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A unique feature of the hybrid quantum Monte Carlo (HQMC) method is the potential to simulate negative sign
free lattice fermion models with subcubic scaling in system size. Here we will revisit the algorithm for various
models. We will show that for the Hubbard model the HQMC suffers from ergodicity issues and unbounded forces
in the effective action. Solutions to these issues can be found in terms of a complexification of the auxiliary fields.
This implementation of the HQMC that does not attempt to regularize the fermionic matrix so as to circumvent
the aforementioned singularities does not outperform single spin flip determinantal methods with cubic scaling.
On the other hand we will argue that there is a set of models for which the HQMC is very efficient. This class is
characterized by effective actions free of singularities. Using the Majorana representation, we show that models
such as the Su-Schrieffer-Heeger Hamiltonian at half filling and on a bipartite lattice belong to this class. For this
specific model subcubic scaling is achieved.
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I. INTRODUCTION

There has recently been tremendous progress in classifying
fermionic model Hamiltonians that one can solve with quan-
tum Monte Carlo (QMC) methods without encountering the
infamous negative sign problem [1–4]. Remarkably, this class
of models contains a number of extremely interesting phases
of matter and quantum phase transitions [5–11]. Since in a
lot of these models the fermions are gapless, they cannot be
integrated out, and are at the very origin of novel quantum
critical phenomena [12–18]. From the technical point of view,
this leads to the necessity of developing efficient algorithms
for lattice fermions so as to unravel facets of fermion critical
phenomena in two and higher spacial dimensions.

The condensed matter community has focused on the
Blankenbecler Scalapino Sugar (BSS) auxiliary field deter-
minantal QMC technique [19–21]. This approach invariably
scales as the cubed of the volume since the fermionic determi-
nant is explicitly calculated. Furthermore, since the determi-
nant is nonlocal, cluster algorithms have remained elusive and
single spin-flip updates are still the standard. Using machine
learning techniques to propose global moves is an ongoing
active research subject [22–24]. On the other hand, in particle
physics, especially in the lattice gauge theory community, the
hybrid quantum Monte Carlo method (HQMC) was used and
extended [25–27]. A glimpse at the simulated system sizes
fosters the hope to access larger lattice sizes, at least for a
selected subset of models, by using HQMC. From a conceptual
point of view, the HQMC method offers two main advantages
in comparison to established methods in the condensed matter:

(i) A global updating scheme, based on Hamilton’s equa-
tions of motion [28], that guarantees a good acceptance
rate.

(ii) Replacing determinants by Gaussian integrals is the
first key step to allow for subcubic scaling.

Note that global update schemes such as Langevin dynamics
or hybrid Monte Carlo [28] can be implemented in schemes
that explicitly retain the fermion determinant.

The structure and main results of this paper are as follows.
In Sec. II we will revisit the ideas of Ref. [25] as applied to
the Hubbard model. A number of subsections will give us the
opportunity to introduce notation and summarize important
ideas of the HQMC. In the final subsection, II F, we show that
the algorithm is not ergodic, even at half filling when the weight
is always positive. The fermion determinant in each spin sector
has a strongly fluctuating sign at low temperatures. Particle-
hole symmetry locks the relative signs of the determinants
to unity and the weight is positive. Nevertheless, at low
temperatures the weight has many zero modes and different
regions of configuration space are separated by divergences
in the effective potential through which the molecular dy-
namics cannot tunnel. In Sec. III we proceed to describe
a complexification of the algorithm that circumvents these
ergodicity issues. In contrast to Ref. [29] our approach is based
on a complex Hubbard Stratonovich (HS) transformation. In
Sec. III C we show that an ergodic algorithm can be achieved
and that it can reproduce standard BSS results as obtained with
the ALF package [30]. However, for the Hubbard model, our
implementation of the HQMC does not provide an improved
scaling and is less efficient in terms of fluctuations. Here we
note that the BSS relies on a discrete Hubbard-Stratonovich
transformation, thereby circumventing the above ergodicity
issues.

To proceed we will ask the question if there is a class of
models in the solid state for which the HQMC can be the
method of choice. To do so, we will follow the idea that
the Hubbard model is hard, since the effective action shows
divergences and thereby generates forces that are unbounded.
With the help of recent progress in our understanding of the
negative sign problem [2–4], it can be shown that for a class
of models the fermion determinant in a single spin sector is
positive semidefinite. This turns out to be the case for the
so-called n-flavored Su-Schrieffer-Heeger (SSH) model [31]
at half filling and on any bipartite lattice. We have implemented
the HQMC for this model and have benchmarked our results
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against the so-called continuous time interaction expansion
(CT-INT) algorithm [32–34] where the phonons are integrated
out in favor of a retarded interaction. It appears that this
model can be efficiently simulated with the HQMC. For the
comparison with other approaches, two points are in order. (i)
There is by construction no discrete-field formulation of this
model, and local moves lead to large autocorrelation times [35],
and (ii) although very appealing, the CT-INT approach suffers
from a negative sign problem at finite phonon frequency and
in dimensions larger than unity. We will hence conclude and
give numerical evidence in Sec. IV that the HQMC could be
the method of choice for this specific model Hamiltonian. It is
also interesting to note that the SSH model, in some limiting
cases, maps onto a Z2 lattice gauge theory as pointed out in
Ref. [10]. Finally Sec. V draws some conclusions.

II. HQMC FOR THE HUBBARD MODEL

We start with a pedagogical introduction to the HQMC
method in condensed matter systems by revisiting Scalet-
tar’s[25] initial formulation. This will provide us with the
necessary background to discuss failures and means to resolve
them. At the end of the section, we will discuss ergodicity
issues.

