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Local and nonlocal order parameters in the Kitaev chain
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We have calculated order parameters for the phases of the Kitaev chain with interaction and dimerization at
a special symmetric point applying the Jordan-Wigner and other duality transformations. We use string order
parameters (SOPs) defined via the correlation functions of the Majorana string operators. The SOPs are mapped
onto the local order parameters of some dual Hamiltonians and easily calculated. We have shown that the phase
diagram of the interacting dimerized chain comprises the phases with the conventional local order as well as
the phases with nonlocal SOPs. From the results for the critical indices, we infer the two-dimensional Ising
universality class of criticality at the particular symmetry point where the model is exactly solvable.
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I. INTRODUCTION AND MOTIVATION

In the Landau theory, phases are distinguished by different
types of long-range order or its absence. The order is described
by an appropriately chosen order parameter. In the original
version of the theory, the latter quantity is understood as local.
Also, a continuous phase transition is related to spontaneous
breaking of the system’s symmetry expressed via local param-
eters of the Hamiltonian [1].

It might appear that various low-dimensional fermionic or
spin systems such as quantum spin liquids, frustrated magnet-
ics, topological and Mott insulators, etc. [2–5], which lack con-
ventional local long-range order even at zero temperature, can-
not be dealt with in the Landau framework. The new paradigm
of topological order (for a recent review and references, see [6])
seems to be taking over. In our recent work, we made a strong
claim that the Landau formalism, although extended, remains
instrumental even for nonconventional quantum orders [7].
The formalism needs to be extended to incorporate nonlocal
(string) operators [8,9], string correlation functions, and string
order parameters (SOPs). The appearance of a nonlocal SOP
is accompanied by a hidden symmetry breaking [10]. The
local and nonlocal order frameworks are related by duality
and become a matter of convenient choice of variables of
the Hamiltonian [7,8,11–13]. In a sense, this is analogous to
a description of a crystal using direct or reciprocal Bravais
lattices.

Some additional aspects of quantum ordering quantified
by, e.g., topological numbers, Berry phases, or entanglement
[2] are nor reducible to the parameters of the Landau theory.
These quantities provide a rather complementary description
and do not seem to be indispensable since the informa-
tion one can get from the spectrum, correlation functions,
and the order parameter suffices to determine the phase
diagram and the universality classes of the transitions it
contains.

The above apologia of the Landau paradigm might not
be very appealing since its almost “unbelievable simplicity”
is at odds with the fashion trend for “more complex things
which are....easier” [14]. The main goal of the present work

is to explain the recently found phase diagram of the dimer-
ized interacting Kitaev model using “simple” basics of the
Landau framework. The key elements of dealing with local
and nonlocal orders were worked out in [7] using mainly the
results for the Heisenberg spin ladders [15]. Now we present
a straightforward application of the methods developed in [7]
for the Kitaev fermionic chain.

II. NONINTERACTING KITAEV CHAIN

The Kitaev chain model of a topological superconductor
comprised of spinless fermions is defined as [16]

H =
N∑

n=1

{
−μ

(
c†ncn − 1

2

)
− t(c†n+1cn + c†ncn+1)

+�(c†n+1c
†
n + cncn+1)

}
, (1)

where μ is the chemical potential, t is the hopping amplitude,
and � is the (real) superconducting gap. In terms of the
Majorana operators

an + ibn ≡ 2c†n, (2)

with the standard anticommutation relations

{an,am} = 2δnm, {bn,bm} = 2δnm,

{an,bm} = 0, (3)

the Hamiltonian (1) reads

H = i

2

N∑
n=1

{μanbn − (t + �)bnan+1 + (t − �)anbn+1}. (4)

The Jordan-Wigner transformation [17,18] in the Majorana
representation,

(
σx

n

σ
y
n

)
=
(

an

bn

) n−1∏
l=1

[ialbl], (5)
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resulting in

σx
n σ x

n+1 = ibnan+1, σ y
n σ

y

n+1 = −ianbn+1,

σ z
n = −ianbn, (6)

maps the Kitaev model (4) onto the XY chain in the transverse
field [16,19],

H = −
N∑

i=1

{
t

2

[(
1 + �

t

)
σx

i σ x
i+1 +

(
1 − �

t

)
σ

y

i σ
y

i+1

]

