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Logarithmic singularities and quantum oscillations in magnetically doped topological insulators
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We report magnetotransport measurements on magnetically doped (Bi,Sb)2Te3 films grown by molecular
beam epitaxy. In Hall bar devices, we observe logarithmic dependence of transport coefficients in temperature
and bias voltage which can be understood to arise from electron-electron interaction corrections to the conductivity
and self-heating. Submicron scale devices exhibit intriguing quantum oscillations at high magnetic fields with
dependence on bias voltage. The observed quantum oscillations can be attributed to bulk and surface transport.
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I. INTRODUCTION

Breaking of time-reversal symmetry in topological insu-
lators can unlock exotic phenomenon such as the quantized
anomalous Hall effect [1–5], giant magneto-optical Kerr and
Faraday effects [6], the inverse spin-galvanic effect [7], the
image magnetic monopole effect [8], and chiral Majorana
modes [9,10]. Angle-resolved photoemission spectroscopy
measurements have revealed the presence of a magnetic gap at
the Dirac point as well as hedgehog spin texture in magnetic
topological insulators [11,12]. Proximity coupling to a mag-
netic insulator such as EuS, yttrium iron garnet, and thulium
iron garnet [13–15] or introducing magnetic dopants like
Mn, Cr, and V [2,3,16] can remove time-reversal symmetry.
Such efforts have induced long-range ferromagnetic order in
topological insulators.

In this paper we explore magnetotransport in magnetically
doped ultrathin films of (Bi,Sb)2Te3 to understand the role
of different scattering mechanisms. By studying the effect of
temperature and voltage bias on the longitudinal and anoma-
lous Hall resistances, we observe logarithmic dependencies on
temperature and voltage bias. Joule heating due to voltage bias
increases the effective temperature of the hot electrons [17].
The logarithmic singularities are originating from the interplay
of electron-electron interaction and disorder. We find that
our observed logarithmic corrections quantitatively agree with
the Alshuler-Aranov theory of electron-electron interactions.
Furthermore, in submicron-sized mesocale devices we observe
quantum oscillations that depend on voltage bias and weaken
with increasing sample width.
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II. MATERIALS AND METHODS

The four-quintuple-layer (QL)-thick pristine and V-doped
(Bi,Sb)2Te3 films were grown on SrTiO3 (111) substrate by
molecular beam epitaxy. The growth process was monitored
in situ by reflection high-energy electron diffraction to ensure
high-quality films [3,18,19]. To prevent oxidation, a capping
layer of 10-nm tellurium was deposited. The devices were
fabricated employing standard photolithography and electron-
beam lithography techniques. The device schematic and op-
tical image of a Ti/Nb/NbN contacted magnetic topological
insulator film is shown in Figs. 1(a) and 1(b). The transport
measurements were done in a 3He-4He dilution refrigerator
using standard ac lock-in measurement techniques. Here we
summarize results from a pristine Hall bar device, H0; a
V-doped Hall bar device, H1; and a V-doped submicron scale
device, D1.

III. RESULTS AND DISCUSSION

Magnetotransport measurements in a Hall bar device, H0, on
pristine four-QL-thick (Bi,Sb)2Te3 films presented in Fig. 2(a)
exhibit a dip in the longitudinal resistance Rxx at B = 0 T
which is attributed to a weak antilocalization effect [20,21].
This is because in the presence of strong spin-orbit cou-
pling time-reversed trajectories have opposite spin orientations
which lead to a destructive interference and a resistance
minimum [22].

We measured the bias dependence of the longitudinal
resistance Rxx in the same device. The results are shown
in Figs. 2(b) and 2(c) for a few different magnetic fields
and exhibit a logarithmic dependence on voltage bias. Weak
antilocalization is in itself a possible cause of logarithmic
correction. However lowering the temperature or voltage bias
is expected to make the weak antilocalization effect more
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FIG. 1. (a) Schematics of a magnetic topological insulator device.
(b) Optical image of a Hall bar device, H1, and a two terminal
device, D1, simultaneously patterned on magnetically (vanadium)
doped topological insulators.

pronounced thereby decreasing resistivity, which is inconsis-
tent with Figs. 2(b) and 2(c).