A. Basic formalism

The Hubbard Hamiltonian Ĥ is given as the sum of a kinetic
part ĤK and an interacting part ĤU,

Ĥ = ĤK + ĤU. (1)

While the kinetic energy is given by a tight binding Hamilto-
nian

ĤK = −t
∑

〈i,j〉,σ
(ĉ†i,σ ĉj,σ + ĉ

†
j,σ ĉi,σ ) (2)

and favors extended states, the potential energy is represented
by an on-site Hubbard interaction

ĤU = U
∑

i

(
n̂i,↑ − 1

2

)(
n̂i,↓ − 1

2

)
(3)

and favors localized states. ĉ
†
i,σ (ĉi,σ ) denote fermionic oper-

ators that create (annihilate) an electron in a Wannier state
centered around site i with a z component of spin σ and 〈i,j 〉
denotes nearest neighbors of a hyper cubic lattice. The Hubbard
interaction strength is given by U , t denotes the hopping matrix
element, and n̂i,σ = ĉ

†
i,σ ĉi,σ . To describe thermodynamical

properties, the partition function Z is the quantity of interest.
To compute it we discretize the imaginary time τ and introduce
a Trotter decomposition

Z = tr e−βĤ = tr(e−�τ Ĥ )Nτ � tr(e−�τ ĤK e−�τ ĤU )Nτ . (4)

Here Nτ�τ = β. The discretization into �τ slices is common
to the HQMC and the BSS-QMC. For the sake of comparison,
it is important to note that both methods share the same �τ

discretization error. To be able to integrate out the fermions,
we have to decouple the many body interaction term into a sum
of single body propagators. This is achieved with a Hubbard-
Stratonovich (HS) decomposition that introduces an auxiliary

field xi,l at each site i and every time slice l,

exp

[
−�τU

(
n̂i,↑ − 1

2

)(
n̂i,↓ − 1

2

)]

= (�τ /π )1/2e−�τ U/4
∫ ∞

−∞
dxi,l

× exp
{− �τ

[
x2

i,l +
√

2Uxi,l(n̂i,↑ − n̂i,↓)
]}

. (5)

In contrast to the discrete auxiliary field of the BSS algorithm
[30,36] this field is continuous. At this point, we can integrate
out the fermion degrees of freedom to obtain:

Z =
∫

[δx]e−SB(x) det M↑(x) det M↓(x), (6)

where we have introduced the shorthand notation for the action
of the auxiliary fields

SB(x) := �τ

∑
i,l

x2
i,l . (7)

The matrices Mσ (x), appearing in the determinants, have a
block structure:

Mσ =

⎛
⎜⎜⎜⎜⎜⎜⎝

I 0 0 · · · 0 BNτ ,σ

−B1,σ I 0 · · · 0 0
0 −B2,σ I · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · I 0
0 0 0 · · · −BNτ −1,σ I

⎞
⎟⎟⎟⎟⎟⎟⎠.

(8)

The dimension, VS × VS , of the block matrices is determined
by the number of sites VS . In the above,

Bl,σ (x) = e−�τ Ke−σ�τ Vl,σ (x). (9)

K represents the tight-binding hopping matrix with elements

Ki,j =
{−t 〈i,j 〉 nearest neighbors

0 otherwise , (10)

and the diagonal matrix V contains the fields

(Vl)i,j (x) = δi,j

√
2Uxi,l . (11)

Equation (6) provides a suitable representation for dis-
cussing the absence of the fermionic sign problem. For a
half-filled bipartite lattice, where hopping occurs only between
the two sublattices, it can be shown that both determinants have
always the same sign since under a particle-hole transforma-
tion:

det M↓(x) = e−�τ

√
2U

∑
i,l xi,l det M↑(x). (12)

Thus, at half filling the fermionic sign problem is absent, since
all configurations of the auxiliary field have a positive statistical
weight [37]. One of the key steps to avoid cubic scaling is to
get rid of the determinant and to sample it stochastically. To
this aim, one introduces so-called pseudofermion fields φσ to
obtain

Z =
∫

[δx δφσ ]e−SB(x)−∑σ φT
σ (MT

σ (x)Mσ (x))−1
φσ . (13)
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Clearly the above implicitly assumes the absence of negative
sign problem, det M↑(x) det M↓(x) > 0.

B. The Hybrid Monte Carlo updating scheme

This subsection summarizes Hybrid Monte Carlo sampling.
Details on the implementation will be given at the end of this
subsection. In order to define a Hamiltonian system, we add
a canonical conjugate variable pi,l to the HS field such that
Eq. (13) reads:

Z =
∫

[δx δp δφσ ] P (x,p,φσ ) (14)

with the distribution function

P (x,p,φσ ) = e−H(x,p,φσ ) (15)

and Hamiltonian

H(x,p,φσ ) := SB(x) +
∑
i,l

p2
i,l

+
∑

σ

φT
σ

(
MT

σ (x) Mσ (x)
)−1

φσ . (16)

We now want to draw samples from the distribution P (x,p,φσ )
on the state space spanned by the set of continuous vari-
ables {x,p,φσ }. The components of the momentum pi,l are
distributed according to a Gaussian distribution and can be
sampled directly. The auxiliary fields φ can be sampled in the
following way. Given the auxiliary variables

Rσ := (
MT

σ (x)
)−1

φσ , (17)

drawn from a Gaussian distribution, we can obtain φ from

φσ = MT
σ (x)Rσ . (18)

To sample the field x we use Hamilton’s equations of motion
based on the Hamilton function of Eq. (16) at fixed values of
the pseudofermion fields:

ṗi,l = − ∂H
∂xi,l

(19)

ẋi,l = ∂H
∂pi,l

. (20)

Integration over a given time interval yields a new point in
phase space, x ′ and p′, that we will accept according to the
Metropolis-Hastings rule:

rMH = min

(
1,

T0(x ′,p′ → x,p)

T0(x,p → x ′,p′)
P (x ′,p′,φ)

P (x,p,φ)

)
= min(1,eH(x,p,φ)−H(x ′,p′,φ)), (21)

where T0 corresponds to the proposal probability density.
For the last identity we have used the fact that Hamiltonian
dynamics is time reversal symmetric and that the phase space
volume is conserved. Under these assumptions, which will
have to be satisfied by the numerical integrator (see below),
T0(x ′,p′→x,p)
T0(x,p→x ′,p′) = 1. Throwing a random number against rMH we
can then decide whether we accept the update. Clearly, if the
Hamiltonian propagation is carried out exactly, the acceptance
is unity. To conclude this overview we summarize the updating
procedure

(i) draw Gaussian samples for pi,l and Rσ,i,l .
(ii) evolve x and p according to Hamilton’s equations of

motions.
(iii) accept the new values of x and p according to the

Metropolis-Hastings ratio.