+ 1

2
μσz

i

}
, (7)

where σ are the Pauli matrices. The spectrum of this model,

ε(k) = ±2t

√(
μ

2t
− cos k

)2

+
(

�

t

)2

sin2 k, (8)

its phase diagram, and other properties are well known [18,20].
The properties of two models (1) and (7) are identified from
the correspondence J ↔ 2t , γ ↔ �/t , and h ↔ μ; cf. the
definitions in [17]. At “strong field” |h/J | = |μ/2t | > 1, the
Kitaev model does not have a nontrivial order. To identify
the order parameter at |μ/2t | < 1, we define the Majorana
string operator,

Ox(m) =
m−1∏
l=1

[iblal+1]. (9)

[By definition, Ox(1) = 1.] The SOP Ox is introduced as

O2
x = lim

(n−m)→∞
|〈Ox(m)Ox(n)〉|. (10)

As follows from relations (6), the nonlocal Majorana string
correlation function maps onto the two-point spin-correlation
function of the dual XY chain (8) (cf. e.g., [17]):

〈Ox(m)Ox(n)〉 =
〈

n−1∏
l=m

[iblal+1]

〉
= 〈

σx
n σ x

m

〉
. (11)

Introducing the longitudinal magnetization of the XY chain as

m2
x = lim

(m−n)→∞
∣∣〈σx

n σ x
m

〉∣∣, (12)

and using the results of [20], we find the Majorana SOP at
|μ/2t | < 1:

Ox =
⎧⎨
⎩
√

2
1+�/t

{(
�
t

)2[
1 − (

μ

2t

)2]}1/8
, �/t > 0

0, �/t < 0.

(13)

To probe the region �/t < 0, we define another Majorana
string,

Oy(m) =
m−1∏
l=1

[−ialbl+1]. (14)

Similarly, we find the SOP at |μ/2t | < 1,

Oy =
{

0, �/t > 0

Ox(−�/t), �/t < 0.
(15)

FIG. 1. The Kitaev chain visualized as a two-leg ladder (upper
panel) and its phase diagram (lower panel). The couplings in the ladder
are shown according to the Hamiltonian (4). Two phases with nonzero
SOPs are shown on the phase diagram along with the disorder line
(μ/2t)2 + (�/t)2 = 1 (dotted line).

Note that the SOPsOα (α = x,y) and their dual magnetizations
are the bulk parameters and their values, (13) and (15), are not
sensitive to the choice of the ends of the strings [cf. (10)] as
far as the thermodynamic limit is taken and (n − m) → ∞.
We adapt the idea of DeGottardi and co-workers [19] to
visualize the Kitaev chain as a two-leg ladder where two
Majorana fermions comprising a single Dirac fermion reside
on the rungs of this ladder; see Fig. 1. Two string Majorana
operators yielding Ox and Oy correspond to two distinct
snakelike paths on the ladder; cf. definitions (9) and (14).
The string of maximal length Ox/y(N ) for a chain of N

sites does not include a pair of Majorana operators at the
ends [(a1,bN )/(b1,aN ), respectively]. Thus nonvanishing SOPs
Ox/y signal correlations of the fermions along the chain and
the existence of two unpaired edge Majorana fermions. (For
details, see the Appendix.) This is the feature associated with
a topological order and that is why the phase with Ox/y �= 0 is
called topological superconductor [3,16,19]. The string Oz(m)
made of pairs of Majorana fermions residing on the rungs of
the ladder is not useful at this point since 〈σ z

n 〉 = −i〈anbn〉 �= 0
at μ �= 0.

The disorder line (μ/2t)2 + (�/t)2 = 1 shown in Fig. 1
corresponds to a transition (without gap closure) when the
asymptotic behavior of string correlation functions changes.
The exponentially decaying functions acquire additional os-
cillations inside the circle [20]. The relation of this transition
to the analytical properties of the model’s partition function,
and the closely related wave functions of the zero-energy edge
states are analyzed in the Appendix.

