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Accurate correlation energies in one-dimensional systems from small system-adapted basis functions

Thomas E. Baker,1 Kieron Burke,2,1 and Steven R. White1

1Department of Physics & Astronomy, University of California, Irvine, California 92697, USA
2Department of Chemistry, University of California, Irvine, California 92697, USA

(Received 12 September 2017; revised manuscript received 28 December 2017; published 21 February 2018;
corrected 17 March 2021)

We propose a general method for constructing system-dependent basis functions for correlated quantum
calculations. Our construction combines features from several traditional approaches: plane waves, localized
basis functions, and wavelets. In a one-dimensional mimic of Coulomb systems, it requires only 2–3 basis
functions per electron to achieve high accuracy, and reproduces the natural orbitals. We illustrate its effectiveness
for molecular energy curves and chains of many one-dimensional atoms. We discuss the promise and challenges
for realistic quantum chemical calculations.
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I. INTRODUCTION

Many tens of thousands of electronic structure calculations
are performed each year, the vast majority in a single-particle
basis set of some sort. These calculations can be divided into
two types: those that extract the energy from a set of single-
particle occupied orbitals (denoted single-determinant) such as
density functional theory (DFT) [1–5] or Hartree Fock (HF),
and those that go beyond a single determinant, such as con-
figuration interaction [6,7], coupled cluster methods [8–10],
density matrix renormalization group (DMRG) [11–16], and
some types of quantum Monte Carlo. Going beyond a single de-
terminant is necessary for many systems, but is typically much
more demanding computationally. Such calculations are more
difficult because larger basis sets are needed to achieve chem-
ical accuracy (1 kcal/mol), and computation times usually
scale as a high power of the number of basis functions. These
larger basis sets are needed to represent the electron-electron
cusp in the wave function, which exists at every point in
space.

A natural question arises: what would be the optimal basis
set for an electronic structure calculation, assuming the basis is
specifically adapted to that system? For a single-determinant
method, the answer is clear: the self-consistent occupied or-
bitals are the optimal basis for that calculation: used as a basis,
they reproduce the exact energy and properties. The number
of these basis functions (for a spin-restricted calculation) is
thus Ne/2, where Ne is the number of electrons. Of course,
this minimal basis does not offer a computational shortcut: the
occupied orbitals must be determined in a separate, nonadapted
basis calculation. Here, we are concerned with multideter-
minant methods, and we will assume that the computation
time for a traditional single-determinant calculation is small
in comparison to the multideterminant method.

For post-HF methods, there is no exact finite system-
adapted basis: any finite basis introduces errors. However,
the natural orbitals are close to the most rapidly converging
single-particle basis, at least in terms of allowing the greatest
possible overlap with the exact ground state [17,18]. The
natural orbitals are the eigenstates of the single-particle density

matrix (also known as the equal-time one-particle Green’s
function). The number of nonzero eigenvalues (occupancies)
is infinite. A (near) optimal basis of Mno orbitals consists of
the Mno natural orbitals with the greatest occupancy.

One obvious weakness in using natural orbitals is that one
does not know them until after one has solved the interacting
system, using a post-HF method, with another larger basis.
Iterative natural orbital methods are a way to reduce the
computational expense, but approximate natural orbitals that
did not need a post-HF method to determine them could
be very useful [19]. But natural orbitals have another key
weakness: they are (normally) completely delocalized across
the system. This delocalization prevents a number of shortcuts
that can greatly decrease computation times for large systems.
Delocalization is especially harmful for low-entanglement
methods such as DMRG, since there is no area law for the
entanglement entropy in a delocalized basis [20].

Here, we describe an approach that starts with the occupied
orbitals of a DFT (or HF) calculation, and yields basis sets
which produce high accuracy in correlated calculations. We
test this approach in 1D, using potentials that make 1D
mimic 3D in many respects, and using DMRG [21]. The
computational effort for the basis construction is minimal.
The number of basis functions needed is typically about 2Mno,
where Mno is the minimal number of natural orbitals needed
to reach high accuracy, or about two or three times the number
of electrons. We expect this method can be easily extended to
quasi-1D systems (such as large-Z atoms or chains of real H
atoms) and hope it can be applied more generally in 3D.

The first step produces what we call “product plane waves”
(PPWs) by multiplying the occupied orbitals by a set of low
momentum cutoff plane waves. The lowest momentum is
determined by the spatial extent of the entire system. This
simple ansatz converges well in our tests in 1D, and we show
how its convergence is within about a factor of 2 compared to
natural orbitals. However, a weakness of PPWs, shared with
natural orbitals, is that the basis is not local. As the second
major part of this work, we describe fragmentations of the
PPWs that utilize wavelets [22–66] to produce atom-centered
adapted orthogonal bases with good completeness and locality.
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This approach requires only a modest additional number of
basis functions to yield the same accuracy as PPWs, but with
a smooth, local, and orthogonal basis.