C. Detailed balance: The right choice of the integrator

As alluded above, to integrate the equations of motion
we have to proceed with care and remember that Hamilton’s
equations of motion have two important properties: First, by
Liouville’s theorem the phase space volume is conserved, and
second, they are time reversal symmetric. Under the condition
that we choose an integrator for Hamilton’s equations of
motions for the updates of x and p that retains these properties
it follows that our Monte Carlo updates fulfill the detailed
balance condition [38]. Integrators that have these favorable
traits are called symplectic, or geometric integrators [39] and
the most well-known example of them is the Leapfrog method.
The Leapfrog method satisfies time reversibility and is well
established in numerics. It solves the equation of motion
iteratively over an artificial time. The artificial Leapfrog time
has to be discretized into time steps �t . Initially we propagate
the momentum field by a half time step �t/2. Afterwards we
propagate alternatively the spatial field

xi,l(t + �t) − xi,l(t) =
∫ t+�t

t

dt ′ 2pi,l(t
′)

= 2pi,l

(
t + 1

2
�t

)
�t + O(�t3) (22)

and the momentum field

pi,l

(
t + 3�t

2

)
− pi,l

(
t + �t

2

)

= −
∫ t+3/2 �t

t+1/2 �t

dt ′
∂H(x,t ′ + �t)

∂xi,l

= −∂H(x,t + �t)

∂xi,l

�t + O(�t3) (23)

until we reach the stopping time, for example 1/�t . The
Leapfrog method, as well as the conjugate gradient method
(see below), has some systematical errors. To ensure their
controllability at the end of each Leapfrog run we perform
a Metropolis check to decide if we accept or reject the new
auxiliary field configuration. It turns out that the acceptance
depends on the size of the artificial Leapfrog time steps �t as
well as on the accuracy of the conjugate gradient method as
studied in Ref. [27]. Our experience tells us that configurations
will be rejected if the system is in a point of the phase space
where the product of the gradient of the potential times the
velocity in the according direction is large, compared to the
artificial time steps. Therefore a second Leapfrog run with
the same auxiliary field configuration but different initial
momentum field may have much better propensity to produce
a new configuration that will be accepted. If several Leapfrog
runs fail, the time steps have to be made smaller.

We also implemented an adaptive Leapfrog method [40] that
is also time reversible but selects the step size according to the
gradient of the Hamiltonian, �t ∝ 1/|∇H |2. Summarizing,
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the acceptance is very good, but if a single bad conditioned
configuration occurs, it slows down to very small time steps
by trying to solve the equations of motions in regions of high
variability and needs a very long time. These regions very likely
correspond to regions discussed in Sec. II F where the deter-
minants change signs and therefore the symplectic integrator
has tried to accommodate for the singularity in the gradient.
Leapfrogs with fixed step size may fail at this configuration for
several times, but after several runs with different momentum
configurations they also will find a configuration that will be
accepted, if the selected time step is not too large. Another
way, we observed, to improve the acceptance is to substitute a
Leapfrog run by several shorter runs. This generates the side
effect of reduced correlations between measurements in some
cases. We attribute this behavior to the additional generation
of random φσ and pσ fields between measurements. For larger
system sizes or higher values of β it can be necessary to shorten
the time steps �t to keep the acceptance high.

D. Evaluation of the forces and measurement of observables

The evaluation of derivative, which is necessary to calculate
the forces during the Leapfrog simulation, is simplified by
using an algebraic identity as well as the symmetry of MT

σ Mσ

to obtain

∂

∂xi,l

φT
σ

(
MT

σ (x)Mσ (x)
)−1

φσ

= −2φT
σ

(
MT

σ (x)Mσ (x)
)−1
[
MT

σ (x)

(
∂

∂xi,l

Mσ (x)

)]
× (

MT
σ (x)Mσ (x)

)−1
φσ . (24)

Measurements can be performed for every new configuration
of the auxiliary fields. The bare one particle Green’s function
is given by the inverse Mσ matrix. Instead of a numerically
expensive inversion of Mσ , every component (M−1

σ )i,j can
be sampled by using 2[(MT

σ Mσ )−1φσ ]i[Rσ ]j as an unbiased
estimator. Wick’s theorem allows us to calculate also many
particle observables. An efficient method for dealing with the
linear system

MT
σ MσX = φ, (25)

and we find the solution vector X is of utmost importance for an
efficient implementation and is required for the sampling pro-
cedure in every Leapfrog step as well as for the measurement
of observables. A more detailed discussion how to solve those
systems of linear equations is discussed in the next subsection.

E. Solution of linear systems with the conjugate
gradient method

In favor of readability we will suppress the spin index σ

in this subsection, since the spin up and spin down sectors
are treated in exactly the same way. As is well known,
the straightforward inversion of an N × N matrix by basic
Gaussian elimination needsO(N3) flops. As mentioned above,
we only need to know the solution of the linear system (25) to
formulate the complete algorithm. In contrast to the inversion
of a matrix, iteratively finding the solution to a system of linear
equations up to the computing precision can be possible in an

amount of computing time that is linear in the entries of the
matrix and hence we can benefit greatly, if the system has a
sparse system matrix. The workhorse method for symmetric,
linear systems is the conjugate gradient(CG) method which we
will explain on the basis of the prototypical system

OX = φ. (26)

The matrix O = MTM is symmetric and positive semidefinite.
The solution to Eq. (26) can be interpreted as the unique
minimum of the quadratic function

f (X) = 1
2XT OX − XT φ. (27)