III. DIMERIZED INTERACTING KITAEV CHAIN

The Kitaev model was also analyzed in the presence of
dimerization and interactions [21–25]. As shown by the recent
exact solution of the interacting Kitaev chain at a special point
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[23], the interaction brings about new phases. The interplay
of interaction and dimerization makes the phase diagram of
the model even richer. Very recently, the one-dimensional (1D)
dimerized interacting Kitaev models were proposed and solved
virtually simultaneously at a special symmetric point [24,25].
Technically, the solution of the dimerized case is a straightfor-
ward extension of the earlier solution for the interacting model
without dimerization [23]. The models analyzed in [24,25] are
slightly different (the version of Wang and co-workers [25]
does not have dimerization in interaction). We find the version
of the model proposed by Ezawa [24] slightly more convenient,
and this is the Hamiltonian we will use in this paper:

H =
N∑

n=1

{
−μ

(
c†ncn − 1

2

)
− tn(c†n+1cn + c†ncn+1)

+�n(c†n+1c
†
n + cncn+1)

+Un(2c
†
n+1cn+1 − 1)(2c†ncn − 1)

}
, (16)

where

tn = t[1 − (−1)nδ], �n = �[1 − (−1)nδ],

Un = U [1 − (−1)nδ]. (17)

Symmetries of the model [23,24] allow one to assume t > 0
and � > 0 without loss of generality, and the dimerization
parameter is bound |δ| � 1. The model (16) is solved at the
special point

� = t,μ = 0. (18)

The Jordan-Wigner transformation maps the fermionic Hamil-
tonian onto the spin model,

H =
N∑

n=1

[−tnibnan+1 + Unianbnian+1bn+1] (19)

=
N∑

n=1

[−tnσ
x
n σ x

n+1 + Unσ
z
nσ z

n+1

]
, (20)

which after additional spin-rotational transformation becomes
the well-known dimerized quantum XY chain [26,27],

H =
N∑

n=1

[− tnσ
x
n σ x

n+1 + Unσ
y
n σ

y

n+1

]
. (21)

The Kitaev model in this particular exactly solvable point is
depicted as a two-leg ladder in Fig. 2. Only the adjacent b

and a operators are coupled along the legs, plus four Majo-
rana operators on each plaquette are coupled via alternating
interaction.

At this point, the critical properties of the model can be
analyzed from fermionized Hamiltonian (21) [24,25]. Instead,
to easily reveal the hidden order parameters, we will follow our
recent analysis [7] and apply the duality transformation [28]:

σx
n = τ x

n−1τ
x
n , (22)

σy
n =

N∏
l=n

τ z
l , (23)

a1

a2

a3

aN−2

aN−1

aNb1

b2

b3

bN−2

bN−1

bN

t + δ

t − δ

U + δ U − δ

FIG. 2. The interacting dimerized Kitaev chain visualized as
a two-leg ladder. The in-leg and plaquette couplings are shown
according to the Hamiltonian (19).

where τ obey the standard algebra of the Pauli operators and
reside on the sites of the dual lattice which can be placed
between the sites of the original chain. This transformation
maps the Hamiltonian (21) onto a sum of two decoupled 1D
transverse-field Ising models [29] defined on the even and odd
sites of the dual lattice,

H = He + Ho, (24)

He =
N/2∑
l=1

−t(1 + δ)τ x
2l−2τ

x
2l + U (1 − δ)τ z

2l , (25)

Ho =
N/2∑
l=1

−t(1 − δ)τ x
2l−1τ

x
2l+1 + U (1 + δ)τ z

2l−1. (26)

Such dual representation makes obvious the hidden Z2 ⊗ Z2

symmetry of the Kitaev chain. The spectrum of the transverse
Ising chain is well known [18,20,30], so the eigenvalues of the
Hamiltonian (24) ±εe/o(k) read

εe/o(k) = 1

2
t(1 ± δ)