II. BACKGROUND

A. The one-dimensional Hamiltonian

Our nonrelativistic many-electron Hamiltonian, expressed
in second quantized form, either in a basis set or on a grid, is
[67,68]

ĤMB =
∑
i,j,σ

(
tij ĉ

†
iσ ĉjσ +

∑
k,�,σ ′

Vijk�ĉ
†
iσ ĉ

†
jσ ′ ĉ�σ ′ ĉkσ

)
, (1)

with fermionic operators ĉ labeled either by site or basis
function i, j, k, and � and with spin σ (or σ ′). We define the
“exact” solution as solving this Hamiltonian on a very fine
grid, which is close to the continuum limit [21,69]. For both
the grid and for basis functions, we find the exact many-particle
ground state of these 1D reference systems using DMRG. The
one-electron integrals are

tij =
∫

dr ϕ∗
i (r)

(
−∇2

2
+ vext(r)

)
ϕj (r), (2)

where ∇2 = ∂2
x for the 1D calculations, vext(r) is the external

potential, discussed below. In a basis, with functions ϕi(r), the
two-electron integrals are

Vijk� = 1

2

∫∫
drdr′ϕ∗

i (r)ϕ∗
j (r′)vee(r − r′)ϕk(r′)ϕ�(r). (3)

On a grid, the interaction takes a much simpler diagonal form
with i = � and j = k, with the integral taking the valuevee(ri −
rj ). For grid calculations, we use the ITensor library, along with
matrix product operator technology [70]. In the basis, we use
the Block DMRG code since it is specifically tailored to avoid
stationary states that are not the ground state in a basis set
and has implemented the form of the Hamiltonian efficiently
[14,71–74].

Previously, we have explored 1D potentials that mimic as
closely as possible the behavior of real 3D systems. A partic-
ularly convenient choice matching a number of 3D features
is a single exponential function, vee(x − x ′) = A exp(−κ|x −
x ′|) with A = 1.071 and κ = 0.419, and vext(x) = −Zvee(x),
where Z is the atomic number, just as in 3D. This particular
function closely mimics the results from a soft-Coulomb
interaction, but at a reduced cost for grid DMRG calculations
[21,70]. This potential also more closely mimics 3D since it
has a mild singularity at zero distance. In 3D, the Coulomb in-
teraction is divergent, but its effect is moderated, and integrals
over it are finite, because of the very small volume associated
with the r → 0 region, and the associated integration factor
4πr2. In 1D, we get qualitatively similar behavior from the
slope discontinuity in the potential at r = 0. A local density
approximation (LDA) was also derived for this interaction.
Our finite difference grid Hamiltonian looks like an extended

FIG. 1. First two natural orbitals, labeled by their occupation
numbers, of (1D) He. An X marks the location of the nucleus.

Hubbard model [69],

Ĥfine =
∑

i

(
− 1

2a2
(ĉ†i+1ĉi − 2n̂i + ĉ

†
i ĉi+1)

)

+
∑

i

vi n̂i +
∑
i,j

(
vij

een̂i(n̂j − δij )
)
, (4)

where the superscript “fine” indicates we will use this lattice
on the finest (original) grid of spacing a = 1/32, n̂i = ĉ

†
i ĉi ,

external potential vi , and long-ranged electron-electron inter-
action v

ij
ee on sites i and j . A distance of 60 from the outermost

grid points to the first or last atom is used for all systems that
follow, allowing wave functions to have extended tails.

The natural orbitals are the eigenvectors of the one-particle
reduced density matrix (RDM), which is the equal-time one-
particle Green’s function, with matrix elements

ρij = 〈ĉ†i ĉj 〉. (5)

The eigenvalues of RDM are the occupation numbers and
the eigenvectors are the natural orbitals, which we order in
decreasing occupation. Figure 1 shows the first two for 1D
He, and we later show (Fig. 3) that, in a basis set of these two
orbitals alone, the expectation value of the Hamiltonian is only
1 kcal/mol above the exact ground-state energy. We use the
term high accuracy to indicate errors of less than 1.6 mHa,
which corresponds to the 1 kcal/mol criterion commonly
called “chemical accuracy” in quantum chemistry.

B. Wavelets

Wavelets were originally introduced by Haar in 1910 [22]
but they have since been modernized and expanded by several
works by Gabor [23], Grossman and Morlet [24], Meyer
[25], Mallat [26], and Daubechies [27–29] and many others.
These functions have become widely used in audio and image
compression (such as jpeg and mp3 file formats). These were
also connected to a quantum gate structure, tensor network
algorithms, and compression of matrix product states [58–60].

Consider a localized function f (x) located near the origin.
We can form a basis from this function by translating it by all
integer translations, i.e., {f (x − j )} for integer j . A wavelet
transformation (WT) is a mapping of f (x) to a new function
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FIG. 2. One of the scaling functions (solid blue line) and some
of the wavelets (dashed lines) of a wavelet basis of type Coiflet-18.
These functions are based on a fine grid with spacing 1/32, and the
level parameter z gives the size scale of each function as 2z/32. Both
the scaling function and rightmost wavelet are at z = 5.