Given a starting guess X0, the idea is now not to take the direct
gradient evaluated at each step but to choose search directions
that are orthogonal, with respect to the from O induced scalar
product, to all previously constructed directions. Employing
that idea the following iterative prescription emerges:

Xn+1 = Xn + ζndn

rn+1 = rn − ζnOdn

ηn = 〈rn+1,rn+1〉/〈rn,rn〉
dn+1 = rn+1 + ηndn

ζn+1 = 〈rn+1,rn+1〉/〈dn+1,Odn+1〉 (28)

with iterative approximations Xn to the true solution X. We
define the residual after the nth iteration by

rn = φ − OXn. (29)

The absolute value of the residual vector is something like a
measure of how close the approximated solution is to the exact
solution. Therefore, we use it to define a termination criterion
for the iterative conjugate gradient method

εn =
√

(φ − OXn)2

φ2
� 10−7, (30)

similar to the criterion chosen in Ref. [25]. The notation 〈r,d〉
represents a scalar product between two vectors r and d. To
start the iterative procedure we have to choose an initial vector
X0. If nothing is known about the system of equations it can
be any arbitrary vector, like a vector consisting of zeros. A
well designed guess can speed up the method and lower the
number of iterations until it converges. Given X0 the initial
data is completed by

r0 = φ − OX0

d0 = r0. (31)

In general, it is possible to show that

〈dm,Odn〉 = 0 for m �= n. (32)

Therefore, all dn vectors are linearly independent, with respect
to O, and a calculation with exact arithmetic would deliver the
exact result after N iterations. Like the authors of Ref. [25]
mention, it is very common to speed up a conjugate gradient
algorithm by introducing a preconditioner. It helps especially if
the matrix is ill conditioned, which is known to be the case for
stronger interaction strengths U and larger values of β [41]. To
define a suitable preconditioner we need a matrix Õ that is close
to the matrix, representing the system of linear equations, but
easy to invert. Because the matrix O is symmetric and positive
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semidefinite, a good starting point is to use the Cholesky
decomposition of O,

Õ = LTL. (33)

The matrix L is a triangular matrix and thus easy to invert. We
rewrite Eq. (26)

O ′X′ = φ′, (34)

and we substitute

O ′ = L−TOL−1 X′ = LX φ′ = L−Tφ, (35)

from which it follows that

r ′
n = φ′ − O ′X′

n = L−T rn. (36)

According to its definition, O ′ is also a symmetric and positive
semidefinite matrix. Therefore, we can apply the conjugate

gradient method to Eq. (34) to solve the modified system of
linear equations. If we modify the iteration scheme, we get X

out of

Xn+1 = Xn + ζ ′
ndn

rn+1 = rn − ζ ′
nOdn

η′
n = 〈rn+1,Õ

−1rn+1〉/〈rn,Õ
−1rn〉

dn+1 = rn+1 + η′
ndn

ζ ′
n+1 = 〈rn+1,Õ

−1rn+1〉/〈dn+1,Odn+1〉. (37)

Once again, the numerical effort denies us the use of a
usual Cholesky decomposition. Its exact calculation would be
equivalent to the inversion of the matrix O. Instead, Ref. [25]
proposes an incomplete Cholesky decomposition. They use
the matrix product MTM , without hopping interactions and a
slight shift of the diagonal elements. The matrix we decompose
is given by the matrix of Eq. (38).

Õ0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

αI + B2
0,1 −B0,1 0 · · · 0 B0,Nτ

−B0,1 αI + B2
0,2 −B0,2 · · · 0 0

0 −B0,2 αI + B2
0,3 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · αI + B2
0,Nτ −1 −B0,Nτ −1

B0,Nτ
0 0 · · · −B0,Nτ −1 αI + B2

0,Nτ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(38)

All block matrices B0,i are now diagonal. The slight shift, e.g.,
α = 1.05, prevents the matrix to become ill conditioned and
prevents a pivot breakdown of the CG [42]. The matrix defined
in Eq. (38) cannot be inverted analytically for α �= 1 [25]. The
new preconditioner matrix is given by

Õ ′ = LTDL. (39)

With diagonal matrix

D =

⎛
⎜⎜⎜⎜⎜⎜⎝

D1 0 0 · · · 0 0
0 D2 0 · · · 0 0
0 0 D3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · DNτ −1 0
0 0 0 · · · 0 DNτ

⎞
⎟⎟⎟⎟⎟⎟⎠, (40)

as well as the triangular matrices

L =

⎛
⎜⎜⎜⎜⎜⎜⎝

I −L1 0 · · · 0 LNτ

0 I −L2 · · · 0 0
0 0 I · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · I −LNτ −1

0 0 0 · · · 0 I

⎞
⎟⎟⎟⎟⎟⎟⎠. (41)

In the atomic limit now all of them consist of diagonal
block matrices of size VS × VS . Recursive definitions of those
matrices keep the numerical effort down. The matrices for
l = 1, . . . ,Nτ − 1 are given by

Ll = D−1
l B0,l

Dl = αI + B2
0,l − B0,l−1D

−1
l−1B0,l−1, (42)

while for l = Nτ

LNτ
= D1B0,Nτ

DNτ
= αI + B2

0,Nτ
− B0,Nτ −1D

−1
Nτ −1B0,Nτ −1,

−B0,Nτ
D−1

1 B0,Nτ
. (43)

With these preliminaries the preconditioned conjugate gradient
method can be used as described above. One could ask the
question, if the preconditioner we use is a good choice for our
purposes. It is not easy to answer this question precisely. We
are following the arguments of Scalettar et al. in Ref. [25],
where they are proposing that the condition of the matrix,
and thus the number of conjugate gradient iterations, depends
essentially on the interaction strength U . The search for a
better preconditioner is still ongoing and the only progress
we know of can be found in Ref. [42], where progress for
very strong interactions is reported, although we like to point
out that their tests were not performed on real configurations
from a full Monte Carlo simulation but on randomly generated
configurations of the auxiliary field. The preconditioner we
have chosen is well suited for interactions that are not too
strong and especially fast to calculate because of the sparsity
structure of our matrix. Nevertheless even the preconditioned
system can come to a configuration where the CG method
never reaches the claimed accuracy; hence we will stop it after
N iterations and take the solution vector of this iteration or
the one with the smallest deviation. In general this problem
occurs only for simulations with very inappropriate parameters
and can be absorbed in the considerations of acceptance rates
below.
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FIG. 1. Green’s functions, calculated with the hybrid quantum
Monte Carlo and the BSS-QMC [30] algorithms on a 4 × 4 lattice
at U = 4 and �τ = 0.1. Starting the simulation in different sectors
clearly produces different results.