√
sin2 k +

(
cos k − U

t

1 ∓ δ

1 ± δ

)2

, (27)

in agreement with the earlier result of direct diagonalization
[24]. The lines of quantum criticality (gaplessness) for even
and odd parts of the Hamiltonian (24) are

evensector : δc,e =
{

U/t−1
U/t+1 , U/t > 0
U/t+1
U/t−1 , U/t < 0,

(28)

and in the odd sector:

δc,o = −δc,e. (29)

The chains are (ferromagnetically) ordered under the following
conditions: 〈

τ x
e/o

〉 �= 0 if δ ≷ δc,e/o. (30)

The curves (28) and (29) shown in Fig. 3 are the phase
boundaries, and now we will establish the nature of the order
parameters characterizing each of the phases in the (U/t,δ)
parametric plane. The phase diagram of the model was already
found in the earlier related work [24,25]. In particular, the
winding numbers were calculated and it was shown that at
least one number changes when a phase boundary is crossed,
indicating thus topological phase transition(s) along the lines
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FIG. 3. Phase diagram of the interacting dimerized Kitaev model
with nonvanishing order parameter shown for each phase.

(28) and (29). This is not surprising since the phase boundaries
are the branching points of the spectra (27). Our goal is to
find the Landau-like order parameters for each phase of the
diagram. The phases 1–3 in Fig. 3 are continuous extensions
of their counterparts found in [23] at δ = 0.

Region 1 [topological superconductor (TSC)]. In this phase,
the Z2 symmetry is spontaneously broken in the even and
odd sectors of the Hamiltonian (24); the ground state is then
fourfold degenerate, and mx = 〈τ x

e 〉〈τ x
o 〉 [7]. Then we easily

find the nontrivial Majorana SOP for this phase:

Ox =
{[

1 −
(

U

t

1 − δ

1 + δ

)2
][

1 −
(

U

t

1 + δ

1 − δ

)2
]}1/8

,

at {δc,e < δ < δc,o} ∪ {|U |/t < 1}. (31)

This phase and its order parameter are smoothly connected
to the corresponding phase of the free Kitaev chain shown in
Fig. 1.

Regions 2 and 3 (CDW and CAT). To calculate the order
parameter(s) for those phases, we apply the duality trans-
formations (22) and (23) with the interchange x ↔ y. The
Hamiltonian (21) maps again onto a sum of the even and odd
transverse Ising chains as

He =
N/2∑
l=1

U (1 − δ)τ y

2l−2τ
y

2l − t(1 + δ)τ z
2l , (32)

Ho =
N/2∑
l=1

U (1 + δ)τ y

2l−1τ
y

2l+1 − t(1 − δ)τ z
2l−1, (33)

which have ferromagnetic or antiferromagnetic (depending on
the sign of U ) long-range order,

〈τ y

e/o〉 �= 0 if δ ≶ δc,e/o. (34)

The order parameter mz is defined via the density correlation
function,

4〈δniδnj 〉 = 〈(2c
†
i ci − 1)(2c

†
j cj − 1)〉

(j−i)→∞−−−−−→ [−sgn(U )]j−im2
z, (35)

where the z component is understood in terms of (19) and (20)
before the spin rotation. The nontrivial value of

mz = |〈2c†ncn − 1〉| = |〈anbn〉| = |〈τ y
e 〉〈τ y

o 〉| (36)

is given by

mz =
{[

1 −
(

t

U

1 + δ

1 − δ

)2][
1 −

(
t

U

1 − δ

1 + δ

)2]}1/8

,

at {δc,o < δ < δc,e} ∪ {|U |/t > 1}. (37)

The phase with alternating density at U/t > 0 is associated
with the charge density wave (CDW), while the superposition
of two differently homogeneously filled states (in our dual
representation they are dual even and odd sublattices with
distinct ferromagnetic orders 〈τ y

e 〉 and 〈τ y
o 〉) at U/t < 0 is

called the CAT phase [23], named after Schrödinger’s cat
superposition state. Similarly to the TSC phase, the CDW
and CAT phases have fourfold degenerate ground states and
correspond to the completely broken Z2 ⊗ Z2 symmetry.