f ′(x) defined by

f ′(x) =
∑

k

ckf (xd − k), (6)

where d is the dilation factor, which is normally taken to be 2.
The WT is defined by the coefficients ck . We will only consider
compact wavelets, for which the number of nonzero ck’s is
finite. The scaling function of the WT, S(x), is the fixed point
of this mapping. The ck are chosen cleverly to make the S(x −
j ) to be orthogonal for different j , and to have a number of
other desirable properties, such as polynomial completeness
up to a certain order [27]. The scaling function is designed
to represent smooth, low momentum parts of functions. The
scaling function is not a wavelet, although it does form the top
layer of a wavelet basis. A wavelet is formed from S(x) using
another set of coefficients wk (which are defined in terms of
the ck):

W (x) =
∑

k

wkS(xd − k). (7)

The wavelets capture higher momentum features.
A wavelet basis consists of scalings and translations of

S(x) and W (x), and it is complete and orthonormal. It is
characterized by a coarse grid with spacing 
. At all integer
multiples j of 
, one puts a scaling function, of size 
, namely,
S(x/
 − j )/

√

. Then, at scales 
, 
/2, 
/4, etc., one puts

down a grid of scaled wavelets, with the spacing and the size
of the functions always equal. All these functions together are
complete, and they are all orthogonal to each other. Some of
the functions of a wavelet basis are shown in Fig. 2.

Wavelet bases are an attempt to have locality in both space
and momentum simultaneously, as much as possible, subject
to the constraint of orthgonality. The layer of scaling functions
represent all momenta from 0 to roughly O(1/
); the coarsest
layer of wavelets represents momenta from roughly O(1/
)
to O(2/
), etc., but with significant overlap in the momentum
coverage between different layers.

We have briefly described wavelet bases in terms of contin-
uous functions, but they can equally be described in terms of
WTs acting on an initial fine grid. The WTs we use are based

on the fine grid used by the grid DMRG calculations, and these
are what is shown in Fig. 2.

Many different types of wavelet transforms have been
constructed. Here we choose Coiflets, derived by Daubechies
[27], which are characterized by the number ν of nonzero
ck . We choose relatively high ν to get good completeness
and smoothness. Wavelets can be easily extended to higher
dimensions by taking products such as S(x)S(y)S(z) [61], so
the principal features of 1D carry over to 3D [56,75–81].

III. PRODUCT PLANE WAVES

In this section, we describe our new approach to design
a specific system-dependent basis with as few functions as
is practical. We first argue that the exact natural orbitals
provide a natural least possible number, but rely on knowing
the exact solution [17,18]. We then show how to combine
plane-wave-type basis functions (PPWs), wavelet technology,
and adaptation via approximate DFT (or other) single-particle
orbitals, to create a basis with no more than about twice this
number, but still yielding high accuracy. A crucial feature is
that we never use more than a few of each kind of function, so
that we never come close to being limited by the asymptotic
convergence properties of any one set of basis functions.
Further, the initial orbitals do not need to be obtained to high
accuracy. The purpose of these orbitals is to find the important
features (where the density is large) of the system to act as a
scaffold for the following calculations. These orbitals can be
obtained quickly at a low accuracy.

A. Natural orbitals as a basis

We wish to find basis sets that, when solved exactly, give
ground-state energies of high accuracy, i.e., no more than
1 kcal/mol above the exact, complete basis limit. We wish
to find basis sets that converge to this accuracy with as few
functions as possible, but also without needing to know the
exact solution to determine them. With the fine grid DMRG
wave function, we can calculate the RDM exactly and find
the exact natural orbitals. Since our DMRG solutions do not
break spin symmetry if the number of electrons is even, the up
and down RDMs are identical. (For odd electron numbers, we
average the up- and down-RDMS and use that to define our
natural orbitals.)

The first two natural orbitals for a 1D helium atom were
shown in Fig. 1. The natural orbitals yield the smallest number
of basis functions that can be expected to yield high accuracy,
i.e., when ordered by occupancy, the least number Mno, which,
when used as a basis, yields an error below high accuracy.
Figure 3 shows the energy error for a variety of systems, when
the basis is chosen as a finite number of the most occupied exact
natural orbitals. We see that Mno = 2 for 1D He, but is 3 for 1D
H2 either close to equilibrium (R = 2) or stretched (R = 4).
For 1D Li,Mno = 4, while 1D Be hasMno = 6. Unstretched 1D
H4 also has Mno = 4, but stretched 1D H4 requires Mno = 7.
Thus Mno increases with the number of electrons, and also
(slightly) with the number of centers.

Figure 4 shows the first four natural orbitals for an 1D H4

chain, which is stretched. Clearly, the orbitals delocalize over
the entire chain. We also see from Fig. 3 that even in this basis,
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FIG. 3. Energy errors for 1D He, Li, Be, H2, and H4 when
evaluated in a basis of Nf exact NOs of greatest occupancy.

there remains about 8 kcal/mol error, and three more orbitals
are needed to reach high accuracy.

B. Constructing the basis

Given the orbitals from a HF or DFT calculation, perhaps
the simplest conceivable basis would be the occupied HF or
DFT orbitals, since this allows the reproduction of the single
determinant. One well-known approach for enlarging this basis
to allow for correlation is to use additional eigenstates of
the Fock matrix, selected by an energy cutoff [42,81,82]. It
is clear, however, that this eventually becomes inappropriate.
For a more complete basis, one needs functions with positive
energy, but there are an infinite number of functions at zero
energy far from the molecule. To remedy this, we could put a
box around the molecule and include only functions within that
box. However, this can be very wasteful, since the box needs to
include extended tail regions, where additional basis functions
are not very useful. Instead of using energies, we adopt a quite
different approach, motivated by the construction of variational
wave functions—in particular, Jastrow functions.