Further by introducing magnetic impurities, the weak an-
tilocalization effects can be heavily suppressed as has been
reported in Fe-doped Bi2Te3 and Cr-doped Bi2Se3 films

FIG. 2. Comparison of magnetotransport in pristine and V-doped
four-QL-thick (Bi,Sb)2Te3 films. (a) Magnetoresistance dip at B =
0 T in the sweep range B = −7.5 to +7.5 T for pristine (Bi,Sb)2Te3

samples. (b) Bias dependence of pristine (Bi,Sb)2Te3 film at B =
1.5, 4.5, and 7.5 T. (c) Logarithmic plot for bias dependence of
four-QL pristine (Bi,Sb)2Te3 film at B = 1.5, 4.5, and 7.5 T. (d)
Magnetoresistance peak at B = 0 T in the sweep range B = −7.5
to +7.5 T for V-doped (Bi,Sb)2Te3. (e) Bias dependence of V-doped
(Bi,Sb)2Te3 film at B = 1.5, 4.5, and 7.5 T. (f) Logarithmic plot
for bias dependence of V-doped (Bi,Sb)2Te3 film at B = 1.5, 4.5,
and 7.5 T.

FIG. 3. Voltage bias and temperature dependence of the anoma-
lous Hall effect of V-doped four-QL-thick (Bi,Sb)2Te3 films. (a)
Magnetic field dependence of the anomalous hall resistance RAH

xy

measured at Vdc = 0. (b) Bias dependence of RAH
xy at B = 1.5, 4.5, and

7.5 T. (c) Logarithmic plot for bias dependence of RAH
xy at B = 1.5, 4.5,

and 7.5 T. (d) Bias dependence ofRAH
xy atB = −1.5,−4.5, and−7.5 T.

(e) Logarithmic plot for bias dependence of RAH
xy at B = −1.5, −4.5,

and −7.5 T. (f) RAH
xy exhibits a logarithmic dependence on temperature

at B = 7.5 T in the temperature range of 140 to 650 mK.

[23–25]. Figure 2(d) shows the magnetoresistance in a V-doped
(Bi,Sb)2Te3 film has a peak instead of a dip at B = 0 T as
seen in pristine samples. Even when the weak antilocalization
effects are suppressed, the longitudinal resistance Rxx in a
V-doped (Bi,Sb)2Te3 film has a logarithmic dependence on
voltage bias as shown in Figs. 2(e) and 2(f) at different
magnetic fields.

Weak localization in disordered two-dimensional (2D) sys-
tems is also a potential explanation for a logarithmic increase
in resistance at low temperatures. The existence of weak
localization relies on the existence of coherent constructive in-
terference of time-reversed trajectories for an electron to return
to the origin [26]. Moderate external magnetic fields as well as
magnetic impurities, which break time-reversal symmetry, are
typically enough to suppress logarithmic corrections arising
from weak localization [27–29]. However, the logarithmic
corrections observed in our experiments persist even at fields
of 7.5 T.

A way to identify logarithmic corrections due to weak
localization is by the absence of logarithmic corrections to
Rxy [27,28,30]. In Fig. 3(a) anomalous Hall measurements
are shown without an applied bias. The RAH

xy jumps at the
coercive field when the magnetization switches its direction.
Figures 3(b) and 3(c) show that the logarithmic dependence
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on voltage bias is present in the anomalous Hall resistance
RAH

xy as well. The data are antisymmetric in the magnetic field
as shown in Figs. 3(d) and 3(e); therefore we can rule out
spurious Rxx contributions. Interestingly, if instead of bias
voltage the temperature of the sample is changed, a similar
decrease in the anomalous Hall resistance RAH

xy is observed as
shown in Fig. 3(f). Therefore, weak localization cannot explain
the transport behavior that we observe.

Logarithmic corrections to conductance could also arise
from scattering off magnetic impurities as in the Kondo effect
[31–33]. However, in the ferromagnetic state magnetic spin-
flips should become increasingly energetically unfavorable at
low temperatures and at large external magnetic fields. More
importantly, the fact that logarithmic dependencies are also
observed in topological insulator thin films in the absence
of magnetic dopants [34,35] makes this scenario an unlikely
explanation of our findings.

