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Cobalt adatoms on graphene: Effects of anisotropies on the correlated electronic structure
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Impurities on surfaces experience a geometric symmetry breaking induced not only by the on-site crystal-field
splitting and the orbital-dependent hybridization, but also by different screening of the Coulomb interaction in
different directions. We present a many-body study of the Anderson impurity model representing a Co adatom
on graphene, taking into account all anisotropies of the effective Coulomb interaction, which we obtained by
the constrained random-phase approximation. The most pronounced differences are naturally displayed by the
many-body self-energy projected onto the single-particle states. For the solution of the Anderson impurity model
and analytical continuation of the Matsubara data, we employed new implementations of the continuous-time
hybridization expansion quantum Monte Carlo and the stochastic optimization method, and we verified the results
in parallel with the exact diagonalization method.
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I. INTRODUCTION

Graphene is a remarkable condensed-matter system with
various promising applications. Field-effect electronic devices
based on graphene [1] as well as a whole wafer-scale integrated
circuit built out of graphene components [2] have been demon-
strated. The material itself displays an abundance of exotic
properties, many of which have their origin in the peculiar
feature of the low-energy electronic excitations: they resemble
massless Dirac fermions [3].

Enhanced functionality of materials can be achieved by
introducing inhomogeneities, of which impurities are one im-
portant kind. The first experimental realization of Co adatoms
on graphene was described by Mattos [4], who extensively
discussed the adsorption geometry as well as the Kondo effect.
Since then, only a few further realizations of magnetic impuri-
ties on graphene were reported, with controversial conclusions
about the existence of the Kondo effect in graphene [5,6].

Diverse theoretical studies have been performed aiming at
characterization of the Kondo effect in pseudogap systems in
general, and in graphene in particular, see Refs. [7–16] and ref-
erences therein. The system of a Co atom adsorbed on a single
layer of graphene can be accurately represented by the Ander-
son impurity model (AIM). Jacob et al. considered the Kondo
effect of the Co/graphene system by performing one of the first
realistic many-body studies utilizing this model in the frame-
work combining the density-functional theory with the one-
crossing approximation (DFT+OCA) [16]. Our ab initio
calculation of the Coulomb matrix yields a weaker repulsion
when compared to the Coulomb vertex employed by Jacob
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et al. Consequently, we were not able to see the Kondo effect
since the charge fluctuations were not sufficiently suppressed.

For an impurity placed on a surface, the two-dimensional
constraint leads to a geometric symmetry breaking, which
additionally to the crystal-field splitting and the orbital-
dependent hybridization, induces a pronounced anisotropy of
the Coulomb interaction at the impurity [17]. Since electronic
screening in the z direction is weaker, electrons in the Co
d3z2−r2 orbital feel a stronger Coulomb repulsion, whereas in
the directions parallel to the graphene surface the screening is
stronger. It is most efficient for the most hybridized orbitals of
the E1 symmetry. To take these effects into account, we em-
ployed the constrained random-phase approximation (cRPA)
to calculate the effective (partially screened) Coulomb inter-
action matrix [18,19]. Since graphene exhibits a high mobility
of its conduction electrons [20], its electronic polarizability is
rather large, leading to a strong renormalization of the repulsion
strength. The present paper aims at an exploration of the effects
of geometric anisotropy in the effective Coulomb matrix while
solving the corresponding Anderson impurity model by the
continuous-time quantum Monte Carlo (CTQMC) method.
The results are cross-checked with the exact diagonalization
(ED) technique.

This paper is organized as follows. In Sec. II, we describe the
DFT setup. In Sec. III A, we introduce the AIM and how its cor-
responding Hamiltonian is obtained from DFT by projection
onto correlated orbitals. Section III B describes the CTQMC
algorithm for the solution of the AIM, and how analytical
continuation of the Matsubara data is performed using the
stochastic optimization method. Section III C explains how
we performed the ED method. Section III D explains how
we performed the cRPA to obtain the Coulomb matrix, and
Sec. III E the method to obtain the corresponding anisotropic
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TABLE I. First line: occupations and crystal-field splittings from DFT after projection by the PLO method. The window of energy bands
was taken such that the total occupation agrees with the one of Co supplied in the VASP pseudopotential package. Second line: ccupations as
computed by Jacob et al. [16].

ntot nxy nyz n3z2−r2 nxz nx2−y2 εF εxy εyz ε3z2−r2 εxz εx2−y2

8.2016 0.8093 0.7487 0.9859 0.7485 0.8084 −2.273 −0.720 −0.564 −0.711 −0.541 −0.714
7.02 0.6875 0.5950 0.945 0.5950 0.6875

double counting. Sections IV A–IV C present and discuss the
QMC results, and in Sec. IV D, we compare QMC with ED.
We conclude the paper in Sec. V.

II. DENSITY-FUNCTIONAL THEORY

DFT simulations have been performed to find the equilib-
rium geometry of the system, and to extract kinetic-energy
and Coulomb parameters for the Anderson impurity model.
We considered a supercell with the Co adatom above the
single-layered 3×3×1 graphene sheet.