Single-particle determinantal states ϕ from DFT or HF are
rough approximations to the many-particle wave function, but
can be improved substantially by multiplication by a Jastrow
factor, J , which provides explicit correlation. Modifying a
determinantal wave function with a Jastrow factor is often the
first step in designing a variational wave function for quantum
Monte Carlo calculations [83]. The Jastrow factor acts as a
multiplicative factor for the wave function and a simple form

FIG. 4. Same as Fig. 1 but for 1D H4 at R = 4. X’s mark the
locations of the nuclei.

for J is [84]

J (r1,r2, . . .) =
∏
i<j

J2(ri − rj ). (8)

The J2 term is near 1 if ri and rj are far away, and becomes less
than one as ri and rj come together, building in the electron-
electron cusp. We now ask the question: what would be a good
single-particle basis to represent J or J2?

The fact that J2 is a function of the difference of two position
vectors means that there is no benefit to increasing resolution in
one region relative to another, at least for fitting J2. One does
expect, however, that longer wavelength functions are more
important than short wavelength functions. This suggests that
a plane-wave basis, restricted to the general vicinity of the
molecule, with a momentum cutoff which is not too high, is a
reasonable approximate basis for a Jastrow function.

Since the Jastrow function in a variational wave function
multiples the determinant of occupied DFT orbitals, this
suggests a very simple ansatz for a basis for correlated calcu-
lations: the product of occupied orbitals and low momentum
cutoff plane waves, which we call a product plane wave (PPW).
To be more specific: let {bk(r)} be a set of plane waves with a
low momentum cutoff, and let {ϕj (r)} be the occupied orbitals
from a DFT/HF calculation. Then our product plane-wave
(PPW) basis is {ϕj (r)bk(r)}. The momentum cutoff in {bk(r)}
corresponds to some minimal resolution. Linear combinations
of the bk(r) can represent a correlation hole at any position
within the system, while high momentum behavior near the
nuclei is captured by the {ϕj (r)}. bk=0 = 1, so that the {ϕj (r)}
themselves are part of the basis.

In generating a PPW basis, several choices must be made.
First, we want to put the molecule in a “box” that defines the
sequence of momenta in the plane waves. Since the detailed
correlations we want from the plane waves are weak in the
tails, and since the box size is only used to define momenta,
we do not include long density tails. We simply choose a small
density cutoff, ρm, to define the edge of our box, from our
DFT (or HF) calculation. Here, ρm = 10−3 throughout, but
we expect our qualitative results to be very insensitive to this
choice. For neutral atoms, the corresponding box sizes are
4.90, 5.34, 8.40, and 8.71 for Z = 1 to 4. A simple example
of a product plane-wave basis is illustrated in Fig. 5. The first

FIG. 5. Product plane-wave (PPW) functions for a 1D H2 at
R = 3. Here the box size is L = 7.72, and marked by pink vertical
lines. The upper figure shows the windowing functions cos(k1x) and
sin(k1x) and the lower figure shows the first three PPWs (the first is
just the LDA orbital).
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FIG. 6. The first five PPWs (red dashed) after orthogonalization
compared to the exact natural orbitals (blue) for 1D H4 with R = 3.
Here L = 13.8. These functions are similar to those found in Ref. [85]
from density partitioning.

two functions resemble the natural orbitals of 1D He in Fig. 1
and the natural orbitals here. This resemblance between PPWs
and NOs tends to continue for higher functions, although the
precise order of the functions can vary.

Let Nocc be the number of occupied orbitals in a DFT or
other approximate calculation. Let L be the width of the box de-
fined by the cutoff ρm. Then choose an integer J � 0 to create
2J + 1 functions, the identity and cos(knx) and sin(knx), where
kn = nπ/L, n = 1, . . . ,J , and multiply each by the occupied
DFT orbitals, creating (2J + 1)Nocc primitive PPWs. Next,
we exactly orthogonalize these orbitals via the Gram-Schmidt
process, in the order of k values, starting with the identity. The
results for 1D H4 are shown in Fig. 6 and compared to the exact
natural orbitals. These orthogonalized PPWs are remarkably

FIG. 7. Finite-basis error of PPWs, to be contrasted with Fig. 3,
which has exact NO’s.

close to the exact natural orbitals, especially for those orbitals
that are occupied in the DFT calculation, but also even for those
that are not. (The additional wiggle in the 4th PPW is due to
the orthogonalization procedure.)

Finally, in Fig. 7, we show the energies for our systems as
a function of the number of (orthogonalized) PPWs. For 1D
He and 1D H2, Nocc = 1, so increasing J by 1 yields two more
PPWs (the sine and the cosine); for the rest, Nocc = 2, and 4
PPWs are added each time. A quick glance shows a remarkable
similarity to the ordered natural-orbital energy errors of Fig. 3.
The PPW functions yield high accuracy with a few more
functions than Mno, showing that they do not just look similar
to the NO’s, they are similar in an energetically meaningful
sense. We denote MPPW as the least number needed to reach
high accuracy. A more careful inspection shows that they are
not quite as accurate, even for 1D He, and that the difference
grows with the number of electrons and the number of atoms.
It is most noticeable for stretched 1D H4, where MPPW = 18,
whereas Mno = 7. But this is still a remarkably small number
for a strongly correlated system.