F. Ergodicity issues

The implementation described until now was already dis-
cussed in the original paper [25]. We were able to reimplement
the method and run it with several lattice configurations. Fur-
thermore we also observed that for small values of β, the con-
figuration space is strongly dominated by configurations where
both determinants are positive and hence the Monte Carlo
process encounters no difficulties in sampling this wide space.
If we increase the inverse temperature, the configuration space
becomes much more fissured into (+,+)(sign det(Mσ ) = 1)
and (−,−) (sign det(Mσ ) = −1) domains. Since the determi-
nants are real continuous functions of a continuous field, (+,+)
and (−,−) domains are necessarily separated by regions where
(MT

σ Mσ )−1 diverges.
This clearly poses a problem, since any implementation

of molecular dynamics with symplectic integrators conserves
energy and will in principle never cross such a barrier [43].
In particular, every molecular dynamics run will be trapped in
the pocket of the configuration space where it started. Since
the simple sampling of the momenta and pseudofermion fields
does not allow the method to cross the barriers, a Monte Carlo
run will not be ergodic and can converge to a wrong result as
demonstrated in Fig. 1. The figure demonstrates that starting
a run in a (+,+) or (−,−) domain indeed leads to different
results.

The behavior of different integrators is quite interesting
close to those boundaries. If we use the simple Leapfrog with
large step sizes, it is able to cross over into other domains
by violating energy conservation. The adaptive integrator [40]
on the other hand will in this setting dutifully correct its step
size down to vanishingly small values to accommodate for the
large gradient of the potential that it tries to sample. It will
not cross the boundary but it will slow down the simulation
indefinitely while trying to integrate the equations of motion
with and preserving the total energy conservation.

III. COMPLEX REFORMULATION AND COMPARISON

One can follow several routes to circumvent the ergodicity
issues of the algorithm using real auxiliary fields. On one hand
one could try to eliminate the potential barriers in configuration
space by a suitable transformation of the problem. Another
idea is to modify the Leapfrog so that it can explicitly tunnel
between the barriers [43]. Finally combining importance
sampling schemes such as in the BSS algorithm with the
HQMC has been proposed in Ref. [44] and has the potential to
circumvent ergodicity issues. Here we will follow the idea of
extending the configuration space to complex numbers [29].

A. Complexification

In a complex configuration space the barriers still exist but,
due to the additional degrees of freedom, the integrator should
be able to produce trajectories that move around them. The
determinants become complex numbers and are conjugate to
each other, thereby ensuring the absence of a negative sign
problem. To achieve this complexification, we decouple the
Hubbard interaction in charge and spin sectors by introducing
a free parameter α:

H ′
V =

∑
i

α
U

2
(n̂i,↑ + n̂i,↓ − 1)2

−
∑

i

(1 − α)
U

2
(n̂i,↑ − n̂i,↓)2. (44)

α can be chosen from [0,1] thereby interpolating between the
purely real code at α = 0 and a purely imaginary one at α =
1. Clearly the final result will be α independent, but it will
determine the Monte Carlo configuration space. In this section,
we will redefine some of the symbols, variables and matrices
that we have introduced previously. At α = 1 we can make
contact with the formulation of Refs. [45–50] where a purely
imaginary field couples to the local density. In this case, and as
argued in Ref. [51] one equally expects to encounter ergodicity
issues.

To distinguish between the original and the new definitions,
all redefined variables will be labeled by a prime. The new
formulation leads to a doubling of auxiliary fields:

e−�τ H
′
U ∝

∫
dxi,l dyi,l exp

{
− �τ

∑
i

[
x2

i,l + y2
i,l

+
(√

2U (1 − α)xi,l + i
√

2Uαyi,l

)(
n̂i,↑ − 1

2

)

−
(√

2U (1 − α)xi,l − i
√

2Uαyi,l

)(
n̂i,↓ − 1

2

)]}
,

(45)

and we also redefine

S ′
B(x,y) := �τ

∑
i

(
x2

i + y2
i

)
. (46)

To shorten the notation, we will sometimes use a combined
notation and interpret both auxiliary fields as components of
one complex field

zi,l :=
√

2U (1 − α) xi,l + i
√

2Uα yi,l . (47)
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We formulate the partition function for complex auxiliary fields
similar to the real case

Z =
∫

[δz δz] e−SB(z,z) e�τ

∑
i,l zi,l /2 det M ′

↑(z,z)

× e−�τ

∑
i,l zi,l /2 det M ′

↓(z,z). (48)

The matrices for the spin up and spin down sector still have
the same structure as before

M ′
σ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

I 0 0 · · · 0 B ′
Nτ ,σ−B ′

1,σ I 0 · · · 0 0
0 −B ′

2,σ I · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · I 0
0 0 0 · · · −B ′

Nτ −1,σ I

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

(49)

with

B ′
l,σ (z,z) = e−�τ Ke−σ�τ V

′
l,σ (z,z), (50)

and

(V ′
l,σ )i,j (z,z) =

{
zi,lδi,j σ =↑
zi,lδi,j σ =↓ . (51)

At half filling, particle-hole symmetry induces a relation be-
tween the determinants of the spin matrices and their prefactors

e−�τ

∑
i,l

zi,l
2 det M ′

↓ = e�τ

∑
i,l

zi,l
2 det M ′

↑

= e�τ

∑
i,l

zi,l
2 det M ′†

↑ . (52)

