [60,61]

TMR = GP − GAP

GAP
. (18)

In the present work, we use the NRG to investigate the full
phase space of the model. However, to connect to the RG results
presented in Sec. III, let us first discuss the SU(4) → SU(2)
crossover and follow the evolution of the spectral functions
as well as the conductance—the quantities that were not
accessible in the RG approach.

V. THE SU(4) TO SU(2) CROSSOVER: NRG RESULTS

In this section, we focus on the SU(4) Kondo regime and
analyze the influence of finite leads’ spin polarization on the
transport properties. We shall present the results for the spectral
functions AP

σ (ω) as well as for the temperature dependence of
the conductance.8 We will discuss in detail the case of U = U ′,
and later address a more realistic situation when U > U ′ [33].

An important quantity that captures the crossover is the
spectral function, AP

σ (ω), whose spin components are dis-
played in Figs. 4(a) and 4(b), respectively. The total spectral
function itself, AP(ω), is presented in the inset of Fig. 4(b).
When p = 0, it displays the regular SU(4) Kondo resonance
formed away from the Fermi level at ω ≈ T

SU(4)
K . When

increasing the spin polarization, its maximum becomes sup-
pressed and moves toward ω = 0, and when p = 1 the orbital-
SU(2) Kondo resonance is formed at ω = 0.

We can get more information by inspecting the spin-
resolved spectral functions. In the case of spin-up channel,
which belongs to the majority-spin subband, increasing the
spin polarization results in an enhancement of the spectral

8Because the effect of finite p in the antiparallel magnetic configu-
ration is merely limited to a polarization-dependent prefactor, in this
section, we focus on the case of the parallel configuration only.
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FIG. 4. The energy dependence of (a) the zero-temperature spin-
up and (b) spin-down spectral function, together with (c) the linear
conductance as a function of temperature calculated for different spin
polarizations of the leads, ranging from p = 0 to p = 1 in steps of
0.05 (the arrow indicates the direction in which p increases), in the
SU(4) Kondo regime. The inset in (b) shows the total spectral function,
while the inset in (c) presents the Kondo temperature as a function
of p. The Kondo temperature is defined by G(T )/G(T = 0) = 1/2.
T

SU(4)
K (≈2.8 × 10−4U ) denotes the SU(4) Kondo temperature (in the

case of p = 0). The parameters are U = U ′ = 0.5, � = 0.015, in
units of band half width, and ε1 = ε2 = −U ′/2.

function to AP
↑(ω → 0) � 1/π�↑. Moreover, the maximum in

AP
↑(ω) gradually shifts to the Fermi energy, such that for p = 1,

only the orbital degree of freedom is relevant, and the SU(2)
Kondo peak becomes symmetric around ω = 0. On the other
hand, AP

↓(ω) exhibits a completely different behavior. First of
all, increasing the spin polarization results in a decrease of
AP

↓(ω). Furthermore, the maximum in the spin-down spectral
function moves away from the Fermi energy, due to the
development of the exchange field �εexch [36,37] and this
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splitting grows with increasing p. Finally, for p = 1, AP
↓(ω)

becomes completely quenched at low energies.
This distinct behavior of the spectral function is corrobo-

rated with a detailed analysis of the temperature dependence of
the linear conductance, which is shown in Fig. 4(c). At the two
fixed points (corresponding to p = 0 and p = 1), the conduc-
tance is a universal function of T/T

SU(N)
K [23,33]. Interestingly,

despite the fact that the system’s ground-state degeneracy
becomes reduced from fourfold to twofold, increasing the spin
polarization has a rather small effect on the conductance itself.
To make the connection to the experiments, from now on we
shall use a different definition for the Kondo temperature,
G(T = TK ) = G(T = 0)/2, i.e., the temperature at which the
conductance drops to half of its zero-temperature value.9

The evolution of TK with increasing the spin polarization is
presented in the inset of Fig. 4(c). As previously predicted by
the RG equations, the polarization of the leads has a relatively
small effect on TK and, consequently, T

SU(4)
K ≈ T

SU(2)
K . We

would, however, like to note that the difference between the two
Kondo temperatures can be enlarged by reducing the charge
fluctuations, i.e., by decreasing the ratio of �/U .