IV. WAVELET LOCALIZATION

So far, we have accomplished our goals of a basis function
set with a low number of orbitals. Our PPWs yield high
accuracy with about 2Mno basis functions. However, to be
efficient, tensor network methods such as DMRG require the
low entanglement that comes from localized basis sets. Other
methods may also benefit from localized basis functions, which
make Hamiltonians sparse. Now we study cases with more
than one atom, showing how we can use wavelet technology
to break down a PPW into localized, smooth orthogonalized
basis functions, centered around each atom, without too large
an increase in the number of functions.

Traditional methods for localization rely on orthogonal
transformations within the set of basis functions one already
has. Not enlarging the set of functions puts a strong limit on
how localized the functions can be made. However, if one
enlarges the space without limit, one can make the basis as local
as one wishes. One can think of “chopping up” each delocalized
basis function (which we can picture as a molecular orbital):
partition all of space into a chosen number of disjoint regions,
or cells [86–91]. For example, one can make the number of
cells the same as the number of atoms, and define each cell
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FIG. 8. The function exp(−0.5 ∗ |x + 3|) + exp(−|x − 3|) (black
dashed) is divided into two orthogonal pieces (red and green solid
lines) using wavelets. The wavelet basis used was based on Coiflet-24
with 
 = 1, and the dividing line separating the two cells (dotted
line) was x = 0.9. The small oscillating tails make the two function
pieces orthogonal. The two singularities each only appear in one piece
because the high momentum wavelets representing the singularities
are more and more localized the higher the momentum.

by associating each point in space with the closest nucleus,
form a basis by projecting each delocalized basis function
into each cell, i.e., multiplying it by a function, which is
unity for points in the cell and zero outside, and repeating
for all delocalized functions. Linear combinations of chopped
up functions would allow one to reproduce any of the original
delocalized functions, but this would make a terrible basis, for
two reasons: (1) discontinuous basis functions have infinite
kinetic energy and (2) the number of localized functions scales
as the square of the number of atoms.

Using wavelets, we can retain this idea of “chopping
up” basis functions into different regions, but fix these two
problems. As discussed in Sec. II B, we define a complete
wavelet basis consisting of a grid of scaling functions with
lattice spacing 
 (say with 
 ∼ 1 Bohr), and an infinite
sequence of wavelets at scales 
,
/2,
/4, etc., as shown in
Fig. 2. We will refer to any of these functions, either a scaling
function or a wavelet of any scale, as a WF (wavelet function).

Now to chop up a delocalized basis: expand all delocalized
functions in terms of the WFs. Many WFs will not have
significant overlap with any functions, and can be dropped.
This procedure thus produces a localized but smooth basis
encompassing the original functions, assuming one has chosen
smooth wavelets. However, the number of functions tends to
be rather high, so we use this only as a starting point.

Again, we partition all of space into cells, associated with
atoms. Associate each WF to a cell. A natural way to do this
is to define a center of mass for each function, and then the
WF goes in the cell that contains its center of mass. Now we
can project each delocalized function into each cell, simply
by expanding the function in terms of the WFs belonging to
the cell. This cuts the delocalized function into pieces which
are all orthogonal. An example of this procedure is shown in
Fig. 8.

FIG. 9. Some of the WLOs for each cell of a 1D H4 chain. Shown
are the first two in both the first atom’s cell (far left) and third atom’s
cell. Green vertical lines are drawn midway between each atom and
weights of each function are labeled near each curve. The calculation
this was taken from was b = 0, 
 = 1.0, NJ = 0.

If we repeat this with additional delocalized functions, the
pieces in different cells will be orthogonal, even if they came
from different delocalized functions, since the WFs of different
cells are orthogonal. Within a single cell, the pieces will not
be orthogonal, and may have substantial overlap. The final
step is to recombine all the pieces in a particular cell into a
reduced set of orthogonal functions for that cell, and repeat
for all cells. Note that while the original delocalized functions
may be normalized, the pieces come from a projection and will
not be, and some pieces may have very small normalization.
It is important to leave the pieces unnormalized. For each cell,
we wish to find the minimal set of basis functions that can
represent all the pieces to within a specified accuracy. This is a
well-known linear algebra problem with a simple solution. Let
f i

j be the piece of delocalized function i, expanded in terms of
the WFs j belonging to a cell c. Form a cell covariance matrix
ρc as

ρc
jj ′ ≡

∑
i

f i
j f i

j ′ . (9)

Then, the reduced basis we seek is the set of eigenvectors of
ρc (which is positive semidefinite) with eigenvalues above a
specified cutoff, η. This cutoff is roughly the mean-square error
in representing all the different pieces. This is often called
a principal component analysis [85,92–95]. Here we call the
entire process wavelet localization (WL) and the resulting basis
functions wavelet-localized orbitals (WLOs). Although the
WLO procedure could be applied to other delocalized bases,
here we will only consider its application to PPWs.