To determine the equilibrium position of the adatom, we
explored two possible configurations over graphene: top and
hollow. This part of the work was done in the framework of the
VASP package with projector augmented wave (PAW) basis set
[21]. The cut-off energy of the basis was chosen as 500 eV
and the GGA(PW91) [22] approximation was used for the
exchange-correlation energy Exc. The relaxation of the chosen
structures was performed on a 12×12×1 �-centered k-point
mesh until forces were smaller than 0.01 eV/Å. The graphene
layer was kept fixed and the Co adatom was free to relax in all
directions. A vacuum separation of 15.0 Å was chosen.

The hollow position of the Co adatom was found to be
energetically more favored in comparison to the adsorption
site on the top of the carbon atom, which is in agreement
with previous work [8]. Therefore we focused only on the
hollow position and all further calculations in this paper refer
to this absorption geometry. The structural relaxation yielded
a distance of the Co impurity from the graphene sheet of
about 1.5Å, which is in line with previous findings for the
used functionals [8,23]. The filling of the Co d orbitals at
this equilibrium distance ntot = 8.2 was calculated with the
aid of the PLO method by taking into account 18 bands around
the Fermi level (see Ref. [27] and Sec. III A below). Table I
presents occupations of individual d orbitals.

Quantum-chemical calculations performed by Rudenko
et al. predicted the electronic configuration 3d94s0 with S =
1/2 for the cobalt atom placed at 1.5 Å above the graphene
sheet [24], whereas the 3d84s1 configuration, which corre-
sponds to our DFT solution, was stable at larger distances.
At yet larger distances, they found the state of the free atom
(3d74s2) to be the lowest-energy solution. Virgus et al. also
observed the transition from 3d74s2 over 3d84s1 to 3d94s0

when the Co impurity approaches the surface [25]. They
obtained an equilibrium distance of the Co impurity in case of a
3d84s1 configuration, which is comparable to our setting. The
x-ray absorption spectra measured experimentally by Eelbo
et al. also indicate that the Co adatom is in the 3d84s1 electronic
configuration [26]. Jacob et al., on the other hand, found the
filling of the Co d orbitals to be 7.5 in their DFT calculations,

and the subsequent treatment of the electronic correlations
within OCA pushed the filling to a lower value near 7.0 [16].
The distance of Co from the graphene surface that they obtained
is comparable to ours, and we consider their filling additionally
to our ntot = 8.2 in the many-body calculations below.

III. ANDERSON IMPURITY MODEL:
SETUP AND SOLUTION

A. From first-principles DFT to a model Hamiltonian

The Co adatom on graphene resembles the case of a
magnetic impurity coupled to a noninteracting bath for which
the Anderson impurity model can be employed. To obtain
ab initio parameters for this AIM, we projected the DFT band
structure obtained in Sec. II onto Wannier orbitals localized
at the Co adatom. To this end, we used the PLO method [27].
Labeling the Bloch states |k,n〉 by the momentum k and the
band index n, with k being from the first Brillouin zone,
and the Bloch transformed Wannier orbitals with quantum
numbers α = (r,l,m) by Lαk (r is the position of the impurity
within the unit cell, and the Bloch transform is the Fourier
transform over the Bravais lattice), the projectors are given
by Pαn(k) = 〈Lαk|k,n〉. The local Green’s function of the Co
adatom is thereby obtained from the Bloch Green’s function
GB

n (k,iω) = [iω − εn(k)]−1, with εn(k) the band dispersion
relative to the chemical potential, as

Gαβ(iω) =
∑
kn

Pαn(k)GB
n (k,iω)P+

βn(k)

= [iω − ε − �(iω)]−1
αβ , (1)

with the on-site crystal-field matrix εαβ and the hybridization
function �αβ(iω).

The multiorbital single-impurity Anderson model can be
decomposed into three parts:

H = HCo + Hg + Hhyb. (2)

The first part is the local Hamiltonian for the Co d states:

HCo =
∑
αβσ

(
εαβ − μDC

α δαβ

)
c+
ασ cβσ

+ 1

2

∑
αβγ δσσ ′

Uαβγ δ c+
ασ c+

βσ ′cδσ ′cγσ . (3)

The first term is the crystal-field matrix, which is diagonal, i.e.,
εαβ = εαδαβ . The greek indices α, β, γ , δ label the orbitals,
which transform according to the irreducible representations
of the C6v point group: E2 = {xy,x2 − y2}, E1 = {xz,yz}, and
A1 = {3z2 − r2}. The spin degrees of freedom are denoted
as σ , σ ′. The second term in Eq. (3) is the effective on-
site Coulomb interaction we obtained by the cRPA method
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FIG. 1. (Left) Representation-resolved imaginary part of the real-frequency hybridization function �(ω) for the d orbitals of the Co adatom
obtained with the PLO method. (Middle) DFT (filled) and projected (unfilled) DOS A(ω). (Right) Matsubara hybridization function �(iωn) at
β = 20 eV−1. Only the first 60 frequencies are displayed. The inset contains a picture of the geometry.