Let us now analyze a more realistic situation when U >

U ′. Now the two Kondo temperatures T
SU(N=2,4)
K are well

separated, which allows us to clearly identify the exchange-
field-induced splitting in the conductance behavior. This can be
obtained by properly tuning the ratio between the couplings and
Coulomb correlations. The energy dependence of the spectral
function and the temperature dependence of the conductance
calculated for �/U = 0.015 are shown in Fig. 5. Since T

SU(4)
K

is now much smaller (T SU(4)
K /U ≈ 7.5 × 10−5), a very small

spin polarization (p � 0.02) is sufficient to suppress the SU(4)
Kondo effect completely [see Fig. 5(a)]. Quite unexpectedly,
the width of the orbital Kondo peak depends in a nonmonotonic
fashion on the degree of spin polarization of the leads [see also
the inset in Fig. 5(a)], and the minimum width occurs around
p ≈ 0.1.

This behavior is now clearly reflected in the temperature
dependence of the conductance shown in Fig. 5(b). The p = 0
curve presents a universal SU(4) conductance dependence,
which then, with increasing p, smoothly changes to the SU(2)
universal curve. Moreover, the extracted Kondo temperature
reveals a nonmonotonic dependence on spin polarization. First,
the Kondo temperature quickly drops with p and is much
lower than T

SU(4)
K . Further increase of p, however, results in an

enhancement of the SU(2) Kondo temperature. To understand
this enhancement, we recall that spin-dependent hybridization
(which grows with p), results in DQD level renormalization,
such that the position of the spin-up levels becomes effectively
lowered. As a consequence, it reduces the excitation energies
for the pseudo-spin-flip processes responsible for the Kondo
effect, leading to an increase of T

SU(2)
K , such that for p = 1, one

may even achieve T
SU(2)
K > T

SU(4)
K , see the inset of Fig. 5(b),

which is not in general obvious.

9At the SU(N = 2, 4) fixed points, apart from a numerical prefactor
of the order 1, this definition and the one introduced in Eq. (11) give
similar values for T

SU(N)
K .
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FIG. 5. (a) The energy dependence of the zero-temperature total
spectral function and (b) the temperature dependence of the linear
conductance calculated for different spin polarizations of the leads,
as indicated. The inset in (a) shows the spectral function on the loga-
rithmic scale, while the inset in (b) presents the Kondo temperature as
a function of p. The parameters are the same as in Fig. 4 with U = 1
and U ′ = U/2. Now T

SU(4)
K /U ≈ 7.5 × 10−5.

VI. STABILITY DIAGRAMS AND TUNNEL
MAGNETORESISTANCE

In this section, we present results for the low-temperature
linear conductance in the parallel and antiparallel configura-
tions, together with the TMR, calculated as a function of the
double-dot energy levels ε1 and ε2. In Fig. 6, we present a
typical stability diagram that covers the full parameter space,
from empty to fully occupied DQD. In this section we address
only the regime where U/U ′ = 2.

Let us first discuss the case of the antiparallel magnetic
configuration shown in Fig. 6(a). The conductance shows
a pattern that closely resembles that of nonmagnetic DQD
system [62]. The dashed lines separate the equilibrium charged
transport domains. When the number of electrons in each
dot is even, the DQD is in a singlet state, no Kondo effect
develops and the observed low conductance results only from
cotunneling processes. However, when the electron number
in either quantum dot is odd, the electronic correlations can
give rise to an enhanced conductance due to the Kondo effect,
provided the temperature is lower than the Kondo temperature.
In our calculations the assumed temperature is very low,
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FIG. 6. The linear conductance in (a) the antiparallel and
(b) parallel magnetic configuration and (c) the resulting TMR as a
function of DQD energy levels ε1 and ε2. The dashed lines in (a) mark
the regions where the DQD is in a state (n1,n2) with n1 (n2) electrons
in first (second) dot. The parameters are U = 1, U ′ = 0.5, � = 0.07,
p = 0.4, and T = 10−6.

T � 10−6U , such that in each Coulomb blockade region the
Kondo effect develops.

