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Magnetization of topological line-node semimetals
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Using an approximate expression for the Landau levels of the electrons located near a nodal line of a topological
line-node semimetal, we obtain formulas for the magnetization of this semimetal at an arbitrary shape of its line. It
is also shown that the dependence of the chemical potential on the magnetic field can be strong in these materials,
and this dependence can essentially influence the de Haas-van Alphen oscillations. The obtained results are applied
to the rhombohedral graphite, which is one of the line-node semimetals. For this material, we find temperature
and magnetic field dependencies of its magnetic susceptibility.
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I. INTRODUCTION

In recent years, much attention has been given to the
so-called topological semimetals [1–34]. In particular, it was
predicted [5] that their magnetization exhibits unusual de-
pendencies on the chemical potential ζ , the temperature T ,
and the magnetic field H . These dependencies can serve as
a fingerprint of the topological semimetals, and appropriate
experimental investigations can be useful in studying electron
energy spectra of these materials.

There are several types of the topological semimetals. In
the Weyl and Dirac semimetals, the electron energy bands
contact at discrete points of the Brillouin zone and disperse
linearly in all directions around these critical points. At present,
a number of such semimetals were discovered [6–19]. The
magnetization of these materials was theoretically analyzed
in the papers [5,35–38]. One more type topological materials
is the line-node semimetals in which the conduction and
valence bands touch along lines in the Brillouin zone and
disperse linearly in directions perpendicular to these lines.
It is necessary to emphasize that the contact of the electron
energy bands along the lines is the widespread phenomenon in
crystals [25,39–41]. For example, such contacts of the bands
occur in graphite [42], beryllium [43], aluminium [44], and
LaRhIn5 [45]. However, the degeneracy energy of the bands,
εd , generally is not constant along such lines, and the εd

varies between its minimum εmin and maximum εmax values,
reaching them at certain points of the line. A crystal with
the band-contact line can be named the topological semimetal
if the difference εmax − εmin ≡ 2� is sufficiently small and
if the chemical potential ζ of the electrons does not lie far
away from the mean energy ε0

d ≡ (εmax + εmin)/2 of the line.
Various line-node semimetals were theoretically predicted
and discovered experimentally in recent years [20–34]. The
magnetic susceptibility of a crystal with a band-contact line
characterized by large � was theoretically investigated many
years ago [35,36]. It turned out that the susceptibility exhibits
a giant anomaly when ζ approaches one of the energies εmin or
εmax, which correspond to the points of the electron topological
transitions of 3 1

2 kind [40]. When one deals with the topological
semimetals, the interval 2� is small, and the character of
the anomaly in the susceptibility changes. The susceptibility

in the case of the line-node semimetals was considered for
weak magnetic fields in Ref. [46] and for arbitrary magnetic
fields in Ref. [5]. However, in our paper [5], formulas for
the magnetization were mainly obtained in the case of the
semimetals with a closed band-contact line lying in a plane
perpendicular to an axis ofn-fold symmetry. Beside this, we did
not consider the H dependence of the chemical potential ζ and
the effect of this dependence on the magnetization. However,
this dependence, as we shall see below, can be strong.

In this paper, we derive general formulas for the magne-
tization of a line-node semimetal with a band-contact line of
an arbitrary shape, taking into account the dependence ζ (H ).
Then we apply these results to the case when the line terminates
on opposite faces of the Brillouin zone. As an example of
the semimetal in which this situation occurs, we consider the
rhombohedral graphite [20,21,47,48].

II. ELECTRON SPECTRUM NEAR
A BAND-CONTACT LINE

In the vicinity of a band-contact line along which the con-
duction and valance bands touch, let us introduce orthogonal
curvilinear coordinates so that the axis “3” coincides with the
line, Fig. 1. The axes “1” and “2” are perpendicular to the third
axis at every point of the band-contact line, and the appropriate
coordinates p1 and p2 are measured from this line. In these
coordinates, near the line, the most general form of the electron
spectrum for the conduction and valence bands looks like [40]