Figure 9 shows the results of wavelet localization for 1D
H4, with a spacing R = 2, discussed more in Sec. IV A. For
simplicity, the figure shows only the two leading eigenfunc-
tions and their eigenvalues for only cells 1 and 3. The dashed
lines show the dividing lines between the different boxes; the
nuclei are at x = −3, −1, 1, and 3. The functions are all
orthogonal, with oscillations in the tails of each function to
ensure orthogonality between boxes.

The parameter 
, the spacing of the scaling functions, is
crucial, as it sets the size of the region in which functions
on adjacent boxes overlap. In the limit 
 → 0, this chopping
up procedure reduces to the naive discontinuous procedure
mentioned at the beginning of this section. The procedure also
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FIG. 10. Error as a function of bond length R for 1D H2 using
both pure PPWs and WLOs, for various values of J . The sudden shift
is at the Coulson-Fischer point of the LDA calculation, beyond which
a broken spin-symmetry solution, with twice as many orbitals, has the
lowest energy.

becomes poorly behaved if 
 is larger than the interatomic
spacing. Roughly, one should set 
 to a modest fraction of the
interatomic spacing, but later on we show results as a function
of 
 to determine optimal values.

Lastly, we note that, for multicenter stretched systems, if
R > La , the box is for an atom, then we use La instead of L

for that cell. This can greatly increase the number of functions
to Na × Nf a , where Nf a is the number needed to reach high
accuracy for the isolated atom, but unneeded functions will be
discarded by our wavelet localization.

A. Performance of WLO bases
In this section, we wish to check that our WLOs work

well for some correlated quantum calculations, and find out
how many WLOs are needed for a given task. Our procedure
requires, at most, Nocc × (2J + 1) × Ncell functions. Thus, for
a H4 chain that is unstretched (no spin-symmetry breaking),
Nocc = 2, we will usually choose J = 1, and have four cells.
A PPW calculation has six functions, and up to 24 (6 per cell)
when fragmented. However, in practice, up to half of those
functions can be eliminated by the cutoff of our covariance

FIG. 11. Finite-basis energy error as a function of covariance
cutoff η for 1D H2 at R = 2 with J = 
 = 1. Without cutoff, there
are 24 functions in the basis. The integer near each point is the number
of functions in the basis.

matrix. This removal of irrelevant functions becomes increas-
ingly important as the number of atoms grows.

The prototype calculation is the dissociation of molecular
hydrogen. All single-determinant methods fail as bonds are
stretched and electrons localize on distinct sites. Molecular
hydrogen dissociates into an open-shell biradical (two 1D H
atoms). The molecular energy as a function of separation is
given in Fig. 6 of Ref. [21]. That figure also shows the failure
of LDA, with a Coulson-Fischer point [96] RCF = 3.53, where
the unrestricted broken symmetry solution becomes lower in
energy than the spin-singlet within LDA. In Fig. 10, we show
the error in the energy curve, using pure PPWs, and also
separating into separate cells, using 
 = 1 and η = 10−4.

Beginning with the PPWs (dashed lines), we see that
increasing J improves accuracy systematically, as expected.
Moreover, for a given J = 1 or higher, we see that the error
increases systematically as the bond is stretched until RCF is
reached. This is because the LDA orbital is becoming less
and less close to the exact natural orbital as the bond is
stretched. Beyond this point, there is a great decrease in error,
as the number of LDA orbitals doubles (due to spin-symmetry
breaking). Even the largest PPW basis shown here (J = 2)
does not achieve high accuracy close to the CF point. But
our WLOs do reach high accuracy everywhere for J = 2, and
almost everywhere with J = 1, using 3 × 2 = 6 functions for
R < RCF, and double that beyond. (The wavelet localization
does not throw out any WLOs here.) Thus our basis set works,
even through the CF point. Of course, in practice, quantum
chemists want forces, and some smoothing procedure would
be adopted to avoid the kink at the CF point.

The strong changes with R in the error in the red curve past
the CF point can be attributed to the grouping of the scaling
and wavelet functions. As the bond is stretched, because the
functions are fixed in real space, some of the functions are
assigned to the left cell, and others to the right. This assignment
can change suddenly, causing a drop in the eigenvalue weights
in the covariance matrix of one of the cells and decreasing the
number of functions. Note that this effect occurs only for errors
far below the high accuracy threshold.

Next, we consider performance for longer chains of 1D
H atoms. Now the covariance cutoff becomes important for
curtailing the total number of functions. Figure 11 illustrates
the effect of the covariance cutoff for H4 near equilibrium. The
higher the value of η, the more functions are thrown away, but

TABLE I. WLO (J = 1) errors for 1D H4 as a function of
separation, for various values for 
. Chopping the PPWs yields up to
48 functions, but setting η = 10−4 as the covariance cutoff yields the
number of functions and accuracy shown. The units provided are in
kcal/mol.