This means that the statistical weight for every configuration
is positive such that complexification does not lead to a sign
problem. Furthermore, we can use this relation to simplify the
algorithm by substituting the spin down sector by the complex
conjugate of the spin up sector

Z =
∫

[δz δz] e−S ′
B(z,z)e�τ

∑
i,l

zi,l+zi,l
2

× det M ′
↑(z,z) det M ′†

↑ (z,z)

=
∫

[δx δy] e−S ′
B(x,y) det[e�τ

√
2U (1−α)
Nτ VS

∑
i,l xi,l

× M ′
↑(x,y)M ′†

↑ (x,y)]

=
∫

[δx δy]e−S ′
B(x,y) det[M↑(x,y)M†

↑(x,y)]. (53)

Here we defined

M↑(x,y) := κ(x)M ′
↑(x,y) (54)

and

κ(x) := exp

{
�τ

√
2U (1 − α)

2NτVS

∑
i,l

xi,l

}
. (55)

As in Sec. II, the determinants can be eliminated by the use
of a Gaussian identity, which introduces additional complex
fields

Z =
∫

[δx δy δφ′
↑ δφ

′†
↑ ] e−S ′

B−φ
′†
↑ (M†

↑ M↑)−1φ′
↑ . (56)

The partition function is now comparable in its form to the
previous real algorithm. Instead of a real system of linear
equations we now have to solve a complex one. Although
the number of degrees of freedom is twice as large, we can
use a complex version of the conjugate gradient method. Since
we eliminated the spin down sector in the formulation, we
get away with one call to the CG method. The sampling of
random numbers works analogously to the real version of the
algorithm. We redefine

R′
σ := (

MT
σ (x,y)

)−1
φ′

σ ⇒ Z ∝ e−R
′†
σ R′

σ , (57)

and generate Gaussian random numbers for the real and imag-
inary part of R′

σ and perform a matrix vector multiplication to
get the complex φ′

σ fields

φ′
σ = M†

σ (x,y)R′
σ . (58)

Since we doubled our auxiliary field components, we also
have to introduce two momentum fields to get a new artificial
Hamiltonian

H′(x,y,px,py,φ
′
↑,φ

′†
↑ ) :

= S ′
B(x,y) +

∑
i,l

(
(px)2

i,l + (py)2
i,l

)
+ φ

′†
↑ (M†

↑(x,y) M↑(x,y))−1φ′
↑. (59)

Both momentum fields are Gaussian distributed and thereby
easy to sample. Hamilton’s equations of motion lead the way
to the complex Leapfrog method.

ẋi,l = ∂H′(x,y)

∂(px)i,l
= 2(px)i,l , ẏi,l = ∂H′(x,y)

∂(py)i,l
= 2(py)i,l ,

(60)

(ṗx)i,l = −∂H′(x,y)

∂(x)i,l
, (ṗy)i,l = −∂H′(x,y)

∂(y)i,l
. (61)

Since the equations of motion decouple for the two parts of
the auxiliary field, we find that the complex version of the
algorithm just leads to a doubling of the degrees of freedom.
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FIG. 2. Single particle Green’s function, calculated with the com-
plex HQMC algorithm and compared to the results of a BSS-QMC
run [30] for the same parameters as Fig. 1.
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FIG. 3. HQMC results for the spin-spin-correlation functions in
momentum space. Good agreement with benchmarks results from the
BSS runs [30] is obtained.

To measure the single particle Green’s function we invert the
M ′

σ matrix stochastically and come to the unbiased estimator
[(M ′†

σ M ′
σ )−1φσ ]i[R′

σ ]j for (M ′−1
σ )i,j . Since we are dealing

with complex numbers, also the estimator will give complex
estimates. In the process of averaging the observables over the
Monte Carlo configurations their imaginary part has to vanish.

B. Results of the complex method

If we now recalculate the single particle Green’s function
with the same parameters, where the real version of the algo-
rithm previously failed, we observe consistent results, as shown
in Fig. 2. Beside the single particle Green’s function we can
also calculate higher observables like the spin-spin correlation
function of a system, as shown in Fig. 3. Wick’s theorem
allows us to decompose many particle Green’s functions into
expressions involving only single particle Green’s functions.
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FIG. 4. Average number of CG iterations needed, to solve a
system of linear equations, as a function of the Euclidean system
size as given by the number of Trotter slices times the lattice size
(NτVs). For a two-dimensional system at fixed temperature, the plot
shows an approximately linear behavior as a function of the lattice
size.
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FIG. 5. Comparison of the BSS and cHQMC. Here we compare
error bars σ as a function of computing time for several system sizes.

Because we calculate the Green’s functions only stochastically
we get additional noise for many particle Green’s functions and
hence have to generate more samples.

To analyze the runtime of the algorithm we carried out sim-
ulations in one, two, and three dimensions at different inverse
temperatures. Generically, and contrary to our aspirations, the
runtime does not seem to scale favorably with system size and
inverse temperature. There are many reasons for this. The first
is the observation that the number of iterations required for the
conjugate gradient method to converge grows nearly linearly
with the Euclidean size of the system (Fig. 4). Another reason
is that to keep the acceptance high, we have to rescale the
artificial Leapfrog time step as �t ∝ V −1

s β−1. Combined with
the linear scaling that every vector operation needs we achieved
a scaling of approximately

(Ldβ)2.5−3.0. (62)

C. Comparison between cHQMC and BSS
for the Hubbard model

Finally we have to compare the efficiency of the cHQMC
with other simulation techniques. The BSS-QMC method as
implemented in the ALF software package [30] is a well
established and optimized algorithm to simulate half-filled
Hubbard systems at finite temperature. Both methods have the
same Trotter-decomposition induced, systematic error which
predestines them for a comparison. Besides properties such
as required memory and effective scaling for a single step,
fluctuations due to the statistical nature of the approach is
a key property of every Monte Carlo method. Owing to the
central limit theorem, error bars decrease as the square root
of the number of measured samples, i.e., computing time.
Fluctuations correspond to the prefactor of this behavior.
Figure 5 shows the decay of stochastic errors for both methods
for several system sizes. Both methods show the expected
behavior as a function of computational time. However, for
given computational time, the BSS method achieves much
higher precision than the cHQMC. For this comparison we
have carefully chosen the parameter set. It is known that
the spin correlation length of the half-filled Hubbard model
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grows exponentially with inverse temperature. The temper-
ature regime where this scaling is valid corresponds to the
so-called renormalized classical regime [52]. Our choice of
parameters, U/t = 4 and βt = 6 places us in this regime [20],
which can be considered as hard for Monte Carlo simulations.