Magnetotransport studies in pristine topological insulator
Bi2Se3 films found it crucial to include electron-electron
interactions [34,35]. We explain why the observed logarithmic
singularities are due to electron-electron interactions in the 2D
surface states. As first realized by Altshuler and Aronov [36]
(AA), disordered 2D electron systems exhibit a breakdown of
the Fermi-liquid theory due to reduced ability of the disordered
electron gas to screen the Coulomb interaction. The logarith-
mic corrections in the AA theory are pervasive and are expected
to arise not only in transport properties but also in equilibrium
thermodynamic quantities such as specific heat [28]. One
of the key differences of the AA corrections with those in
the localization theory is that both the longitudinal and Hall
resistivities are expected to acquire logarithmic corrections
[27,28]. In fact the logarithmic corrections are most easily
expressed in terms of conductivities rather than resistivities
in the AA theory, because the Hall conductivity is expected
to remain unchanged. Specifically one expects the logarithmic
corrections in the AA model to be given by [27–29]

δσxx(ε) = κ
e2

h
log

(ετ

h̄

)
, δσxy = 0, (1)

where τ is the elastic scattering time and ε is an appropriate
energy scale that can be chosen to be the largest among
the temperature kBT or the frequency h̄ω, at which the
conductivity is probed. κ is a dimensionless number that
takes different values for spinless and spinful electrons, and it
depends on a dimensionless parameter F that characterizes a
Hartree contribution to the conductivity corrections [28,29,37].
This parameter takes the following forms for spinless and
spinful electrons:

κspinless = 1

2π
, (2)

κspinfull = 1

2π
(2 − 2F ), (3)

For short-range interaction, F = 1, and for long-range inter-
action, F = 0 [38]. For spin-split bands one expects that for
a spin splitting 	 � kBT , the only singular logarithmic terms
arise from exchange and Sz = 0 Hartree contributions, and the

FIG. 4. Voltage bias dependence of the anomalous Hall effect
at several fixed temperatures in V-doped four-QL-thick (Bi,Sb)2Te3

films for (a) B = 7.5 T and (b) B = −7.5 T.

expression for κ is [28]

κspin-split = 1

2π
(2 − F ) ≈ 0.32

(
1 − 1

2
F

)
. (4)

Our magnetic samples are expected to be spin-split, whereas
the precise level of spin polarization is unknown to us [28,29].

Figures 4(a) and 4(b) further explore the dependence of the
anomalous Hall effect on both voltage bias and temperature.
Increasing either voltage or temperature lowers the anomalous
Hall resistance which supports a self-heating mechanism due
to applied bias.

We believe that the origin of the non-Ohmic behavior we
observe, namely the logarithmic dependence of the conduc-
tivity on voltage bias, is fundamentally no different than the
logarithmic dependence on temperature and can be understood
simply as a consequence of Joule heating. In other words,
as the electrons are accelerated by the electric field they
inevitably gain energy, and, once they reach a steady state
of current flow, this inevitably implies that the electrons
possess a larger effective temperature compared to that of
the lattice or other reservoirs that serve as heat sinks. By
appealing to a simple model of Joule heating [39] one can
effectively replace the argument of the logarithm in Eq. (1)
by ε ∼ max(AV 2/(2+p),KBT ,h̄ω), where V is the voltage bias
that drives the transport, A is a constant, and p is the power that
controls the temperature dependence of the electron’s inelastic
scattering rate, τin ∝ T −p. The logarithmic fits of the Hall
resistivity vs temperature have approximately twice the slope
of those of the Hall resistivity vs the bias voltage, indicating
that p ∼ 2, as shown in Fig. 5.