R 2 3 4 5 6


 Nf 
E Nf 
E Nf 
E Nf 
E Nf 
E

0.5 16 0.24 16 0.33 26 0.11 24 0.09 23 0.21
1.0 14 0.43 16 0.26 24 0.15 22 0.11 22 0.16
2.0 16 0.37 15 1.50 28 0.04 25 0.08 24 0.15
4.0 18 0.34 18 0.52 29 0.04 25 0.10 25 0.17
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TABLE II. Same as Table I, but for 1D H10, with J = 
 = 1, and
two different covariance cutoffs.

R 1 2 3 4

η Nf 
E Nf 
E Nf 
E Nf 
E

10−4 42 0.47 51 0.10 50 0.63 49 0.25
10−3 42 0.47 43 1.29 49 1.08 40 0.83

the greater the error is. If η is set too small, then no functions
are removed, not even those that have essentially no effect on
the energy. The figure shows that the full basis has an error
of about 0.1 kcal/mol. But high accuracy is achieved with
η = 10−3 and only 14 functions. This is to be contrasted with
Mno = 6 from Fig. 3 and MPPW = 14 from Fig. 7. In this case
(near equilibrium), the WLOs form a near-complete localized
orthogonal basis with no more functions than PPW, and with
lower error. Note that setting η = 10−4 does not add in any
more functions.

To see the effect as a function of bond length, in Table I, we
give energy errors and numbers of basis functions for various
values of R and several values of 
, for a J = 1 calculation
with η = 10−4. (In all cases, J = 0 was found to yield errors
higher than 1 kcal/mol.) We see that the least number of
functions needed occurs for 
 = 1, especially as the chain
is stretched.

Finally, we have run examples of ten-atom chains. We
achieve high accuracy for J = 1,
 = 1 throughout the range
of R shown in the table, with about 5 functions per site when
η = 10−4. This may seem like a large number of functions, but
keep in mind that, as R increases, this is a strongly correlated
system tending toward its thermodynamic limit. Moreover, we
have required our total energy to be accurate to 1 kcal/mol
all along the curve, not just the energy per atom. One would
also expect most energy differences to converge more rapidly
than the total energy. Table II also illustrates the benefits of the
covariance cutoff. By setting its value to 10−3, we significantly
reduce the number of functions as R increases, but in the

FIG. 12. The first two natural orbitals for stretched 1D LiH (X’s
denote nuclear centers with Li on right). The exact NO’s are marked
in red, and are indistinguishable from the WLO NO’s (
 = J =
1 and η = 10−4), black dotted line, but slightly different from the
occupied LDA orbitals (green). Also shown are WLOs with weights
above 10−4 (dashed lines). The WLO basis has 11 functions, and an
error of 1.04 kcal/mol.

middle, our error is slightly greater than 1 kcal/mol. For many
practical purposes, this should be sufficient, but the larger
lesson is that, for any desired application, there is a controllable
trade-off between accuracy and number of functions.

We end with a heteronuclear diatomic, 1D LiH, to show that
our method still works in the absence of left-right symmetry.
Figure 12 was calculated with J = 
 = 1 and η = 10−4. The
LDA orbitals remain an excellent starting point for approxi-
mating the NO’s, and the NO’s in the WLO basis are identical
(on this scale) to the exact NO’s. The energy error is only 1.04,
using 11 basis functions.

V. DISCUSSION AND CONCLUSIONS

We have presented algorithms to generate a basis set that is
adapted to a specific molecular system and designed to be used
in correlated calculations. The basis begins with an inexpensive
DFT or HF calculations, and the generation of additional
functions from the occupied orbitals to allow correlation is
even less expensive. A product plane wave (PPW) ansatz adds
additional functions using a product of low momentum plane
waves times each occupied orbital. In our 1D test systems,
this ansatz produces results within high accuracy using about
twice as many functions as in an ideal natural orbital basis.
Then, to generate basis functions localized near each atom,
we introduced a wavelet localization procedure. Compared to
standard localization methods, which involve an orthogonal
transformation of the existing functions without expanding
the basis, wavelet localization produces stronger localization
with much smaller orthogonalizing tails, at the expense of
adding basis functions. This procedure is particularly useful for
DMRG calculations, where locality in the basis is an important
criterion. It may also improve scaling on large systems in
other correlation approaches. Our method, as presented here,
should allow much larger systems to be treated than previously
possible in our 1D mimic of realistic electronic structure (such
as the 100-atom chains of Ref. [97]).

Our procedure has only been given and tested upon a 1D
mimic of the 3D world. A naive generalization of PPW to
arbitrary 3D problems would involve many more plane waves,
roughly the cube of the number in 1D. For a fixed momentum
cutoff the number of plane waves also grows with the length
of the system, even in 1D. This would appear to generate far
too many functions to be practical, but the wavelet localization
would counteract this effect. We can think about how this works
by considering one particular cell, centered on an atom. The
PPW basis generates occupied orbitals times plane waves with
a low momentum cutoff. The number of functions needed to
span this set in one cell should not be too large, since the only
high frequencies present are from the cusps of the occupied
orbitals at the nuclei, which in a Gaussian basis can be repre-
sented by a small number of basis functions. Otherwise, there
are only a limited number of low frequency modes in a single
atom cell. This means that there must be significant redundancy
in the PPW functions, particularly for many electrons. The
principle component analysis of the wavelet localization would
remove this redundancy. This makes it clear that except for very
small molecules, one should not apply PPW on its own, but in
conjunction with wavelet localization. Nevertheless, there are
likely significant challenges in going to 3D which we must
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leave for future work. In 1D, our bases give high accuracy
with only about twice as many functions as in an equivalent
natural orbital basis. It seems reasonable that a variation of
our 1D approach can be found for 3D which is similarly
less efficient than a natural orbital basis by only a modest
factor.