IV. HQMC AND THE SSH MODEL

The question we would like to pose in this section is if there
exists a class of models in the solid state where the HQMC is the
method of choice. We will argue that the Su-Schrieffer-Heeger
(SSH) model [31] describing the electron-phonon problem
could lie in this class. An obvious difficulty for the HQMC
method is singularities in the effective action trigger by the
sign change of the determinant in a given spin sector. Using a
Majorana representation, one will show that the determinant in
a given spin sector is always positive semidefinite for the SSH
model at the particle-hole symmetric point. Furthermore, other
Monte Carlo methods face issues for this electron-phonon
problem. In the CT-INT approach [32–34] the phonon degrees
of freedom are integrated out, but in spacial dimensions larger
than unity and away from the antiadiabatic limit this generates
a negative sign problem. In the BSS algorithm where phonons
degrees of freedom are sampled, one can foresee that local
moves will lead to large autocorrelation times [35] such that
global updating schemes such as Langevin dynamics or hybrid
Monte Carlo should perform better.

A. HQMC formulation for the SSH model

The SSH Hamiltonian is given by

Ĥ = Ĥel + Ĥph + Ĥep. (63)

Here,

Ĥel = −t
∑

〈i,j〉,σ
(ĉ†i,σ ĉj,σ + ĉ

†
j,σ ĉi,σ ) (64)

is the kinetic energy and 〈i,j 〉 denotes the nearest neighbors of
a square lattice. Harmonic oscillators on links account for the
lattice vibrations,

Ĥph =
∑
〈i,j〉

[
P̂ 2

〈i,j〉
2m

+ k

2
Q̂2

〈i,j〉

]
, (65)

with P̂ ,Q̂ being the conjugate momentum and position oper-
ators. The electron-phonon coupling leads to a modulation of
the hopping matrix element:

Ĥep = g
∑

〈i,j〉,σ
Q̂〈i,j〉(ĉ

†
i,σ ĉj,σ + ĉ

†
j,σ ĉi,σ ) (66)

with a coupling strength g. To simplify the notation we label
bond indices as

b := 〈i,j 〉, (67)

and introduce the bond hopping as

K̂b := (ĉ†i ĉj + ĉ
†
j ĉi). (68)

To formulate the path integral, we will chose a real space basis:

Q̂b|xb〉 = xb|xb〉, (69)

such that the partition function reads

Z = Tr
∫ ∏

b

dxb〈xb|e−βĤ |xb〉, (70)

where the trace runs over the fermionic degrees of freedom.
The standard real space path integral and integration over the
fermionic degrees of freedom yields the result:

Z =
∫ ∏

b,τ

dxb,τ e−S0(x)[det M(x)]Ncol , (71)

which is similar to the representation of the Hubbard model
in Eq. (6). Being a phonon field, as opposed to a Hubbard-
Stratonovich one, xb,τ has a bare imaginary time dynamics
given by the action

S0(x) := �τ

∑
b,τ

(
m

2

[
xb,τ+1 − xb,τ

�τ

]2

+ k

2
x2

b,τ

)
(72)

of the harmonic oscillator. In the above, we have considered
a model with Ncol spin components corresponding to an
SU(Ncol) symmetric model. The M(x) matrix has the same
block structure as in Eq. (8) with

Bτ = exp

{
−�τ

∑
b

(gxb,τ − t)Kb

}
. (73)

To show the absence of singularities in the action one should
demonstrate that det M(x) > C with C a finite positive con-
stant. Here we can only show a weaker statement, namely
that det M(x) � 0 ∀x. Considering only one color degree of
freedom, and the Majorana representation on sublattices A and
B,

i ∈ A : γ̂i,1 = (ĉi + ĉ
†
i ) γ̂i,2 = −i(ĉi − ĉ

†
i )

i ∈ B : γ̂i,1 = −i(ĉi − ĉ
†
i ) γ̂i,2 = −(ĉi + ĉ

†
i ) (74)

the exponent in Eq. (73) reads∑
b

(−t + gxb,τ )(ĉ†i ĉj + ĉ
†
j ĉi)

= i

2

∑
b,n

(−t + gxb,τ )γ̂i,nγ̂j,n. (75)

The above result depends upon the fact that the hopping matrix
element is real and that hopping occurs only between different
sublattices. Thereby, the trace factorizes

Tr
Nτ∏
τ=1

e−�τ

∑
b(−t+gxb,τ )(ĉ†i ĉj +ĉ

†
j ĉi )

=
[

Tr
Nτ∏
τ=1

e−i �τ
4

∑
b (−t+gxb,τ )γ̂i γ̂j

]2

, (76)

and one can show that the trace over a one Majorana mode is
a real quantity [2]. Thereby, det M(x) � 0 ∀x.