εc,v = εd (p3) + a⊥p⊥ ± Ec,v,

E2
c,v = b11p

2
1 + b22p

2
2, (1)

where εd (p3) describes a dependence of the degeneracy energy
along the line [the εmax and εmin mentioned above are the
maximum and minimum values of the function εd (p3)]; p⊥ =
(p1,p2,0) and a⊥ = (a1,a2,0) are the vectors perpendicular
to the line; the parameters of the spectrum b11, b22, and a⊥
generally depend on p3. It is implied here that the directions of
the axes “1” and “2” are chosen so that the quadratic form E2

c,v

is diagonal (these directions generally changes along the line).
The vector a⊥ specifies the tilt of the Dirac spectrum in the
p1-p2 plane. Below we shall consider only the case when the
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FIG. 1. The Fermi surface of the rhombohedral graphite as an
example of the Fermi surface in a topological line-node semimetal at
|ζ − ε0

d | � � (a) and at |ζ − ε0
d | < � (b). The band-contact line lies

inside the Fermi surface. The arrow shows the tangent vector t to the
line at one of its points; θ is the angle between this t and the magnetic
field H. For clarity, we decrease the pitch of the helix. (c) A part of
the Fermi surface, of the band-contact line and the two coordinate
systems connected with the band-contact line (p1-p2-p3) and with
crystallographic axes of the rhombohedral graphite (px-py-pz).

length of the vector ã⊥ ≡ (a1/
√

b11,a2/
√

b22,0) is less than
unity [49],

ã2
⊥ = a2

1

b11
+ a2

2

b22
< 1,

since at ã2
⊥ > 1 the magnetic susceptibility does not exhibit any

essential anomaly in its dependencies on ζ , H , and T [5,35,36].
When the parameter � ≡ (εmax − εmin)/2 is small as com-

pared to the characteristic scale of electron band structure
(i.e., � � 1 eV) and ã2

⊥ < 1, the Fermi surface εc,v(p⊥,p3) =
ζ of the semimetal looks like a narrow electron or hole
tube for ζ − ε0

d � � or ζ − ε0
d � −�, respectively, Fig. 1.

The band-contact line lies inside this tube. If |ζ − ε0
d | < �, the

Fermi surface has a self-intersecting shape and consists of the
electron and hole pockets touching at some points of the line,
i.e., it looks like “link sausages,” Fig. 1. Thus, if the chemical
potential ζ decreases and passes through the critical energies
εmax = ε0

d + � and εmin = ε0
d − �, the electron topological

transitions occur [40]. At these transitions, the electron tube
first transforms into the self-intersecting Fermi surface and
then this surface transforms into the hole tube. We shall assume
below that all transverse dimensions of the Fermi-surface tubes
and pockets, which are of the order of |ζ − εd (p3)|/V , where
V ∼ (b11b22)1/4, are essentially less than the characteristic
radius of curvature for the band-contact line. In this case,
practically all electron orbits in the Brillouin zone, which are
intersections of the Fermi surface with planes perpendicular to

the magnetic field, are small and lie near the band-contact line.
In other words, a small region in the Brillouin zone determines
the local electron energy spectrum in the magnetic field almost
for any point of the line. This spectrum has the form (see
Appendix)

εl
c,v(p3) = εd (p3) ±

(
eh̄αH | cos θ |

c
l

)1/2

, (2)

α = α(p3) = 2(b11b22)1/2(1 − ã2
⊥)3/2, (3)

where l is a non-negative integer (l = 0, 1, ...), with the single
Landau subband l = 0 being shared between the branches “c”
and “v,” and θ = θ (p3) is the angle between the direction of the
magnetic field and the tangent t = t(p3) to the band-contact
line at the point with a coordinate p3, Fig. 1. Formula (2) fails
only for those points of the line for which θ is close to π/2.
However, these points do not give a noticeable contribution to
the magnetization [35].

III. MAGNETIZATION

We define the vector of the magnetization as −∂	/∂Hi ,
where 	 is the 	 potential per unit volume of a crystal, and we
disregard a contribution to the magnetization associated with
the electron surface states of a topological semimetal. When
the chemical potential ζ does not lie far away from ε0

d , the
total magnetization consists of its special part Mi determined
by the electron states located near the band-contact line and a
background term χ0

ijHj in which the practically constant tensor
χ0

ij is specified by electron states located far away from this
line,

M total
i = Mi + χ0

ijHj .