As the parameter space is relatively large, depending on
the nature of the ground state, several types of the Kondo
effects develop. When the occupancy of one of the dots is
odd, a typical spin-SU(2) Kondo effect develops. This can
be observed in transport regime with the electron numbers
belonging to the set {(1,0),(0,1),(2,1),(1,2)} [see Fig. 6(a)],
where GAP/(1 − p2) reaches the unitary limit ≈2e2/h. Since
there is no direct hopping between the dots, when every
dot is singly occupied, (n1,n2) = (1,1), one finds that the
SU(2) Kondo effect develops independently in each quantum

dot, such that the total conductance reaches GAP/(1 − p2) ≈
4e2/h.

The stability diagram allows us to get a better understanding
of how the emergent SU(4) Kondo effect develops: along the
line separating the charge states (0,1) ↔ (1,0), and (2,1) ↔
(1,2), besides the spin degeneracy, an additional orbital degen-
eracy is present and the ground state is fourfold degenerate.
Consequently, the system exhibits the SU(4) Kondo effect
[33]. As we have seen in Sec. V, the SU(4) Kondo state is
better revealed in the parallel configuration, where the spin
degeneracy is broken.

The conductance in the parallel configuration is presented
in Fig. 6(b) and reveals some huge differences when compared
to the AP configuration. This is due to the emergence of the
exchange field �εexch that splits the levels of the DQD and lifts
the spin degeneracy [63]. As a consequence, since the orbital
degeneracy is not affected, one observes the orbital-SU(2)
Kondo effect along the lines separating the charge states
with occupation (0,1) ↔ (1,0), and (1,2) ↔ (2,1) electrons,
as well as (2,0) ↔ (1,1) and (1,1) ↔ (0,2), see Fig. 6(b).
Otherwise, the conductance is generally suppressed except for
some special lines where �εexch ≈ 0.

For example, in the charge sector (1,0), we can understand
these particular lines characterized by �εexch ≈ 0 by comput-
ing the effective field �εexch using perturbation theory. Similar
to the situation of a single quantum dot [42], we found that the
exchange field is linear in spin polarization and is given by

�ε
(1,0)
exch ≈ 2p�

π
ln

|ε1|
|ε1 + U | , (19)

independent of ε2, and vanishes at the particle-hole sym-
metry point ε1 = −U/2. Then, �εexch ≈ 0, corresponds to
the vertical line in the (1,0) sector visible in Fig. 6(c). In
the absence of coupling between the two dots, the Kondo
effect in the first (second) dot would be thus present for
ε1 = −U/2 (ε2 = −U/2) for any value of ε2 (ε1), resulting in
straight vertical and horizontal lines in the (ε1,ε2)-plane where
�εexch ≈ 0. The expression (19) for �ε

(1,0)
exch is obtained in

the simple-minded perturbation theory by building the ground
state out of single-particle states. We can do a similar analysis
in the (1,1) sector and find that the effective field gets modified
into

�ε
(1,1)
exch ≈ 2p�

π

(
ln

|ε1 + U ′|
|ε1 + U ′ + U | + ln

|ε2 + U ′|
|ε2 + U ′ + U |

)
,

(20)

which vanishes in the middle of the (1,1) region, in agreement
with the results presented in Fig. 6(c). In the crossover region,
the ground state becomes a many-body singlet built out of the
dot and lead states. Here, higher-order processes are relevant
and the simple perturbative estimate for �εexch fails. Still,
numerically, we can find the lines where the exchange field
vanishes. In the presence of capacitive coupling between the
dots, the exact �εexch ≈ 0 lines become distorted by the
interdot Coulomb correlations U ′ across the separation line
between different charge regions, and interpolate between
Eqs. (20) and (19), for example, when we cross the (1,1)–(1,0)
border.
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FIG. 7. (a) The linear conductance in both magnetic configu-
rations and (b) the resulting TMR as a function of ε1 with ε2 =
−ε1 − U ′ calculated for different values of leads’ spin polarization
p, as indicated. The conductance in the antiparallel configuration is
given by the curve for p = 0 multiplied with a factor of (1 − p2), cf.
Eq. (16). The parameters are the same as in Fig. 6.