The Joule heating induced by the bias voltage proves to be
a more efficient way to tune the electron temperature than the
direct control of the temperature of the sample, and hence we
focus on this dependence for the remainder of the discussion.
The expected behavior of the correction to the conductivity for
low-temperature dc measurements from the AA theory as a
function of voltage is

δσxx(V ) = 2κ

(2 + p)

e2

h
log(V ), δσxy(V ) = 0. (5)

From the data, σxx and σxy are calculated using the relations

σxx = ρxx

ρ2
xy + ρ2

xx

, σxy = ρyx

ρ2
xy + ρ2

xx

, (6)
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FIG. 5. Comparison of the dependence of the anomalous Hall
resistance RAH

xy on the logarithm of KBT and eV in V-doped four-QL-
thick (Bi,Sb)2Te3 films at B = 7.5 T.

where ρxx and ρxy are the resistivities considering the square-
shaped sample geometry. As illustrated in Fig. 6(a) our data
are consistent with logarithmic corrections in σxx while there
are no apparent logarithmic corrections in σxy , as expected
from the AA theory. The anomalous Hall conductivity is nearly
quantized at ±e2/h as shown in Fig. 6(b). Anecdotally, we

FIG. 6. Transport coefficients in the V-doped Hall bar (device
H1) as a function of bias. (a) Logarithmic plot for σxx (blue) and σxy

(orange) at B = 1 T. (b) Magnetic field dependence of σxy at Vdc = 0.
(c) and (d) Theoretical model of the magnetic field dependence of σxy

and Rxx . (e) and (f) Simulation of the dependence of Rxx and Rxy on
bias atB = 1.5, 4.5, and 7.5 T as expected from interaction corrections
in disordered 2D films.

argue that quantization of σ AH
xy is less sensitive to finite bulk

carriers than RAH
xy .

To quantify the logarithmic behavior we fit the
voltage-dependent nonlinear conductivity as (expressing bias
in volts)

σJ (V ) = σ 0
J + δσJ log(V ), J = {xx,xy}. (7)

We obtain σ 0
xx ≈ 9.17e2/h and δσxx ≈ 0.33e2/h, and σ 0

xy ≈
1.58e2/h and δσxy ≈ 0.02e2/h. Notice the smallness of the
bias dependence of σxy compared to that of σxx . Therefore,
considering that it is possible that small systematic errors
can arise from the mixing of Rxx and Rxy (e.g., if contacts
are slightly misaligned Rxy picks a small contribution from
Rxx), we conclude that our data are consistent with σxy

with negligible logarithmic bias dependence and while having
significant logarithmic bias dependence on σxx , as expected
from the AA theory. We observe, however, an interesting
quantitative deviation from the expectation of the AA theory.
Using the approximate value of p ∼ 2, obtained by comparing
the temperature and the voltage fits (see Fig. 5), the fitted
parameter κ reads as

πκfit ∼ 2. (8)

However, from Eqs. (2)–(4), we expect πκ � 1, under the
natural assumption of repulsive interactions F > 0. The origin
of this discrepancy is at present unknown to us, but we wish
to remind the reader that the equations of the AA theory we
have employed were derived for parabolic electrons without
Berry phase effects, and it remains to be determined whether
nontrivial orbital coherences, such as those giving rise to Berry
curvatures for the bands of interest here, affect in any way the
classic results of the AA theory.

A simple modeling of the resistivity can be done by using
the expected conductivity behavior from the AA theory. The re-
sistivity is taken to be of the form σxx = σ 0

xx + δσ 0
xx log(|V | +

V0), where V0 ∼ 0.4 mV is essentially a cutoff of the logarithm
at small bias (which is controlled by the temperature scale
T0 and the constant A in the Joule heating model), and σ 0

xx

and δσ 0
xx are field- and bias-independent quantities obtained

by linear fitting of the logarithmic plots of the conductivity
[40]. We add a simple description of the anomalous hall effect
in which the Hall conductivity has a jump of e2/h near the
zero applied magnetic field in addition to the usual linear term
reflecting the classical Hall effect. σxy in the model is presented
in Fig. 6(c) and has the form σxy = e2

h
tanh(B/B0) + δσ 0

xyB,
where B0 ∼ 0.3 T reflects broadening of the jump of the
magnetization as a function of field and δσ 0

xy is field and
bias independent. The model is able to reproduce the essential
behavior of the resistivities and it is shown in Figs. 6(d)–6(f).