(Sec. III D). A double-counting (DC) correction μDC
α has to be

subtracted to remove the Coulomb effects present in the DFT
band structure.

The second part in Eq. (2) describes the spin-degenerate
band structure of graphene,

Hg =
∑
knσ

εknf
+
knσ fknσ , (4)

where n is the band index. The on-site crystal-field matrix εαβ

and the energy bands εkn are measured with respect to the
Fermi energy of graphene.

The last part in Eq. (2) is the hybridization between the
adatom and graphene. It is given by

Hhyb =
∑
kασ

(Vkαc+
ασ fkασ + H.c.). (5)

The electron hopping processes to and from the impurity
preserve the local symmetry and hence the hopping amplitudes
Vkα are diagonal in the basis of the irreducible representations
of the point group. The graphene states fkασ are projections
of fknσ onto this basis. The diagonal hybridization function
characterizing the coupling between the adatom and graphene
is obtained after integrating out the graphene degrees of
freedom. It is defined as

�α(iω) =
∑
kα

|Vkα|2
iω − εkα

. (6)

Real-energy and Matsubara representations of the hy-
bridization function and the density of states for all five d

orbitals are presented in Fig. 1. Features of the real-energy
hybridization for the metallic impurity on graphene repeat
findings of Wehling et al. [8]: one can see an almost complete
suppression of the A1 orbital whereas E1 and E2 form a
symmetric slope around the Dirac point that is shifted slightly
to the lower energy by an amount of μ = 0.2 eV. This might be
an effect of the supercell repetition with periodic occurrence of
the Co adatom, effectively doping the graphene sheet, whereas
a single adatom on an infinite sheet would not produce such
a shift of the Fermi level. On the other hand, Mattos reported
the same value for the chemical potential together with a low

Kondo temperature [4] (being discussed in other references
[8,10,28]).

B. Quantum Monte Carlo method and analytical continuation

The interacting impurity Green’s function of the Anderson
impurity model is given as

Gασ (iω) = [
iω − εα + μDC

α − �α(iω) − �α(iω)
]−1

. (7)

The electronic self-energy �(iω) containing all Coulomb
correlation effects was computed employing the hybridization-
expansion variant of the continuous-time quantum Monte
Carlo (CTHYB QMC) method. The CTHYB solver developed
by the TRIQS collaboration [29,30] implements two important
optimizations, namely a caching scheme based on a binary-tree
data structure [31], and a novel scheme to automatically reduce
the local Hamiltonian HCo to a block-diagonal form (see Sec.
4 of Ref. [30] for details). These optimizations enable solving
five-orbital impurity models with the rotationally invariant
Coulomb matrix (referred to as Slater from now on) as well
as with the cRPA approximation of the interaction matrix in a
reasonable time. The “autopartition” algorithm gives a much
finer block structure of the local Hamiltonian than one would
get from the standard partitioning based on the occupation
quantum numbers: N̂↑ and N̂↓ quantum numbers would result
in (2l + 2)2 = 36 diagonal blocks, while we got 132 blocks in
both Slater and cRPA cases (cubic harmonics have been used
as the local orbital basis).

Typical computational time taken by one QMC simulation
has varied from a few hundreds to a few thousands core hours.
Actual values strongly depended on the local occupations as
well as on the temperature.

The analytical continuation of the imaginary-time data has
been performed using a recently established TRIQS-based
implementation of Mishchenko’s stochastic optimization
method (SOM) [32]. This method amounts to a stochastic
solution of the Fredholm integral equation of the first kind,

Gα(τ ) = −
∞∫

−∞
dε

e−τε

1 + e−βε
Aα(ε). (8)
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For a given thermal Green’s function Gα(τ ) measured
in a QMC simulation (index α runs over all orbital and
spin indices) a number of approximate particular solutions
Aα(ε) are constructed. Each particular solution is written as a
superposition of N rectangles {ci,wi,hi} with the total spectral
weight fixed to 1,

Aα(ε) =
N∑

i=1

hiθ (ε − [ci − wi/2])θ ([ci + wi/2] − ε),

1 =
N∑

i=1

hiwi.

A Markovian walk in the space of such superpositions is
organized in order to find a minimum of the residue functional
corresponding to the Fredholm equation (8). The Markov
chain is started from a randomly generated configuration,
typically 500–1000 times. Every time it results in another
particular solution. Eventually, all particular solutions found by
different Markov chains are averaged, so that stochastic noise
is approximately canceled. For a more in-depth description of
the algorithm we refer to the original paper of Mishchenko
et al. [33].