The difference in conductance in the two magnetic config-
urations is reflected in the TMR, which is shown in Fig. 6(c).
For transport regimes with even occupancy of each dot, elastic
cotunneling processes dominate the current and the TMR is
given by [64] TMR ≈ 2p2/(1 − p2). For odd occupancy, the
Kondo effect is present in the case of antiparallel configuration,
while in the parallel configuration it is suppressed by the
exchange field, such that GP � GAP and TMR → −1 [43].
On the other hand, for such values of ε1 and ε2 that the
exchange field vanishes, one has GAP/GP = 1 − p2, which
yields TMR = p2/(1 − p2), a ratio which is valid irrespective
of the SU(2) or SU(4) Kondo regimes.

To understand the influence of ferromagnetic leads on
transport, in the following, we will analyze the behavior of the
conductance and the TMR as a function of spin polarization
of the leads, as well as temperature along different cuts in the
stability diagram. We shall consider two such cross-sections
defined as (i) ε2 + ε1 = −U ′ and (ii) ε1 = ε2, in the stability
diagram. In what follows we shall label them cut (line) 1 and 2.

A. Conductance and TMR along cross-sections

The linear conductance in both magnetic configurations
and the TMR calculated as a function of ε1 with ε2 + ε1 =
−U ′ for different values of spin polarization p are shown in
Fig. 7. By changing the level position, the occupation of the
DQD changes from (2,0) for ε1 � −U , to (1,0) for −U �

ε1 � −U ′/2, (0,1) for −U ′/2 � ε1 � U/2, and to (0,2) for
ε1 � U/2. In the nonmagnetic lead case, in the odd occupancy
regime, the regular spin-SU(2) Kondo effect develops with
conductance reaching ≈2e2/h, see Fig. 7(a). Moreover, for
ε1 = −U ′/2, an additional orbital degeneracy occurs and the
system exhibits the SU(4) Kondo effect, but the conductance
remains G ≈ 2e2/h. These different types of the Kondo effects
are hardly distinguishable by the conductance itself when
T � {T SU(2)

K ,T
SU(4)
K }, as it remains close to the unitary value,

G ≈ 2e2/h in the whole singly occupied DQD regime, see
Fig. 7(a). However, they can be revealed at larger temperatures,
i.e., T � {T SU(2)

K ,T
SU(4)
K } or in the case of ferromagnetic leads.

When p > 0, the conductance gets modified. The behavior
in the AP configuration is still featureless, similar to the case
of normal leads as GAP(p) = GAP(p = 0)(1 − p2). However,
the conductance in the P configuration reveals a nontrivial in-
terplay between the spin-resolved DQD level renormalization
and the correlations bringing about the Kondo effect. With
increasing the spin polarization, the strength of the exchange
field increases and once |�εexch| becomes larger than the
corresponding Kondo scale, the conductance drops. This can
be observed in the whole odd occupation regime shown in
Fig. 7, i.e., for −U � ε1 � U/2, except for some special
values of the level position where, again, �εexch ≈ 0. For
ε1 ≈ −U/2, the exchange field in the first dot vanishes, while
for ε1 = 0 (corresponding to ε2 ≈ −U/2) the exchange field
in the second dot vanishes. As a result, the total conductance
reveals two peaks for ε1 ≈ {−U/2,0} with an almost unitary
conductance GP ≈ 2e2/h. The height of these peaks remains
almost constant, but their width depends on p, as the exchange
field increases with p, and a smaller detuning is needed for
the condition |�εexch| � T

SU(2)
K to be fulfilled. In addition,

a spin-polarization independent resonance is also present for
ε1 = −U ′/2 (note that then ε2 = ε1). This is exactly the special
point we have analyzed in Sec. III that shows the SU(4) to
SU(2) crossover. Although the maximum value of conductance
does not depend at this point on the polarization p, the system’s
ground state does change. For p = 0, it exhibits fourfold
degeneracy, which becomes reduced to twofold degeneracy
when increasing spin polarization. Consequently, the SU(4)
Kondo effect becomes reduced to the orbital SU(2) Kondo
effect once |�εexch| � T

SU(4)
K . The width of the resonance for

ε1 ≈ −U ′/2 is determined by the condition |�ε| ≈ T
SU(2)
K ,

where �ε = ε2 − ε1 corresponds to the pseudo-Zeeman split-
ting.10

The ε1 dependence of the TMR for different spin polar-
izations along the first cut we consider is shown in Fig. 7(b).
The transport regimes discussed above are clearly visible. In
the even occupation regime, the TMR is given by TMR =
2p2/(1 − p2), while in the case of odd DQD occupation, the
TMR drops to TMR = −1 with increasing p, except for ε1 =
−U/2, ε1 = −U ′/2, and ε1 = 0, where TMR = p2/(1 − p2).