Regions 4 and 5. Now we introduce two types of rarefied
strings [31] and define the even and odd Majorana string
operators,

Ox,e(m) =
m∏

l=1

[ib2l−1a2l], (38)

Ox,o(m) =
m∏

l=1

[ib2la2l+1]. (39)

The corresponding Majorana SOPs are defined similarly to
(10). Using the Jordan-Wigner (6) and duality transformation
(22), we obtain the important relations

O2
x,e/o = lim

(R−L)→∞
〈
τ x
Lτ x

R

〉
, (40)

where the ends of the strings are chosen such that

L = 2n,R = 2m �−→ Oα,e,

L = 2n − 1,R = 2m − 1 �−→ Oα,o. (41)

This leads us easily to the nontrivial SOPs for phases 4 and 5,

Ox,e/o =
[

1 −
(

U

t

1 ∓ δ

1 ± δ

)2]1/8

,

at {δ ≷ δc,o} ∪ {δ ≷ δc,e}. (42)

As one can infer from definition (38) and Fig. 2, the appearance
of SOP Ox,e �= 0 signals the nonvanishing average value of the
rarefied string made out of Majorana dimers residing on the
same leg of the ladder and coupled by a “plus” bond t + δ.
Similarly, the nonvanishing Ox,o probes the rarefied strings
made of the “minus” dimers coupled by t − δ. Note that the
SOP in the TSC phase, Ox = Ox,eOx,o, is a superposition
of these two rarefied strings where their nonzero averages
overlap. The ground states of the rarefied dimer phases 4 and 5
are twofold degenerate, and nonvanishing SOPs Ox,e/o signal
breaking of one of the Z2 ⊗ Z2 symmetries, either in the even
or odd sector of the dual Hamiltonian.

Another couple of SOPs in these two phases can be deduced
from the local magnetizations (34) on the even/odd dual
sublattices (32) and (33) [cf. also (41)],

〈
τ

y

Lτ
y

R

〉 =
〈

R∏
l=L+1

[−ialbl]

〉

(R−L)→∞−−−−−−→ [−sgn(U )]
R−L

2 O2
z,e/o. (43)
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Analytically, we find

Oz,e/o =
[

1 −
(

t

U

1 ± δ

1 ∓ δ

)2
]1/8

,

at {δ ≶ δc,o} ∪ {δ ≶ δc,e}. (44)

These two SOPs combine into the local order parameter
(average density) mz = Oz,eOz,o in the phases CDW and CAT,
where these even and odd SOPs coexist.

IV. CONCLUSIONS

Using spin-fermion and spin-spin duality transformations,
we have calculated order parameters for the phases of the
noninteracting Kitaev chain and for the chain with interaction
and dimerization at a special symmetric point. The main
building blocks we used are various string operators made out
of Majorana fermions. The string order parameters (SOPs)
are defined by the asymptotes of the corresponding string
correlation functions. Using duality, we show that the SOPs
are local order parameters of the dual Hamiltonians and
are easily calculated. On the phase diagram [24,25] of the
interacting dimerized model, we have found the nonlocal order
detected by the rarefied strings built from selected sets of
the Majorana operators (phases 4 and 5). Such rarefied SOPs
coexist in the TSC phase and their overlap results in the SOP
which continuously evolves from the corresponding SOP of
the noninteracting chain. The phases CAT and CDW possess
conventional local order parameters known from the analysis
of the interacting model without dimerization [23]. Using the
duality, we have easily obtained the results for those local
parameters as products of corresponding overlapping SOPs.
Each symmetry broken in a given phase of the model is
identified with the spontaneous symmetry breaking of the dual
Hamiltonian(s). We have also related the phase transitions of
the model (including the disorder line) to zeros of its partition
function. Form the results for the gaps and order parameters,
we infer the critical indices ν = 1 and β = 1/8 of the 2D Ising
universality class [32]. This is valid of course only for the
particular symmetry point in the parameter space considered
where the interacting model is equivalent to free fermions.