In the case of a He atom, this means roughly that 3D He
would need about the cube of the number of functions as 1D
He. This argument would apply to any basis, including natural
orbitals. Indeed, one needs about 15 NOs for chemical accuracy
in 3D He [98], versus 2 or 3 for 1D He. Our PPW basis does
not try to beat the NOs, which is not possible; rather, it tries to
duplicate their completeness but based on a cheap calculation.
In 1D, we obtain the same accuracy as with an NO basis if
we use about twice as many functions. In 3D, we hope to do
similarly—but this has not been tested.

One improvement to our PPW approach, which we have
not explored here, is to give more weight to the occupied
orbitals than to the additional functions coming from the plane
waves with nonzero momentum. This would be fairly simple
to implement in our wavelet localization, by multiplying the
J > 0 functions by a weighting factor less than 1. One would
expect this natural modification to further reduce the number
of functions needed for high accuracy. We also note that
our procedure could also be applied without chopping, but
still removing irrelevant basis functions, by constructing the
orthonormal basis from the PPWs,

gi
j =

∑
k

O
−1/2
jk f i

k , (10)

where O is the overlap matrix of the f i . Now ρc = O, so
the principle component analysis consists of forming a basis
of the eigenvectors of the overlap matrix with the largest
eigenvectors, up to cutoff η. This procedure reduces basis-set
linear dependence; here it might reduce the PPW basis size
significantly without much loss of accuracy.

A number of existing approaches also utilize or are based
on approximate natural orbitals. For example, some Gaussian
basis sets attempt to reproduce properties of atomic natural
orbitals [99]. A key difference with our approach is that
we start from the beginning with orbitals adapted to the
specific molecule under consideration, based on a DFT or HF
calculation. It would be interesting to compare the number of
functions needed to reach chemical accuracy in 3D between
our PPW approach and standard Gaussian basis sets. (We do
not have these Gaussian basis sets for our 1D test systems.)

Another common approach is to find approximate natural
orbitals from a low-order correlation calculation, such as
second order perturbation theory, e.g., MP2 [100]. Our PPW
method is simpler and faster, and it would be interesting to
compare the accuracy of these two approaches. One might also
combine them: in cases where the perturbation calculation was
expensive to do in a large basis, one might first get a PPW basis,
which would be much smaller than an unadapted basis, and
then refine it further by getting approximate natural orbitals
with a perturbation theory approach.

The localization using wavelets could be applied in a
broader context than we have used here, such as to standard

Gaussian bases or to approximate natural orbitals coming from
a low order correlation method. This could potentially improve
the performance of DMRG or other tensor network methods.
By improving the sparsity of the Hamiltonian, it may also
improve the computational scaling for DFT on large systems.
In particular, using wavelet localization to impose locality only
at the atomic level may be more efficient than existing wavelet
approaches which do not recombine the wavelets into a smaller
number of functions. Specifically, one could wavelet filter a
standard Gaussian basis to produce an orthogonal basis with
more locality and sparsity than traditionally localized Gaussian
bases.

Since we are trying to produce basis sets for correlated
calculations, where basis set convergence is slower than for
DFT or HF calculations, we must think about the effect of the
basis on the electron-electron cusp. Our choice of 1D potential
interaction, which has a slope discontinuity at the origin, is
designed to partially mimic the electron-electron cusp behavior
in 3D. In 3D, the potential diverges as r → 0, but the effect is
substantially reduced by the 3D volume element. The moderate
singularity we have in 1D is similar, but we cannot expect our
results to match 3D precisely. Also, when trying to achieve
chemical accuracy, the short range cusp behavior is thought
to be less relevant than intermediate distance electron-electron
correlation. This further complicates the comparisons between
1D and 3D, and a 3D procedure and benchmark calculations
are clearly needed.

Another difficulty in implementing our approach in 3D is
the computation of the integrals defining the Hamiltonian, once
the basis is defined. In our 1D implementation, all integrals are
written in terms of sums over the fine grid; this would not
be practical in 3D. Wavelet bases, which are a crucial part of
our wavelet localization, are able to represent nuclear cusps
more efficiently than grids, so one might try to work directly
in the wavelet basis, expressing all the final basis functions as
linear combinations of wavelet functions [32,37,57]. However,
wavelets are much less efficient than atom-centered Gaussians
for representing nuclear cusps, and so a much more efficient
approach might be to try to combine wavelets with a few
Gaussians per nucleus. Another approach to dealing with
nuclear cusps would be to use pseudopotentials, so there are no
cusps. Yet another is to employ a basis set that inherently has a
one-dimensional structure [86,87,101,102]. We leave this set
of 3D implementation problems for future work.
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