C. Exact diagonalization

As an alternative method to QMC, we employ also the
exact diagonalization, or more accurately, the Lanczos method.
That way, the spectral functions of the impurity model are
directly accessible without the need for analytical continuation
but at the cost of discretized hybridization function. This
discretization amounts to a replacement of the continuous
spectrum εkα with a discrete spectrum εkα in Eqs. (4) and (5),
where k takes values 1,2, . . . ,K . The parameters εkα and Vkα

of such a finite impurity model are determined by minimization
of a weighted sum of squares [34,35]

dα =
∑
n>0

1

ωr
n

∣∣∣∣�α(iωn) −
K∑

k=1

V 2
kα

iωn − εkα

∣∣∣∣
2

(9)

for each of the Co d orbitals α = E1, E2, and A1. In the
formula, �α stands for the diagonal element of the DFT
hybridization function, Eq. (1). The result of the fit for
β = 1/(kBT ) = 20 eV−1, K = 4, and r = 1/2 is shown in
Fig. 2. The fits represent the DFT hybridization function very
accurately, at least by visual inspection. For each α, there are
two energies εkα negative (that is, below the Fermi level) and
two energies εkα positive (above the Fermi level). Since the
hybridization in the A1 orbital is much smaller than in the E1

and E2 orbitals, it is neglected in all our ED calculations. For
one particular setting of the Coulomb vertex, we have explicitly
checked that dropping the A1 hybridization, indeed, has a very
small effect on the quantities of interest.

The fitted impurity model with four bath orbitals attached to
each of the Co E1 and E2 orbitals is too large to be fully solved
by the Lanczos method. To make the solution manageable,
we employ a reduced many-body basis inspired by the work
of Gunnarsson and Schönhammer [36,37]. A cutoff M is
introduced for each N -electron Hilbert space HN , and the

FIG. 2. Fit of the finite impurity model (lines) to the real and
imaginary parts of the DFT hybridization function (dots) using Eq. (9).
Only the first 60 Matsubara frequencies are plotted but the fit included
the lowest 1024 frequencies.

diagonalization is performed only in a subspace,

H(M)
N = {|dN−N<

b −n+m bnbm〉, 0 � m + n � M}. (10)

In this notation, dN−N<
b −n+m indicates N − N<

b − n + m elec-
trons in the Co d shell, bn indicates n electrons in the bath
orbitals above the Fermi level, and bm means m holes in the
bath orbitals below the Fermi level. The symbol N<

b denotes the
number of bath orbitals located below the Fermi level (N<

b =
2 × 10 = 20 in the present case). This Hilbert-space reduction
can be viewed as an expansion in the hybridization parameters
Vkα around the atomic limit, that is, around the Hilbert space
H(0)

N = {|dN−N<
b b0 b0〉}. We use the cutoff M = 5 and we have

verified that this setting provides essentially converged spectral
densities.

D. Effective Coulomb matrix from the constrained
random-phase approximation

The effective, partially screened Coulomb interaction ma-
trix was obtained for the given geometry using the cRPA
method [38,39]. The supercell was enlarged to achieve a
distance of 28.35 Å between two adjacent graphene layers. We
employed the SPEX code [40], a part of the Jülich full potential
linearized augmented-plane-wave (FLEUR) code family [41].
The calculation of the effective interaction in cRPA is based
on the separation of a chosen set of target bands and on a
consequent consideration of all polarization processes between
target and other (screening) bands. In our calculation, we used
19 bands near the Fermi level to project onto the local basis of
the five d states of the Co adatom.

The constructed 625 elements of the cRPA Coulomb matrix
are shown in Fig. 3. One can contrast this cRPA interaction
matrix with the conventional Slater matrix defined by parame-
ters F0,F2,F4. These parameters have been estimated from the
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FIG. 3. Coulomb matrix for the d orbitals of the Co adatom obtained with the cRPA method (left) and subsequently rotationally averaged by
the Slater approximation (right). The order of the orbitals is given by Umlkn. The outlined element U1221 corresponds to the term U1221c

+
1↑c

+
2↓c2↓c1↑,

the index notation 1–5 runs for the orbital ordering (xy, yz, 3z2 − r2, xz, x2 − y2).

cRPA Coulomb matrix via the effective repulsion and exchange
parameters U , U ′, J as

U = 1

5

5∑
m=1

Ummmm = 1.76 eV,

U ′ = 1

20

5∑
m�=m′=1

Umm′mm′ = 0.73 eV,

J = 1

20

5∑
m�=m′=1

Umm′m′m = 0.52 eV, (11)

F0 = U/5 + 4U ′/5 = 0.93 eV,

F2 = 14J/1.625 = 4.44 eV,

F4 = 0.625F2 = 2.77 eV. (12)

First, the cRPA matrix displays a pronounced anisotropy in
the density-density terms on the main diagonal of the plot.
Interorbital exchange, which is responsible for suppressing
parallel alignment on different orbitals, has been found to
expose slightly higher amplitude for the cRPA matrix. Second,
the intensity of the inter- and intraorbital spin-flip exchange
terms (off-diagonal elements) appears to be lower in the
cRPA case when compared to the spherically symmetric Slater
vertex. Another visible feature is the change of the sign for
interorbital spin-flip terms between cRPA and Slater matrices.
The Coulomb matrix obtained by the cRPA method is rather
small. It is reflected in the Slater parameters extracted from the
symmetrized cRPA matrix, Eqs. (11) and (12).