We expect the proposed SOPs to be operational to explore
the model’s phase diagram away from this special point
[21–25], when the fermionic interactions need to be dealt with.
This can be done along the lines of our earlier related work
on spin ladders (i.e., interacting fermions) [7,15]. Another
interesting extension is the noninteracting Kitaev chain with
long-range superconducting pairing, which has a quite non-
trivial phase diagram and very interesting critical properties
[33]. These are very promising and relatively straightforward
directions for advancement of the present formalism, which
we relegate for future work.
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APPENDIX: CRITICAL AND DISORDER LINES,
LEE-YANG ZEROS, AND MAJORANA EDGE STATES

IN THE XY MODEL

Due to the seminal papers by Yang and Lee [34], we are
able to rigorously relate phase transitions in a model to zeros
of its partition function. Such zeros in the 1D XY model
and its integrable deformations, which keep the Hamiltonian
equivalent to free fermions, were analyzed in [35] (see also
[36] for a followup work). In units of J , the Hamiltonian of
the model is

H = −1

2

N∑
i=1

{
1

2
(1 + γ )σx

i σ x
i+1+

1

2
(1 − γ )σy

i σ
y

i+1 + hσ z
i

}
.

(A1)

The partition function,

Z(h,γ,T ; {k}) =
∏

k∈[0,2π]

eβε(k)/2(e−βε(k) + 1), (A2)

has its zeros determined from the following equation [35]:

ε(k) =
√

(h − cos k)2 + γ 2 sin2 k = i(2n + 1)πT (A3)

(we set kB = 1), resulting in the solution with a complex
magnetic field,

h = cos k ± i

√
γ 2 sin2 k + (2n + 1)2π2T 2. (A4)

At zero temperature, the Lee-Yang zeros are also zeros of
the spectrum, and they are located on the ellipse in the plane
h = h′ + ih′′ ∈ C:

(h′)2 +
(

h′′

γ

)2

= 1. (A5)

The Lee-Yang zeros located on the real axis of the complex
magnetic plane are the points of quantum criticality. For
arbitrary γ �= 0, this gives us the lines of the quantum phase
transitions h = ±1, while for γ = 0, the ellipse collapses into
the critical line h ∈ [−1,1]. Thus, predictions for the phase
boundaries of the Lee-Yang formalism reproduce the results
known from analysis of the correlation functions [20], as it
must be.

A more interesting question is to understand the origin of
the transition on the disorder line

h2 + γ 2 = 1, (A6)

where there is no gap closure and the transition is detected
by the change of asymptotic behavior of the spin-correlation
functions: the exponentially decaying functions acquire addi-
tional oscillations inside the circle (A6) [20]. The ground-state
energy,

E0 = − N

2π

∫ π

0
dkε(k), (A7)

is found in terms of elliptical functions [37] and is shown [38]
to be a smooth and even infinitely differentiable function on
the boundary (A6).
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It is convenient to write the spectrum ε(k) in terms of the
complex variable z = eik as [17]

ε2(z) = (1 + γ )2

4
(z − λ+)(z − λ−)(z−1 − λ+)(z−1 − λ−),

(A8)

where

λ± = h ±
√

h2 + γ 2 − 1

1 + γ
. (A9)

The quantum phase transitions in the XY model discussed
above are signalled by the zeros λ± of the partition function
Z(h,γ,T → 0; {z}) lying on the unit circle |z| = 1. Analytical
continuation k � k + ik0 extends the product in the partition
function (A2) over the complex loop of arbitrary radius e−k0 ,
which, in particular, can pass through the roots λ±1

± . Thus,
the latter are zeros of the zero-temperature partition function
analytically continued onto the complex states |z| �= 1. On the
other hand, λ± control the asymptotes of the correlation func-
tions calculated from the Toeplitz determinants [17,39]. The
transition on the disorder line (A6) resulting in the oscillations
corresponds to the points where λ± acquire imaginary parts
and λ+ = λ∗

−. This is in a close analogy to the transition on the
disorder line in the classical Ising chain which corresponds to
the Lee-Yang zeros in the range of complex parameters [31].