It is the special part Mi that is responsible for dependencies
of the magnetization on the chemical potential, temperature,
and for a nonlinear dependence of the magnetization on the
magnetic field magnitude. It is also significant that |Mi | is not
small as compared to |χ0

ijHj | and can essentially exceed this
background term for the topological semimetals [5]. Below we
calculate Mi only.

In weak magnetic fields H � HT , when the characteristic
spacing �εH between the Landau subbands is much less than
the temperature T , the magnetization Mi is proportional to H .
On the other hand, at H > HT , when �εH > T , the magne-
tization becomes a nonlinear function of H . The background
term χ0

ij in the susceptibility remains constant at all magnetic
fields. According to Eq. (2), we have the following estimate for
the spacing �εH between the Landau subbands of electrons in
the magnetic field: �εH ∼ (eh̄HV 2/c)1/2, and hence

HT ∼ cT 2

eh̄V 2
.

If the characteristic velocity V ≈ (b11b22)1/4 ∼ 106–105 m/s,
one obtains HT ∼ 2–200 Oe at T = 4 K [50]. In other words,
for the topological semimetals investigated at low tempera-
tures, a nonlinear dependence of M total

i on H can develop at
sufficiently low magnetic fields.

Using formulas (2) and (3), the special part of the magneti-
zation associated with the band-contact line can be calculated
at magnetic fields of an arbitrary strength. In such calculations,
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we shall suppose that Eqs. (2) and (3) are valid at all angles
θ including θ = π/2. As was mentioned above [see also
Eq. (15)], this supposition does not introduce essential errors
into the results. As is clear from formula (2), within this
approximation, a contribution of electron states located near
a point p3 to the special part of the 	 potential is determined
only by the magnetic field component H cos[θ (p3)] parallel
to the appropriate tangent t(p3) to the line, and hence the
magnetization of these states is parallel to this tangent, too.
Eventually, we obtain the following expressions for the 	

potential and the magnetization at T = 0 [51]:

	(ζ,H ) = − e3/2H 3/2

2π2h̄3/2c3/2

∫ L

0
dp3| cos θ |3/2

√
α(p3)K1(u),

(4)

M(ζ,H ) = e3/2H 1/2

2π2h̄3/2c3/2

∫ L

0
dp3| cos θ |1/2ν

√
α(p3)K(u)t,

(5)

where the integration in the Brillouin zone is carried out over
the band-contact line of the length L; θ = θ (p3) is angle
between t = t(p3) and H; ν = ν(p3) is a sign of cos θ ;

K1(u) = ζ
(− 1

2 ,[u] + 1
) + √

u
(
[u] + 1

2

) − 1
3u3/2, (6)

K(u) = 3
2ζ

(− 1
2 ,[u] + 1

) + √
u
(
[u] + 1

2

)
, (7)

ζ (s,a) is the Hurwitz zeta function,

u = [ζ − εd (p3)]2c

eh̄α(p3)H | cos θ | = cS(p3)

2πeh̄H
, (8)

S(p3) is the area of the Fermi-surface cross section by the
plane perpendicular to the magnetic field and passing through
the point with the coordinate p3, and [u] is the integer part
of u ([u] is the number of the Landau levels lying below
ζ at the point p3). In deriving Eqs. (4) and (5), we have
assumed the twofold degeneracy of the electron bands in
spin. In absence of this degeneracy (for a noncentrosymmetric
semimetal with a strong spin-orbit interaction), the right-hand
sides of formulas (4) and (5) should be divided by two. In the
case of a closed band-contact line, formula (5) reproduces Eqs.
(44), (46), and (47) of Ref. [5]. For nonzero T , the 	 potential
and the magnetization Mi(ζ,H,T ) can be calculated with the
relationships [52]:

	(ζ,H,T ) = −
∫ ∞

−∞
dε	(ε,H,0)f ′(ε), (9)

Mi(ζ,H,T ) = −
∫ ∞

−∞
dεMi(ε,H,0)f ′(ε), (10)

where f ′(ε) is the derivative of the Fermi function,

f ′(ε) = −
[

4T cosh2

(
ε − ζ

2T

)]−1

. (11)