The quantum-chemical considerations made by Rudenko
et al. may provide a lower bound of the interaction strengths
[24]. Our Slater parameters are by a factor of 2 smaller than
theirs at comparable adatom-graphene distances. There are
possibly three reasons why the cRPA Coulomb matrix turns
out so small. First, the Co adatom is closer to the surface, that
in turn increases overlaps with the graphene p orbitals, thus

leading to an enhanced screening of the Coulomb interaction.
Second, the finite distance between the layers of 28.35 Å, even
though very large, might still artificially reduce the interaction
matrix, as an extrapolation to the infinite layer distance has not
been performed [23,42]. This effect, however, is not expected
to contribute by more than 5% at our interlayer distance.
And third, a systematic study revealed the screening of the
Coulomb interaction at metal and insulator surfaces [43]. In
contrast to common expectations, it is found that screening
at metal surfaces is much more efficient than in bulk, and
as a consequence the Hubbard U is reduced by 30%–40%
compared to the bulk values. The situation in the case of the
Co/graphene system is very similar where metallic screening
is very efficient.

E. Anisotropic double counting

As the two-dimensional geometry of an impurity on a
surface breaks rotational invariance, the Coulomb matrix
exhibits an anisotropy between its components. The mean-
field Coulomb terms incorporated in the DFT band structure
have a corresponding anisotropy that has to be taken into
account when the DC correction is introduced in Eq. (3).
The exact expression for the DC correction is not known.
We deduce it from the filling of the Co d orbitals found in
DFT, since the DC correction acts similarly to the chemical
potential and controls the filling of the impurity states in the
impurity model. We considered two cases: the occupations
resulting from our PLO projection procedure, and also the
smaller occupations computed by Jacob et al. [16], all listed
in Table I. The anisotropy requires the DC correction to be
orbitally dependent, and for its determination we employed
the Hubbard-I approximation, which takes into account a large
portion of the electronic correlations. We started with the
atomic Green’s function augmented by the atomic Coulomb
self-energy determined by exact diagonalization of HCo with
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TABLE II. DC correction (in units of eV) obtained for the
anisotropic cRPA (middle columns) and the rotationally invariant
Slater Coulomb matrix (last column). For comparison, the respective
diagonal cRPA Coulomb matrix elements are (in units of eV) E2:
1.95, E1: 1.33, A1: 2.23.

nLDA
tot μDC

E2
μDC

E1
μDC

A1
μDC

7.02 4.39 3.65 5.25 4.87
8.20 4.91 4.28 6.86 5.69

εαβ set to zero,

Gat
α (iω) = 1

iω + μDC
α − �at

α (iω)
, (13)

and then supplied the crystal-field splitting and the hybridiza-
tion,

GHIA
α (iω) = 1

iω − εα + μDC
α − �at

α (iω) − �α(iω)
. (14)

We included the crystal-field splitting after calculating the
atomic self-energy since its effect is small as compared to the
Coulomb effects, and the thus obtained DC correction matches
superiorly the DFT occupations in the subsequent full QMC
simulation. Then, the minimization of the distance∥∥nLDA

tot − nHIA
tot

∥∥2 =
∑

α

∣∣nLDA
α − nHIA

α

∣∣2
(15)

is performed using the differential evolution procedure [44]
as implemented in SCIPY. Differential evolution is a global
optimization method, which is able to find the global minimum

of a multivariate and possibly nondifferentiable function in
relatively short time.

For the symmetrized Coulomb matrix in the Slater ap-
proximation, we calculated the DC correction in the around
mean-field (AMF) limit given by the expression

μDC = nLDA
tot

[
U

(
1 − 1

2N

)
− J

(
1

2
− 1

2N

)]
, (16)

where N = 2l + 1 with l = 2. The choice of the AMF DC
correction was motivated by its superior performance in the
full QMC test simulations as compared to the fully localized
limit (FLL).

The usual way to determine the isotropic DC correction is
to identify the U in Eq. (16) with F0 in Eq. (12) and J with
the one in Eq. (11). For our calculations, we determined U

and J by spherically averaging the Coulomb matrix twice,
which yields U in Eq. (16) to be directly F0 in Eq. (12), while
the Hund’s coupling is reduced to J = 0.37 eV. The results
are summarized in Table II. The magnitude of the anisotropic
DC corrections follows the Coulomb strength in the respective
directions, as may also be compared with Fig. 3.