Going on to implement a HQMC method for the SSH model,
we define

x̃b,τ :=
√

k

2
xb,τ ω2

0 := k

m
g̃ :=

√
2

k
g (77)
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FIG. 6. HQMC and CT-INT results for the local Green function
for SSH model.

and include the canonical conjugate momentum and pseud-
ofermions to obtain:

Z =
∫

[δx δp δφσ ]

× exp

{
−�τ

[∑
b

(
ω−2

0

[
x̃b,τ+1 − x̃b,τ

�τ

]2

+ x̃2
b,τ

)]
︸ ︷︷ ︸

=S0(x̃)

−
∑

σ=Ncol

φT
σ (MTM)−1φσ −

∑
b

p2
b,τ

}
(78)

Henceforth, everything is similar to implementation for the
Hubbard model. After generating random numbers for p and
φσ fields a Leapfrog run updates the auxiliary field, followed
by measurements of observables before the loop starts again. A
CG method is put to use to solve the system of linear equations.

B. Proof of concept

In Fig. 6 and Fig. 7 our HQMC results for the SSH model are
benchmarked against CT-INT simulations in a regime where
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FIG. 7. HQMC and CT-INT spin-spin correlation functions in the
momentum space for the SSH model.
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FIG. 8. Number of CG iterations required for a given accuracy
as functions of the lattice size at various temperatures. At each
temperature one can observe saturation. The lattice size at which
this saturation kicks in is temperature dependent. Here we consid-
ered 4×4, 6×6, 8×8, 10×10, 12×12, 14×14, 18×18, 20×20,
and 24×24 lattices.

the latter method does not suffer from a severe sign problem.
As apparent, perfect agreement is obtained.

The scaling behavior of the HQMC method for the SSH
model seems more favorable than for the Hubbard model.
We observe a much weaker dependence of the acceptance
on the Leapfrog step size. For the SSH model a correction
of approximately �t ∝ V −0.25

s β−0.25 was sufficient in most
cases. Note that for the Hubbard model, the time step had to be
scaled as �t ∝ V −1

s β−1. We believe that this reflects the fact
that singularities in the effective action are not an issue.

Figure 8 and Fig. 9 plot the number of CG steps required
during the simulation so as to achieve the desired accuracy. This
result, alongside the favorable Leapfrog step scaling, gives an
estimate of the numerical effort:

(Ld )1.25−1.5β2.25−2.5. (79)
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FIG. 9. Number CG iterations as a function of inverse temperature
at different lattice sizes. In this case, no saturation is observed in the
considered temperature range. Here we consider β = 4.0, 6.0, 8.0,
and 10.0.
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It is interesting to note the asymmetry in the temporal and
spatial directions (see Figs. 8 and 9). A possible understanding
of this is in terms of a dynamical exponent greater than unity
that renders the characteristic length scales longer along the
imaginary time than in real space.

V. CONCLUSION

By design, the HQMC algorithm has the potential of solving
sign free fermion problems with a numerical effort scaling
linearly with the Euclidean system size, Vsβ. The key ideas
leading to this statement are the following.

(i) Stochastic sampling of the fermion determinant.
(ii) Global molecular dynamics updating schemes.
(iii) Stochastic sampling of the single particle Green func-

tions required for the computation of observables.
Remarkably the above relies solely on the solution of

Eq. (26), MTMX = φ, and since M contains only order Vsβ

nonvanishing matrix elements one can hope for linear scaling
in Vsβ.

For the Hubbard model at half filling, the major issues
are the zeros of determinant of the fermion matrix M . Even
though the total weight is positive, the sign of the determinant
in a single spin sector at low temperatures fluctuates strongly.
We showed that this leads to ergodicity issues since the zeros
split the configuration space in regions separated by infinite
potential barriers that cannot be overcome with molecular
dynamics. To circumvent this problem we have complexified
the Hubbard-Stratonovich transformation so as to be able to
go around these singularities. Our main result, however, is that
in comparison to the generic BSS algorithm as implemented
in the ALF project [30], the complexified HQMC for the
Hubbard model remains orders of magnitude slower. This
statement relies on the following observations. (i) Fluctuations
of standard observables are much larger. (ii) The roughness of
the potential landscape renders an efficient implementation of
the molecular dynamics challenging. In other words, the forces
are hard to compute and the CG approach fails to converge in
a number of iterations that scale with the Euclidean volume.
These statements are based on a simple implementation of
the HQMC, and much progress has been made to solve the
above issues. More efficient algorithms for the Hubbard model
could be based on various strategies. One can modify the
action with for instance symmetry breaking terms so as to
avoid the aforementioned singularities stemming from zero
eigenvalues of the fermion matrix. This step can be combined
with rational HQMC [53] or mass preconditioning measures
[54] both aimed at reducing the condition number of the
Fermion matrix. Furthermore, other choices of the Hubbard-
Stratonovich transformation, in particular compact versions

[55], could provide a speedup. Another route is to bias the
classical Hamiltonian used for the molecular dynamics so as
to efficiently cope with the unbounded forces stemming from
the zeros of fermion determinant. This bias will be not lead to
systematic errors due to the Metropolis acception/rejection step
at the end of the Molecular dynamics integration. However the
issue will be to ensure good acceptance. Such strategies have
been implemented in the realm of overlap fermions [56–60].

Since the sign changes of the fermion determinant in a
given spin sector render the implementation of the HQMC
hard, one will invariably search for interesting models where
the determinant remains positive for all field configurations.
Using recent insights from the Majorana representation [2] to
classify sign free Hamiltonians, one will show that the SSH
model on a bipartite lattice at half filling falls in this class.
This model describes the salient physics of the electron-phonon
interaction and is solvable in one dimension with the CT-INT
approach [61]. In higher dimensions, its phase diagram remains
illusive: A simple sign free implementation of the BSS will
suffer from long autocorrelation times whereas the CT-INT
approach in which the phonons are integrated out turns out
to suffer from a sign problem away from the antiadiabatic
limit. Our preliminary results in solving this model with the
HQMC are very promising. Away from half filling and/or away
from the particle-hole symmetric point, the model for an even
number of fermion flavors does not suffer from the negative
sign problem and can be simulated with the HQMC. In this
case however, the sign of the determinant for a single flavor
can start fluctuating and thereby reduce the efficiency of the
HQMC. It is however unclear to what extent the efficiency
of the algorithm will suffer away from the particle symmetric
point. Further work in this direction is presently in progress.
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