In the topological semimetals, charge carriers (electron and
holes) are located near the band-contact line, and their chemical
potential ζ generally depends on the magnetic field, ζ = ζ (H ).
This dependence can be derived from the condition that the

charge carrier density n does not vary with increasing H ,

n(ζ,H ) = n0(ζ0), (12)

where n0 and ζ0 are the density and the chemical potential at
H = 0,

n(ζ,H ) = n0(ζ ) − ∂	

∂ζ
,

and 	 is given by Eq. (4). With Eqs. (1), (2), and (4), one finds
the following expressions for n0(ζ0) and n(ζ,H ) at T = 0:

n0(ζ0) = 1

2π2h̄3

∫ L

0
dp3

(ζ0 − εd (p3))2σ (ζ0 − εd (p3))

α(p3)
,

(13)

n(ζ ) = eH

2π2ch̄2

∫ L

0
dp3| cos θ |σ (ζ − εd (p3))

(
1

2
+ [u]

)
,

(14)

where σ (x) = 1 if x > 0, and −1 otherwise. The other nota-
tions are the same as in formulas (4)–(8). At nonzero tempera-
tures, n0(ζ0,T ) and n(ζ,H,T ) can be calculated with formulas
similar to Eq. (9). On calculating ζ (H ) with Eqs. (12)–(14), one
can find the magnetization as a function of n0 or ζ0, inserting
ζ (H ) into Eq. (5).

Consider now several limiting cases. In the weak magnetic
field, H � HT , the 	 potential described by formulas (4)
and (9) becomes proportional to H 2 [51]. Eventually, we arrive
at linear dependence of the magnetization on the magnetic
field,

M(ζ,H,T ) = e2H

12π2h̄c2

∫ L

0
dp3α(p3)f ′(εd ) cos θ t. (15)

This formula agrees with Eq. (35) of Ref. [5]. Note also that
points of the band-contact line for which θ is close to π/2 give
a small contribution to the magnetization. Equation (15) leads
to the following expression for the magnetization component
M‖ parallel to the magnetic field:

M‖(ζ,H,T ) = e2H

12π2h̄c2

∫ L

0
dp3α(p3)f ′(εd ) cos2 θ.

Interestingly, this expression can be easily understood from
the following considerations: at a given p3, the Landau levels
described by Eq. (2) look like the levels of electrons near the
Dirac point of graphene, εl = ±(2eh̄V 2

DHl/c)1/2, if the energy
of the Dirac point coincides with εd (p3), and the electron
velocity VD at this point is given by V 2

D = α| cos θ |/2. In
the weak magnetic field H perpendicular to the “graphene”
plane, the electron magnetic moment of the Dirac point has
the form [53]:

e2V 2
DH

3πc2
f ′(εd ) = e2α| cos θ |H

6πc2
f ′(εd ).

Multiplying this expression by dp3| cos θ |/2πh̄ (the number of
the “graphene” planes in the interval dp3) and integrating over
the band-contact line, we arrive at the above formula for M‖.

In strong magnetic fields, T � �εH , and if |ζ − εmin|,
|ζ − εmax| � �εH , the argument u in K(u) is small practically
for all points of the band-contact line, and hence K(u) ≈
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(3/2)ζ (−1/2,1) ≈ −0.98/π . In this case, formula (5) gives
Mi ∝ H 1/2 with a proportionality coefficient depending on
the direction of the magnetic field and the shape of the band-
contact line. In particular, we find the following expression for
longitudinal component of the magnetization:

M‖(H ) = 3ζ (−1/2,1)e3/2H 1/2

4π2h̄3/2c3/2

∫ L

0
dp3| cos θ |3/2

√
α(p3).

As in the case of weak magnetic fields, this formula can be
represented in the form:

∫ L

0 dp3| cos θ |MD/2πh̄, where MD

is the electron magnetic moment of the Dirac point in strong
magnetic fields [54],

MD = 3ζ (−1/2,1)e3/2VDH 1/2

√
2πh̄1/2c3/2

= 3ζ (−1/2,1)e3/2(α| cos θ |H )1/2

2πh̄1/2c3/2
.

As to condition (12), in strong magnetic fields and at low
temperatures, it leads to a shift of the chemical potential into
the interval: εmin < ζ < εmax.