IV. DISCUSSION OF QMC RESULTS

QMC has been performed at β = 20 eV−1, using 2.0×106

updates and 5.0×105 warmup updates on each core, and
measuring at each 50th update. The set of possible updates
contained double as well as global moves, the latter including
global spin-flips and global orbital permutations of vertex

FIG. 4. (First three columns) Comparison between the representation-resolved imaginary-time Green’s functions G(τ ) for 5 d orbitals of the
Co impurity calculated with the cRPA and the Slater Coulomb matrix. Total cRPA occupations are given in squared brackets, and orbital ones in
round boxes. The upper and lower row contain the full QMC Green’s functions at lower and higher filling, respectively, together with the atomic
solution in the insets (orbital occupations in brackets). Calculations were performed at β = 20 eV−1. (Last column) Representation-resolved
Matsubara self-energy �(iωn) calculated with the cRPA (upper row) and the Slater Coulomb matrix (lower row), both at higher Co filling. Only
the first 10 frequencies are displayed for a better resolution of the low-energy behavior.
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FIG. 5. (First three columns) Comparison between the representation-resolved DOS A(ω) for the d orbitals of the Co impurity calculated
with the cRPA and the Slater Coulomb matrix. The upper and lower rows contain the DOSes at lower and higher Co filling, respectively. Total
cRPA occupations are given in squared brackets, and orbital ones in round boxes. The spectra are obtained from the imaginary-time Green’s
functions in Fig. 4 by analytical continuation with the SOM solver. (Upper right) Representation-resolved Matsubara self-energy �(iωn)
calculated with the cRPA Coulomb matrix at lower Co filling. Tail fitting was performed between the 10th and the 20th Matsubara frequency.
(Lower right) Comparison between the QMC (with the cRPA Coulomb matrix) and the DFT total DOSes (total occupations in squared brackets).

indices. The calculations have been performed on 192 cores
in parallel and took around 14–15 hours.

A. Physical importance of cRPA

The imaginary-time Green’s functions obtained after solv-
ing the multiorbital AIM by the methods described in Sec. III B
are displayed in Fig. 4. The results obtained with the full cRPA
Coulomb matrix are compared to the ones with the Slater
matrix. Rotationally averaging the Coulomb matrix by the
Slater approximation slightly reduces the overall weight of the
interaction strength, and some portions are redistributed, as it
is seen in Fig. 3. The most pronounced differences occur for
the higher filling considered, ntot = 8.2, especially in the A1

representation. The hybridization in A1 is small, thus the effect
solely stems from the Coulomb interaction and its reduction in
the spherical case. Lowering the Co filling by adjusting the DC
correction presents the orbitals with E1 symmetry as flexible
with respect to their occupation, and E1 crosses the Fermi level.
This is a consequence of the orbitals within this representation
being the most hybridized as well as having the strongest partial
screening of the Coulomb interaction.

From the imaginary-time Green’s function, we performed
analytical continuation using SOM, and the results are sum-
marized in Fig. 5. In agreement to the Green’s functions,
the differences for the lower filling are not as pronounced
as for the higher one. Corresponding to the difference in the
A1 orbitals at higher Co filling, the peak is shifted towards
lower values for the cRPA matrix. Considerable differences,

though not qualitative in nature, can also be seen for the
orbitals with E2 symmetry where the main peak below the
Fermi level is slightly shifted. The overall shape of all spectra
remains the same, including the shape and position of subpeaks
and shoulders. Thus considering anisotropies induced by the
breaking of rotational invariance yields spectra that are largely
invariant. One may thus conclude that the spectra obtained
with the full cRPA Coulomb matrix coincide with the Slater
approximation in many important aspects if the DC corrections
are chosen such that the impurity filling coincides in both
cases.

Notwithstanding the similar shapes of the spectra obtained
with the cRPA and the Slater Coulomb matrix, the self-energies
show considerable differences at low energies. As Co on
graphene at higher Co filling of 8.2 is a usual Fermi-liquid,
the self-energies should tend to zero at very low energies. This
property is better resolved with the calculations using the cRPA
matrix as one may observe in Fig. 4. There is also a change
of the order of the self-energy strengths between the orbitals
of E1 and E2 symmetry, and they intersect in the cRPA case.
The interchange at very low energies between the one of E2

and A1 symmetry is in agreement with the interchange of the
peaks in the corresponding spectra in Fig. 5. The relevance of
taking into account anisotropies in the Coulomb matrix by the
cRPA lies in the calculation of the self-energies. In particular,
eventual estimation of Kondo parameters will rely on a proper
determination of the self-energies. Further physical insights
into the effects of anisotropy of the self-energy on the electronic
configuration will be discussed in Sec. IV C.
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TABLE III. Total and representation-resolved Co d-shell occu-
pations, ground state energies εGS, and expectation values of the
local Hamiltonin 〈HCo〉 at β = 20 eV−1. The upper part of the table
corresponds to the full impurity model, the lower part to the local
Hamiltonian HCo alone not coupled to any bath.

ntot nE2 nE1 nA1 εGS[eV] 〈HCo〉[eV]

Impurity problem
cRPA vertex (QMC) 7.23 0.75 0.56 0.98 − −22.30

8.48 0.78 0.85 0.99 − −29.09
cRPA vertex (ED) 7.26 0.76 0.55 1.00 −63.10 −22.32

8.57 0.79 0.86 1.00 −69.66 −29.11
Slater vertex (QMC) 7.40 0.81 0.55 0.99 − −25.09