Let us now analyze the transport behavior along the second
cut, where ε1 = ε2 ≡ ε. Along this line, when ε � 0, the
DQD is empty, for −U ′ � ε � 0, it is singly occupied, for

10Here, T
SU(2)
K denotes the Kondo temperature of the orbital Kondo

effect.
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FIG. 8. (a) The linear conductance in both magnetic configu-
rations and (b) the resulting TMR as a function of ε1 = ε2 ≡ ε

calculated for different values of leads’ spin polarization p, as
indicated. The inset shows the zoom into the transport regime around
ε = −U/2 − U ′. The conductance in the antiparallel configuration is
given by the curve for p = 0 multiplied with a factor of (1 − p2), cf.
Eq. (16). The parameters are the same as in Fig. 6.

−U − U ′ � ε � −U ′, two electrons occupy the DQD, when
−2U � ε � −U − U ′, there are three electrons in the DQD,
while for ε � −2U the DQD is fully occupied with four
electrons. In the odd occupation regime, the ground state
has fourfold degeneracy and the system exhibits the SU(4)
Kondo effect in the case of nonmagnetic leads. A plateau
of G ≈ 2e2/h associated with the SU(4) Kondo effect is
hardly visible as a function of ε, see the curve for p = 0
in Fig. 8(a). This is because of a relatively large �/U ratio
considered in calculations and the usual spin SU(2) Kondo
effect, which develops in both quantum dots yielding G =
4e2/h in the two-electron regime in the case ofp = 0. For finite
p, in the parallel configuration, the conductance becomes,
however, suppressed, except for ε ≈ −U/2 − U ′, cf. Fig. 6(b),
where the exchange field cancels and the Kondo phenomenon
can develop. Moreover, the two plateaus in the odd-electron
regime, associated with the orbital SU(2) Kondo effect, are
clearly visible, see, e.g., the case of p = 0.7 in Fig. 8(a).
This confirms that for p = 0, i.e., in the absence of level spin
splitting, the ground state of the system was indeed fourfold
degenerate.

Another feature in the ε dependence of the conductance can
be seen around ε = −U/2 − U ′ for finite p, see Fig. 8(a). As
already mentioned, when ε ≈ −U/2 − U ′, the exchange field
vanishes and one should observe the Kondo effect. However,
instead of a peak at ε ≈ −U/2 − U ′, with increasing p, a dip

develops with two small satellite peaks. This effect is associ-
ated with an interplay between finite temperature, exchange
field, and the Kondo temperature. First of all, one should note
that exchange field can be tuned not only by changing the
DQD levels (by inducing detuning from ε = −U/2 − U ′), but
it also grows with spin polarization [42]. Thus, for larger p, a
smaller detuning from the point ε = −U/2 − U ′ is needed to
suppress the Kondo-enhanced conductance, see the width of
GP in the inset in Fig. 8. On the other hand, increasing the spin
polarization results in lowering of the corresponding Kondo
temperature [36] and, once TK � T , the conductance becomes
suppressed at ε = −U/2 − U ′. The crucial observation is
that TK also depends on detuning from the particle-hole
symmetry point ε = −U/2 − U ′ and grows with increasing
this detuning. As a consequence, small side peaks, on either
side of ε = −U/2 − U ′, develop in GP for such values of
ε that TK ≈ T . Note that these peaks are visible as long as
TK � |�εexch|, and once this condition is not met any more,
which happens for even larger p, GP becomes suppressed.