In the region of the magnetic fields when T � �εH �
|ζ − εmin|, |ζ − εmax|, 2�, it follows from Eq. (5) [51] that the
magnetization is described by the usual formula [55] for the
de Haas-van Alphen effect, with the phase of the oscillations
being shifted by π [56]. This shift is the characteristic feature
of crystals with a band-contact line and is due to the Berry
phase π for the electron orbits surrounding this line [56,57]. In
the equivalent interpretation [58,59] allowing a nonzero spin-
orbit coupling, this shift is caused by the large value of the
orbital g factor, g = 2m/m∗, occurring even at a weak spin-
orbit interaction. Here, m∗ is the cyclotron mass and m is the
electron mass. As in usual metals [55], the dependence ζ (H )
is sufficiently weak in this region of the magnetic fields and
practically has no effect on the oscillations.

At small � when T < 2� � �εH � |ζ − εmin|, |ζ −
εmax|, the spectrum (2) transforms, in fact, into the spectrum
of a two-dimensional electron system since different Landau
subbands εl

c,v(p3) do not overlap, and they look like broadened
Landau levels. In this case, when H changes, the chemical
potential ζ (H ) moves together with one of these levels, and
then, at a certain value of H , it jumps from this level to the
neighboring one [55], Fig. 2. This strong dependence ζ (H )
noticeably changes the shape of the de Haas-van Alphen
oscillations (see the next section) and can mask the correct
value of the Berry phase when it is measured with these
oscillations. Indeed, the jumps occur at the fields Hl for which
n(ζ ) in Eq. (14) becomes independent of ζ . This situation is
realized when [u] in the right hand side of Eq. (14) is one and
the same integer l along the whole line. Then, Eq. (12) takes
the form

1

Hl

= eC

2π2ch̄2

(
l + 1

2

)
,

where the constant C is the ratio of
∫ L

0 dp3| cos θ | to n0(ζ0). It
follows from this equation that the dependence of 1/Hl on l

is a straight line that intersects the l axis at l = −1/2, i.e., the
Landau-level fan diagram plotted with the fields Hl looks like
in the case when the Berry phase 
B is equal to zero [55,56].
If �εH (i.e., H ) decreases and becomes comparable with 2�,

FIG. 2. The dependence of chemical potential ζ (measured from
ε0

d ) on 1/H calculated with Eqs. (12)–(14) at ζ (H = 0) ≡ ζ0 = 20�,
εd (p3) = � cos(2πp3/L), cos θ = 1, and α(p3) = const. We also
mark the Landau subbands, Eq. (2), by the dark background, and the
short and long dashes indicate the lower and the upper edges of these
subbands, respectively. The crossover described in the text occurs at
cζ 2

0 /eh̄αH ∼ 5.

a crossover from the quasi-two-dimensional electron spectrum
to the three-dimensional one occurs, the jumps in ζ smooth,
and the appropriate Landau-level fan diagram can give an
intermediate value of the “Berry phase” lying between 0
and π .

Strictly speaking, the quasi-two-dimensional electron spec-
trum in magnetic fields does not appear in every topological
semimetal with a small � since if cos θ → 0 in some part of
the line, the �εH becomes less than 2� there [see Eq. (2)].
For the quasi-two-dimensional spectrum to occur, a change
of the quantity u ∝ 1/ cos θ along the line should be less than
unity, i.e., 1/ cos θ may change only within a sufficiently small
interval. This imposes a restriction on the shape of the nodal
line. It is clear that the spectrum of this kind can appear for
a straight band-contact line, i.e., for a symmetry axis, since
θ (p3) is constant in this case. As will be shown in the next
section, the quasi-two-dimensional spectrum is also possible
in the case of band-contact lines terminating on the opposite
faces of the Brillouin zone for a certain region of the magnetic-
field directions. This type of the spectrum can also occur
for a closed band-contact line composed of nearly straight
arcs. This situation appears to take place in ZrSiS [29,30].
Besides, the spectra including the quasi-two dimensional and
three-dimensional parts can appear in the line-node semimetals
containing several small groups of charge carriers. In this case,
one may expect to find a noticeable dependence of ζ on H and
to obtain the intermediate values of 
B in the measurements
of the de Haas-van Alphen oscillations.