8.45 0.84 0.78 0.99 − −31.18
Atomic problem
cRPA vertex (ED) 6.94 0.62 0.66 0.91 −23.10 −23.07

8.80 0.75 0.95 1.00 −29.71 −29.69
Slater vertex (ED) 7.43 0.81 0.56 0.97 −25.09 −25.05

8.87 0.92 0.75 0.98 −31.74 −31.71

B. Electronic structure

Having a look at the occupations resulting from the QMC
calculation with the cRPA Coulomb matrix in Table III, one
observes the orbitals in the A1 representation being nearly fully
occupied, and the spectral weight is thus almost exclusively
below the Fermi level as may be seen in Fig. 5. Furthermore,
the calculations leave the occupation stable within the orbitals
of E2 symmetry, it is exactly 3.0 for the lower Co filling and
3.12 for the higher one. The additional electron at higher Co
filling appears in the E1 representation, as it may also be
seen in the corresponding pDOS. The relevant single-particle
peak changes its position from slightly above the Fermi level
for lower Co filling to slightly below for higher filling, and
it merges together with the other main spectral weight from
below with a pronounced amplification of its height, while its
width remains the same.

From the pDOS, it is seen that the E2 representation has a
small peak at the Fermi level. This peak can also be seen in
the pDOS obtained in ED, see Fig. 6, and it corresponds to
a bath state which happens to be very near the Fermi level.
Furthermore, the self-energy in the E1 representation shows
a singularity upon approaching the low-energy region. This
is due to the reduced filling of this representation and the
re-emergence of the graphene pseudogap as an imprint on
the pDOS of the Co impurity. At last, from the tDOS one
observes that QMC with the cRPA Coulomb matrix yields the
same overall electronic structure at higher filling like in case of
the DFT-DOS projected on the impurity, that is, a three-peak
structure, which is slightly stretched to higher energies due
to the Coulomb effects. Note, however, the reordering of the
peaks; in DFT, the lowest one belongs to E2 while due to the
large DC the lowest one in QMC is A1. All these features
together lead to the conclusion that, with the cRPA Coulomb
matrix, QMC yields the electronic structure of the Co/graphene
system very similar to DFT. In essence, this is a consequence
of the strong screening predicted by cRPA.

C. Electronic configuration

The TRIQS CTHYB solver provides us with the reduced
density matrix ρImp of the Co adatom accumulated during the
QMC simulation, and we are thus able to compute the grand
canonical expectation value

〈HCo〉 = TrCo[ρImpHCo]. (17)

The results are included in Table III.
We diagonalized the local Hamiltonian HCo in Eq. (3), and

obtained the ground state and excited states of the atomic
problem containing the CF splitting. From Table III, one
may see the atomic energy expectation values being near the
ground-state energy of the local Hamiltonian. This means
that the Boltzmann weights of the excited states are small,
even at β = 20 eV−1. As the QMC process describes the
propagation of the local state from one eigenstate of the local
Hamiltonian to another upon a hybridization event, physically
relevant details of the impurity system are already reflected by
the low-energy eigenstates. In particular, neglecting the small
difference between the energy levels within one representation,
the ground eigenstate of the local Hamiltonian corresponding
to the higher filling has an SU(4) symmetry in the cRPA case,
with one hole in the E2 representation, while in the Slater
case the hole is in the E1 representation. In both cases, the
ground state has nine electrons, and the orbital occupations
change differently in taking into account the excited states, on
the atomic as well as on the impurity level. Enforcing a lower
impurity filling, the picture changes considerably: the cRPA
case has ground eigenstate filling of seven with a spin-quartet
being distributed over all orbitals, while in the Slater case it
has a spin-triplet mostly in the E1 representation with eight
electrons in total. These different situations would definitely
be reflected in eventual Kondo properties of the Co/graphene
system, and apply to any system with pronounced geometric
symmetry breaking where anisotropies in the Coulomb in-
teraction occur. In contrast to this atomic picture, reflecting
temperature-dependent features of the isolated impurity, the
hybridization events lead to highly excited local states during
the QMC process, thereby mixing the local states with bath
states and leading to metallic behavior far away from the Kondo
scenario. As our cRPA Coulomb matrix is small compared to
the strength of the hybridization, this situation applies to our
case. The local states are then dissolved into broad peaks as
may be seen in the QMC DOS projected onto the single-particle
states of the Co impurity, see Fig. 5.