The transport results discussed above are for larger Hall bar
(∼20 μm) samples. Interestingly, when the device dimension
was reduced to submicron range, prominent Shubnikov-de
Haas (SdH) oscillations were observed. For example, in a
0.2-μm-wide device (device D1) measured by two terminals,
the oscillations were periodic in 1/B and had a nontrivial
dependence on bias voltage. These quantum oscillations were
seen in multiple samples with Ti/Nb/NbN and Ti/Al contacts.
In particular, the zero bias minima turn into maxima in
resistance at large voltage bias as shown in Fig. 7.
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FIG. 7. Voltage bias dependence of quantum oscillations from
magnetoresistance in the V-doped (Bi,Sb)2Te3 device D1 of width
W = 0.2 μm.

We also studied the effect of temperature on the magneto-
oscillations as shown in Fig. 8. The amplitude of the quantum
oscillations is found to decrease with an increase in tempera-
ture. However, the transition from maxima to minima could
not be observed at temperatures accessible in the dilution
fridge. The inferred electron density is 9 × 1011 cm−2 (4.5 ×
1011 cm−2) for spinful (spinless) Fermions. The period of the
SdH could not be changed by applying a back gate or a top
gate. The screening of the top and bottom gates by the surface
states results in the inability to change the Fermi energy of the
bulk states as has been observed in other topological materials
[41]. An estimate of the electron gas mobility is made from the
onset magnetic field of the SdH oscillations μq ≈ 1

Bq
≈ 6000

cm2 V−1 s−1 for the 200-nm-wide device [42]. This mobility
is intriguingly large compared to macroscopic samples.

We describe a transport model for the nontrivial dependence
of the quantum oscillations on voltage bias that we have
observed in the narrow junctions. We assume the magneto-
conductance to be given by

g(B,V ) = g0 + αρ(εF ,B) ln(ετ/h̄), (9)

FIG. 8. Temperature dependence of quantum oscillations from
magnetoresistance in the V-doped (Bi,Sb)2Te3 device D1 of width
W = 0.2 μm.

FIG. 9. (a) and (b) The resistance in the V-doped (Bi,Sb)2Te3

device D1 is normalized to its zero bias value and normalized to its
zero magnetic field value, respectively. The evolution is studied with
magnetic field and applied bias voltage. The SdH oscillations are
present both at small and large bias voltages. However, the zero bias
maxima become minima at large bias voltages at a fixed magnetic
field and vice versa. (c) A model with two conduction mechanisms
in parallel that incorporates logarithmic decay with the applied bias
of the SdH oscillations on top of a constant background conduction.
The resistance is normalized to the zero bias value for comparison
to the experimental data. (d) The two-conduction-mechanism model
captures the evolution from maxima to minima of the resistance
normalized to the zero magnetic field value with voltage bias.

where g0 is assumed to be a constant background conduction
and ρ(εF ,B) is the SdH density of states given by

ρ(εF ,B) = 2eB

h

j=∞∑
j=0

1

(2π )1/2
exp

(
− (εF − εj )2

22

)
, (10)

where  is the half-width of Landau level broadening and εj is
the single-particle Landau level energy [43]. The presence of
both bulk and surface conduction mechanisms in topological
insulators has been found previously [44–49]. Figures 9(a) and
9(b) display the magnetotransport data normalized to zero bias
and zero magnetic field. Similarly, in the model, the resistance
r(B,V ) = 1/g(B,V ) is normalized to its value at zero bias
voltage and the magnetic field as is shown in Figs. 9(c) and
9(d), respectively.

While we do have an understanding of the voltage depen-
dence of the oscillations, there are properties that are less
well understood. The contrast of the quantum oscillations
is found to decrease systematically with increasing width.
Such dependence of the visibility of quantum oscillations on
the channel width is unusual. The quantum oscillations are
discussed in further detail in the Supplemental Material [40].

IV. CONCLUSION

We have studied magnetotransport in V-doped (Bi,Sb)2Te3

and have found logarithmic singularities in the longitudinal
resistance Rxx and the anomalous Hall resistance RAH

xy which
is well explained quantitatively by quantum corrections due
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to electron-electron interactions. In submicron scale devices,
SdH oscillations are observed where the maxima transition to
minima with voltage bias. A simple transport model explains
these observations.
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