The corresponding dependence of the TMR is shown in
Fig. 8(b). In this figure one can clearly identify all the TMR
values discussed earlier. In the empty and fully occupied DQD
regime, the elastic cotunneling gives rise to TMR = 2p2/(1 −
p2). In the odd occupation regime, the TMR value drops by a
factor of 2, while in the case of −U − U ′ < ε < −U ′ the TMR
is generally suppressed by the exchange field, TMR → −1,
except for the middle of the Coulomb diamond, i.e., around
ε = −U/2 − U ′. There, for large spin polarization, the TMR
displays two peaks on either side of ε = −U/2 − U ′, see the
inset in Fig. 8(b), resulting from the corresponding peaks in
GP. The finite temperature effects visible in Fig. 8 lead our
discussion to the analysis of transport properties at different
temperatures. This is presented in the next section.

B. Finite temperature effects

In this section, we discuss the effect of the temperature
on the linear conductance and TMR. For that we evaluated
the conductance in both AP and P magnetic configurations at
various temperatures along the two cuts discussed in Sec. VI A.
In Fig. 9, we display the evolution of the conductance along
the first cross-section, ε1 with ε2 + ε1 = −U ′.

At low temperatures, i.e., T � {T SU(4)
K ,T

SU(2)
K }, the con-

ductance in the antiparallel configuration exhibits a plateau
in the singly occupied DQD transport regime.11 This plateau
changes when the temperature is increased. First, the conduc-
tance becomes suppressed in the SU(2) Kondo regime, and
at some intermediate temperature, T

SU(4)
K � T � T

SU(2)
K , the

resonances at ε1 ≈ −U and ε1 ≈ U/2 survive, together with
the SU(4) Kondo peak at ε1 ≈ −U ′/2. From their temperature
dependence one can also estimate the Kondo temperatures:
in the middle of the spin SU(2) Kondo valley and for pa-
rameters assumed in Fig. 9(a), one finds T

SU(2)
K /U ≈ 8.96 ×

10−4, while the SU(4) Kondo temperature for ε1 ≈ −U ′/2,
T

SU(4)
K /U ≈ 0.044.

On the other hand, the evolution of GP(T ) along the first
cut is completely different: the Kondo plateau is not present at

11For the parameters that we used, T
SU(4)
K < T

SU(2)
K .
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FIG. 9. The linear conductance in (a) the antiparallel and
(b) parallel magnetic configurations, as well as (c) the resulting
TMR as a function of ε1 with ε2 = −ε1 − U ′ calculated for different
temperatures, as indicated. The other parameters are the same as in
Fig. 6.

low temperatures, but only some narrow peaks occur at some
specific values of ε1. It is obvious that the ones occurring at
ε1 ≈ −U/2 and ε1 ≈ 0 are associated with the spin-SU(2)
Kondo effect.12 Note that in the case of finite p, the Kondo
temperature decreases with increasing spin polarization [36].
Although, based on the previous analysis, we can safely
attribute the feature at ε1 ≈ −U ′/2 to the SU(4) Kondo effect,
from the evolution of GP itself it is not that straightforward
to decide what type of correlations causes the conductance
enhancement: if |�εexch| � T

SU(4)
K , then the SU(4) nature of

the ground state is relevant, whereas for |�εexch| � T
SU(4)
K ,

the spin degeneracy is lifted and only the orbital degrees of
freedom are degenerate, resulting in orbital Kondo effect. In
fact, for parameters assumed in Fig. 9(b), the strength of the
exchange field is comparable to T

SU(4)
K .

12We can also use GP(T ) to estimate the Kondo scale. Here we
estimate the Kondo temperature to be T

SU(2)
K /U ≈ 5.89 × 10−4.
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FIG. 10. The linear conductance in (a) the antiparallel and
(b) parallel magnetic configurations, as well as (c) the resulting TMR
as a function of ε1 = ε2 ≡ ε calculated for different temperatures, as
indicated. The other parameters are the same as in Fig. 6.

The effects of finite temperature on transport behavior along
the second cut we considered (ε1 = ε2 ≡ ε) are presented
in Fig. 10. In the case of antiparallel configuration, the
conductance in the middle Coulomb blockade regime becomes
quickly suppressed with increasing temperature. However,
in the SU(4) Kondo regime, the dependence of G on T is
weak in the considered temperature range, since even for
the highest temperature considered T � T

SU(4)
K . A similar

tendency can be observed in the case of parallel alignment. A
strong temperature dependence is only revealed for the Kondo
peak at ε1 = −U/2 − U ′, while in the other transport regimes
the linear conductance only weakly depends on T .