There is an even closer analogy between the transitions on
the disorder lines in the classical [31,40] and the quantum
transverse XY chains. To reveal it, one needs to find the zero-
energy localized state in the ordered phase h < 1 of the model
Hamiltonian (A1). This problem was originally solved by
Karevski [41] whose transfer matrix approach we will follow.
(The solution was repeated in more recent literature [19].)
The Bogoliubov–de Gennes equation for the Jordan-Wigner
fermions in the direct space [cf. Eqs. (1), (4), and (7)] can be
written as(

0 Â − B̂

Â + B̂ 0

)(
q

�q

)
= ε(q)

(
q

�q

)
, (A10)

where Â and B̂ are N × N symmetric and antisymmetric
matrices, respectively,

Aij = 2hδi,j + δi,j+1 + δi,j−1, (A11)

Bij = −γ δi,j+1 + γ δi,j−1, (A12)

and q = [φq(1) . . . φq(N )]T and �q = [ψq(1) . . . ψq(N )]T

are the N -component spinors defining the Bogoliubov trans-
formation of the Majorana fermions (an,bn) �→ (αq,βq) as

2η†
q = αq + iβq =

N∑
n=1

[φq(n)an + iψq(n)bn]. (A13)

In terms of the Bogoliubov fermions ηq , the Hamiltonian is
diagonal,

H =
∑

k

ε(k)

[
η
†
kηk − 1

2

]
. (A14)

The energy of the first excited singe-particle state |1〉 =
η
†
1|GS〉 vanishes in the thermodynamic limit and this state

becomes degenerate with the ground state in the ordered phase
h < 1. The wave function 1 of the Majorana fermion in this
state is found via iteration of the “transfer matrix,”

T̂ =
( 2h

1+γ

1−γ

1+γ

−1 0

)
(A15)

as

φ1(n + 1) = (−1)n(T̂ n)11φ1(1). (A16)

The roots (A9) also happen to be the eigenvalues of the transfer
matrix. The latter can be written via two orthogonal idempotent
operators (projectors) P̂± as [42]

T̂ = λ+P̂+ + λ−P̂−, (A17)

where

P̂± ≡ ± T̂ − λ∓1̂
λ+ − λ−

. (A18)

Then, T̂ n = λn
+P̂+ + λn

−P̂− and we recover the result of
Karevski [41],

φ1(n + 1) = (−1)n
λn

+ − λn
−

λ+ − λ−
φ1(1). (A19)

The wave function is delocalized when h > 1, while in the
ordered phase when h < 1 it is localized near the left edge of
the chainn = 1, and the probability density for this zero-energy
edge Majorana fermion exponentially decays with the distance
φ2

1 (n � 1) ∝ exp(−κn). The inverse penetration depth κ =
2| ln λ+| is also the inverse bulk correlation length of the
spin-correlation function [20]. Inside the disorder circle (A6)
λ+ = λ∗

− with |λ±|2 = (1 − γ )/(1 + γ ), the edge-state wave
function (A19) acquires incommensurate oscillations on the
top of the exponential decay. The disorder line corresponds to
a “weak” continuous phase transition where the correlation
length stays finite. As in the classical Ising chain [40], it
demonstrates a cusp at the critical point. One can check that κ

as a function of field approaches its maximum on the disorder
line with an infinite slope and stays constant, κ = − ln 1−γ

1+γ
, in

the oscillating phase. It is natural to identify the localized zero-
energy edge state with the Majorana fermion (a1) “missed” by
the ordered Majorana string (Ox �= 0) discussed in the main
text on the free Kitaev chain.

Since λ±(−γ )λ∓(γ ) = 1, the second solution of (A10)
follows easily,

ψ1(n + 1) = (−1)n
λ−n

− − λ−n
+

λ−1
− − λ−1

+
ψ1(1). (A20)

In the ordered phase, this wave function localized near the
right edge [19], ψ1(n � 1) ∼ ψ(N ) exp[−(N − n)| ln λ−|],
acquires oscillations after crossing the disorder line. It can be
related to the zero-energy edge state of the Majorana fermion
bN . In the range of negative γ , the solutions interchange in the
obvious way, along with (a1,bN ) ↔ (b1,aN ).
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