Using various oscillation effects observed in magnetic
fields, the Berry phase was recently found in the experiments
with ZrSiS [60–65] and with ZrSiTe or ZrSiSe [66], and the
intermediate values of this phase (other than 0 and π ) were
obtained for a number of the electron orbits. Taking into
account the above considerations, one may hypothesize that
the essential dependence of chemical potential on the magnetic
field takes place in these experiments. This dependence is
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probably associated with the existence of an electron group for
which the quasi-two-dimensional spectrum or the crossover to
this spectrum occurs in the magnetic-field range under study
in these semimetals.

For comparison, let us discuss the well-known measure-
ments of the Berry phase in graphene [67,68]. These measure-
ments revealed the genuine Berry phase π for the electron
orbits surrounding the Dirac point, even though one might
expect a strong dependence of the chemical potential on H

in this two-dimensional material. However, the oscillation
experiments described in Refs. [67,68] were carried out at fixed
values of the gate voltage. This means that the measurements
were made at constant chemical potential rather than at con-
stant number of the charge carriers, and so the true value of the
Berry phase was found in these experiments.

Finally, it is worth noting that the obtained results for the
magnetization can be useful in describing the magnetostriction
of the topological semimetals [69].

IV. RHOMBOHEDRAL GRAPHITE

We now apply the above results to the rhombohedral
graphite [20,21,47,48]. According to Ref. [48], in this material
there is a band-contact line that has the shape of a helix
terminating on the opposite faces of the Brillouin zone, Fig. 1.
In the simplest model of Ref. [48], the helix is described as
follows:

px = p0 cos φ, py = p0 sin φ, pz = h̄

d

(
φ − π

6

)
, (16)

where the px-py plane of the quasimomentum space coincides
with the basal plane of the crystal, and the third component
of the quasimomentum, pz, is perpendicular to this plane; φ

is the angle defining the direction of the quasimomentum in
the px-py plane; d ≈ 3.35 Å is the interlayer distance in the
rhombohedral graphite, and p0 = γ1/vF is a constant, with
γ1 ≈ 0.39 eV, vF = 1.5γ0a0/h̄ ≈ 1.04 × 106 m/sec, a0 =
1.42 Å, and γ0 = 3.2 eV being the parameters of the model.
Within this model, the electron spectrum near the helicoidal
band-contact line reduces to Eq. (1) with εd (p3) = 0 (from
here on, we measure electron energies from the energy of the
band degeneracy), a⊥ = 0, and

b11 = v2
F ,

b22 = v2
F

(
1 + p̃2

0

)
, (17)

α(p3) = 2v2
F

√
1 + p̃2

0,

where p̃0 ≡ p0d/h̄ ≈ 0.19. Thus, in the model, b11, b22 and
α(p3) are constant along the line, and the parameter � ≡
εmax − εmin = 0. With formulas (16), one can find the tangent
vector t to the line,

t = 1√
1 + p̃2

0

(−p̃0 sin φ,p̃0 cos φ,1), (18)

and the infinitesimal element dp3,

dp3 =
h̄

√
1 + p̃2

0

d
dφ, (19)

which are both expressed in terms of the angle φ.

Let the magnetic field H have the components

H = H (sin θH cos φH , sin θH sin φH , cos θH ),

where the angles θH and φH define its direction relative to the
crystal axes x, y, and z. Then, a simple calculation gives

cos θ = 1√
1 + p̃2

0

λ(θH ,ϕ), (20)

u = ζ 2c

2eh̄v2
F |λ(θH ,ϕ)|H , (21)

where ϕ = φ − φH ,

λ(θH ,ϕ) = cos θH − p̃0 sin θH sin ϕ. (22)

With Eqs. (17)–(22) and (5), we obtain the following
expressions for the magnetization components at T = 0:

Mxy = − p̃0vF H 1/2

√
2π2d

( e

h̄c

)3/2
h⊥

∫ π

−π

dϕ sin ϕ|λ|1/2νλK(u),

(23)