To further characterize the effects of anisotropy on the
electronic structure of the Co d orbitals, we computed the
total and orbital-resolved charge and spin fluctuations �O =
〈O2〉 − 〈O〉2, with O being the corresponding operator for the
total or orbital occupancy or spin. The results are presented
in Table IV together with the orbital-resolved effective masses
given by

m∗
α = 1 − Im �′

α(iωn)
∣∣
ωn=0 − Re �′

α(0), (18)

which are related to the inverse of the quasiparticle weights
Zα at the Fermi level. In both the cRPA and the Slater cases,
the total charge fluctuation is on the order of one electron, and
for both considered fillings the cRPA case exhibits stronger
fluctuations than the Slater case. The effective mass anisotropy
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FIG. 6. (First three columns) Comparison between the representation-resolved DOS A(ω) for the d orbitals of the Co impurity calculated
with QMC and ED using the cRPA Coulomb matrix. Orbital and total occupations obtained in ED are given in round boxes. The upper and
lower rows contain the DOSes at smaller and larger fillings, respectively. The calculations were performed at β = 20 eV−1. (Last column)
Corresponding total DOSes A(ω) calculated at lower (upper row) and higher Co filling (lower row).

is solely due to the anisotropy of the self-energy. The hybridiza-
tion term in Eq. (18) is essentially negligible. It can be clearly
seen that changing the total impurity occupation away from
the DFT value enhances the mass renormalization, especially
in the orbitals of the E1 symmetry where the non-Fermi-liquid
behavior prohibits the use of Eq. (18) altogether. Generally,
the effective mass scales with the Coulomb strength, and from
Fig. 3, it is clear that the reduction in Coulomb strength in
the E2 orbitals upon the spherical average leads to a reduced
effective mass. Although not pronounced, the reverse tendency
applies to the orbitals of the E1 symmetry.

D. Comparison of CTHYB with ED

The calculations employing the cRPA approximation to
the Coulomb vertex were repeated with the finite-temperature
exact-diagnolization method outlined in Sec. III C. The com-
putedd-orbital occupations are listed in Table III. They are very
close to the corresponding QMC results, the discrepancy in the
total filling ntot is smaller than 0.1 and the discrepancy in the

orbital fillings is at most 0.02. The grand canonical expectation
value of the local Hamiltonian is computed as

〈HCo〉 = 1

Z

∑
ψ

e−βEψ 〈ψ |HCo|ψ〉 , (19)

where |ψ〉 and Eψ are eigenfunctions and eigenvalues of the
discretized impurity Hamiltonian, Eq. (2). This expression is
equivalent to Eq. (17) and the data listed in Table III indeed
confirm that.

The spectral densities calculated with CTHYB and ED are
compared in Fig. 6. The agreement of the main features near
the Fermi level is very good, discrepancies appear at higher
energies where the analytical continuation of QMC data tends
to overestimate broadening and ED shows artifacts of the bath
discretization. The peak at the Fermi level in the E2 spectrum
appears to originate in a sharp feature of the bath density of
states, Fig. 1, and not in any many-body Kondo physics.

TABLE IV. Total and representation-resolved orbital charge and spin fluctuations of the Co impurity displayed against its total d-shell
occupation. The last three columns show the effective masses computed from the self-energy �(iωn).

vertex ntot �Ntot �NE2 �NE1 �NA1 �S2
tot �Sz

tot �Sz
E2

�Sz
E1

�Sz
A1

m∗
E2

m∗
E1

m∗
A1

cRPA 7.23 0.92 0.32 0.19 0.034 2.39 0.86 0.11 0.20 0.007 1.77 − 1.21
8.48 0.97 0.31 0.24 0.015 1.09 0.37 0.09 0.07 0.003 1.21 1.20 1.07

Slater 7.40 0.83 0.29 0.18 0.026 1.95 0.76 0.08 0.20 0.006 1.38 − 1.15
8.45 0.89 0.26 0.28 0.026 1.05 0.38 0.07 0.10 0.006 1.20 1.27 1.15
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V. CONCLUSIONS

We performed a quantum many-body study of the
Co/graphene system within the Anderson impurity model.
DFT calculations have been performed to determine the
ground-state properties and the basis for the projection onto
localized orbitals centered at the Co impurity. To capture
all geometric anisotropies in the Coulomb interaction, we
calculated the effective, partially screened Coulomb matrix via
cRPA. Having determined all the ingredients for the AIM, its
QMC solution has been found by the TRIQS CTHYB solver,
and subsequently analytically continued to the real axis by
SOM. Within the QMC approach, effect of the cRPA Coulomb
matrix has been compared against its approximate rotationally-
invariant form. Additionally, we applied exact diagonalization
to a subset of the investigated cases and we found a very good
agreement between QMC and ED results. This comparison
verifies the performance of the employed analytical continu-
ation method, and in the same time it illustrates that ED can
provide accurate results also in strongly hybridized cases far
from the atomic limit.

As regards the differences between the cRPA and the
Slater approximation, the electronic structure is not changed
considerably, however, profound differences can be found in
the single-particle self-energies of the correlated Co impurity.
This is natural, as the self-energy contains most of the Coulomb
correlation effects. The Coulomb interaction matrix obtained
via cRPA is comparably small. Further considerations might

thus be possible if it were determined to be larger; the
differences between the cRPA and the Slater approximation
are enhanced in this case, and the effects of anisotropies
might thus compete against the hybridization dressing of the
Co impurity, thereby revealing possible differences also in
the electronic structure. Furthermore, an investigation of the
possible existence and properties of the Kondo effect of Co
on graphene incorporating all crystal-field effects and the
graphene pseudogap could be pursued.
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