Finally, the TMR evaluated at various temperatures along
the two cross-sections is shown in Figs. 9(c) and 10(c). In these
figures one can clearly identify all the TMR values discussed
earlier. The general conclusion is that with increasing the
temperature, TMR extrema become suppressed, such that in
the very high temperature limit (T � U , not shown), the TMR
would be independent of ε1 and ε2, i.e., TMR ≈ p2/(1 −
p2) [43].
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FIG. 11. (a) The linear conductance in the mixed antiparallel
configuration and (b) the TMR as a function of DQD energy levels.
The parameters are same as in Fig. 6. In the mixed antiparallel
configuration, the magnetization of one of the leads attached to the
first dot is opposite to the other leads’ magnetizations.

C. Ferromagnets with different coercive fields

In this section, we discuss the magnetoresistive properties
of the device assuming an experimentally relevant situation,
when the coercive fields of the ferromagnetic electrodes are
different. For sufficiently strong magnetic field (but still much
smaller then the field necessary to induce a considerable
Zeeman splitting), the magnetizations of all electrodes are
aligned (parallel configuration). So far, in our analysis, we have
assumed that there is a difference between coercive fields of
the left and right electrodes, such that at a certain field the
leads on one side of the junction flip their magnetizations and
the antiparallel configuration occurs, see Fig. 1. However, it
may happen that only one of the electrodes flips its magnetic
moment, resulting in a mixed antiparallel configuration: for
example, the leads coupled to the first dot are in the antiparallel,
while the leads attached to the second one are in the parallel
magnetic configuration. The transport characteristics for such
a situation are shown in Fig. 11. One can still identify charged
stability regions separated by lines with large conductance:
When changing ε1, the system exhibits a Kondo plateau (visible
in the transport regions for ε2 � −U − U ′ and ε2 � −U ′),

while the characteristic suppression of the Kondo resonance
by the exchange field occurs as a function of ε2, see Fig. 11(a).
The total conductance shows then an enhancement to GAP =
4e2(1 − p2/2)/h for such position of the DQD levels that the
exchange field on the second dot vanishes. The whole DQD
level dependence of conductance in the mixed configuration
can be understood based on the analysis presented in Sec. VI A,
and it results in the associated behavior of the TMR, which is
shown in Fig. 11(b).

VII. CONCLUSIONS

In this paper, we studied the linear-response transport prop-
erties of a double quantum dot system coupled to ferromagnetic
leads in the Kondo regime. The emphasis was put on the
transport regime where the system exhibits the SU(4) Kondo
effect, which was thoroughly studied against different material
parameters of ferromagnetic contacts and magnetic configu-
rations of the device. The calculations were performed with
the nonperturbative numerical renormalization group method
and supplemented by an RG analysis to describe the SU(4) to
SU(2) crossover. We demonstrated that the transport behavior
becomes greatly modified when the magnetic configuration
of the device changes from the antiparallel to the parallel
one, which is a direct consequence of the exchange field
induced DQD level splitting. This splitting generally breaks the
spin-SU(2) invariance, such that the system exhibits the orbital-
SU(2) Kondo effect in corresponding transport regimes.

We systematically investigated the evolution of the spectral
functions from the SU(4) to the orbital-SU(2) Kondo regime
upon increasing the leads’ spin polarization p. Interestingly,
the corresponding Kondo temperature reveals then a nonmono-
tonic dependence on p. First, with increasing spin polarization,
the Kondo temperature drops, which is related to the reduction
of the fourfold degeneracy to the twofold one. However,
further increase of p results in an enhancement of the orbital
Kondo temperature, such that for large spin polarization it
may even exceed the SU(4) Kondo temperature. This behavior
is completely different compared to the single quantum dot
case when a monotonic dependence of the spin-SU(2) Kondo
temperature on the spin polarization was predicted at the
particle-hole symmetry point [36].

Finally, we also analyzed the magnetoresistive properties
of the device in the case when the ferromagnets have different
coercive fields, such that mixed antiparallel configuration is
formed. In such a case, the transport behavior is a result of
contributions from the parallel and antiparallel configurations
of both quantum dots.
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