Mz = vF H 1/2

√
2π2d

( e

h̄c

)3/2
∫ π

−π

dϕ|λ|1/2νλK(u), (24)

where λ = λ(θH ,ϕ), νλ is the sign of λ, the direction of the
component Mxy in the x-y plane is determined by the unit
vector h⊥ = (cos φH , sin φH ,0), u is given by Eq. (21). With
Eqs. (23) and (24), one can also calculate the magnetic torque
K = H (Mz sin θH − Mxy cos θH ). For weak magnetic fields,
Eq. (15) yields

M = e2v2
F H

6πc2d
f ′(0)

(
p̃2

0 sin θH h⊥ + 2 cos θH z
)
, (25)

where z is the unit vector along z axis. Since p̃2
0 ≈ 0.04, this

formula shows that at π
2 − θH � 0.02, the magnetization is

mainly directed along z axis, and |Mz/Hz| can reach a large
value of the order of 0.016/T where T is measured in Kelvin.

The background susceptibility tensor χ0
ij for rhombohedral

graphite has the two components: χ0
zz and χ0

xx = χ0
yy = χ0

⊥,
and hence the total magnetization Mtotal is described by the
formulas

M total
z = Mz + χ0

zzH cos θH ,

M total
xy = Mxy + χ0

⊥H sin θH h⊥.

The constants χ0
zz and χ0

⊥ are independent of the temperature,
chemical potential and magnetic field, and so the background
terms have no effect on dependences of the total magnetic
susceptibility on H , ζ , and T . But it is well to bear in
mind that these terms can be generally essential in analyzing
experimental θH -dependencies of M total

z and M total
xy .

Consider the case of the “ideal” semimetal (without any
doping) when ζ = 0. In this situation, it follows from for-
mulas (10), (23), and (24) that for any component Mi of
the magnetization, the combination T Mi/H depends only on
the direction of the magnetic field and on the ratio H/T 2,
i.e., on H/HT where we define HT from the condition
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FIG. 3. Dependencies of T Mz/H (solid lines) and of
T Mxy/(p̃0H ) (dashed lines) on H/HT calculated numerically
with Eqs. (10), (23), and (24) at ζ = 0 and θH = 0, π/4 for Mz and
θH = π/2, π/4 for Mxy . The HT is given by Eq. (26). At H/HT � 1,
the combinations T Mz(H )/H and T Mxy(H )/H are proportional to
(HT /H )1/2.

|ε1
c,v − ε0

c,v|θ=0 = T ,

HT = cT 2

2eh̄v2
F

√
1 + p̃2

0

. (26)

In Fig. 3, we show the H dependencies of the combinations
T Mz/H and T Mxy/(p̃0H ) for θH = 0, π/4, and θH = π/4,
π/2, respectively. It is seen that at weak fields H � HT , the
magnitude of the magnetic susceptibility |Mi/H | is maximum
and is proportional to 1/T in agreement with Eq. (25). For
strong magnetic fields H � HT , we find that T Mi/H ∝
(HT /H )1/2, i.e., Mi ∝ H 1/2 in accord with the result of the
previous section. At fixes H and T , the angular dependencies
of Mz and Mxy are shown in Fig. 4. The component Mz is
zero when the magnetic field lies in the x-y plane, whereas
Mxy vanishes at θH = 0. The characteristic angle θ0 visible as
a crossover point in the plot is determined by the equality,

cot θ0 = p̃0. (27)

The origin of this crossover is the following. At θH > θ0, points
in the band-contact line exist for which the tangent to the line is
perpendicular to the magnetic field, whereas for θH < θ0, such
points are absent. In our approximation, these points do not give
any contribution to the magnetization, and the appearance of
these points at θH > θ0 leads to the crossover.

Of course, for real samples of the rhombohedral graphite,
one cannot expect that the doping is completely absent, and
ζ = 0. Besides, as was mentioned in Introduction, the param-
eter � always differs from zero in the line-node semimetals. A
more accurate model of Ref. [48] for electron energy spectrum
of the rhombohedral graphite shows that εd has the form:

εd ≈ −� cos(3pzd/h̄) = −� sin 3φ, (28)

where � ≈ 2γ4γ3γ1/γ
2
0 ≈ 1 meV, γ4 = 44 meV, and γ3 ≈

315 meV. The data of Figs. 3 and 4 will remain unchanged if ζ

and � do not exceed T or �εH , i.e., if �,ζ � max(T ,�εH )
where �εH [meV] ∼ 0.4

√
H [Oe]. In Fig. 5, we present the

H dependence of Mz/H when at least ζ does not satisfy this

FIG. 4. Dependencies of Mz/H (the solid line) and of Mxy/(p̃0H )
(the dashed line) on the tilt angle θH of the magnetic field H = 10 T.
The dependencies are calculated numerically with Eqs. (10), (23),
and (24) at the temperature 4.2 K and ζ = 0. The angle θ0 is defined
by Eq. (27). With decreasing H , the dependencies remain qualitatively
unchanged, but values of Mz(0)/H and Mxy(π/2)/H increase in
agreement with Fig. 3.

restriction. The de Haas-van Alphen oscillations are clearly
visible in the figure. The dashed line shows the oscillations
calculated at constant ζ . Since the phase of these oscillations
is determined by the Berry phase 
B for the appropriate
electron orbits [56], this 
B can be found with the Landau-level
fan diagram shown in the upper inset of Fig. 5. (As ex-
pected, this inset yields 
B = π .) However, �εH at the Fermi
level exceeds 2� for H > Hcr, where Hcr ∼ 4�ζc/eh̄α ∼
2 kOe is the crossover field separating the regions of the
quasi-two-dimensional and three-dimensional regimes of the
oscillations. In other words, for the whole interval of the
magnetic fields presented in Fig. 5, the electron spectrum is
quasi-two-dimensional, and one has δu < 1 for such magnetic
fields. Here δu ≈ (4�/ζ )u is the variation of u along the
band-contact line. Then, as explained in the previous section,
the chemical potential exhibits jumps when the middle of
the interval between the appropriate Landau subbands crosses
ζ0, the chemical potential at zero magnetic field, Fig. 5. At
these H , the magnetization Mz experiences jumps, too, and
the positions of these jumps do not coincide with the sharp
peaks of Mz/H calculated at a constant chemical potential. In
other words, there is a shift of the oscillations associated with
the dependence ζ (H ), and this shift imitates a change of the
Berry phase 
B . In particular, the lower inset in Fig. 5 suggest
that 
B = 0 although the Berry phase is still equal to π for
the electron orbits in the magnetic fields. Note also that when
the dependence ζ (H ) is taken into account, the shape of the
oscillations essentially changes as compared to the shape of
the oscillations calculated at ζ = const.

If the magnetic field is tilted away from the z axis, the
cos θ is no longer constant along the line, and the crossover
from the three-dimensional electron spectrum to the quasi-two-
dimensional one develops at the higher magnetic fields than
2 kOe. For the quasi-two-dimensional spectrum to occur, it is
necessary that (δ cos θ/ cos θ )u < 1 where δ cos θ is the vari-
ation of cos θ along the line. Using Eqs. (20)–(22), we obtain
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FIG. 5. (Top) Dependencies of Mz/H on H at T = 0 and the
magnetic field directed along z axis. The dependencies are calculated
numerically with Eqs. (5), (7), (8), (17)–(20), (22), and (28). The
dashed line corresponds to the constant chemical potential ζ = 70
meV, the solid line shows Mz/H at ζ0 = 70 meV, taking into account
the H -dependence of ζ presented in the bottom panel. The inset: the
Landau-level fan diagram plotted with the positions of the maxima
(circles) and the minima (squares) of the dashed curve in the main
top panel. (Bottom) The H dependence of the chemical potential
calculated with Eqs. (12)–(14) at ζ0 = 70 meV. The inset shows the
Landau-level fan diagram plotted with the positions of the maxima of
the solid curve in the top panel.

(δ cos θ/ cos θ ) ≈ 2p̃0 tan θH and apart from (4�/ζ )u < 1, the
additional condition on H : cζ 2p̃0 tan θH/(eh̄V 2

F cos θH ) < H .
At ζ = 70 meV, this condition has no effect on the crossover
field Hcr ∼ 2 kOe when θH � 10◦. However, at θH > 10◦,
the crossover magnetic field is determined by this additional
condition and increases due to the factor tan θH/ cos θH .

Interestingly, some results of Figs. 4 and 5 can be semiquan-
titatively understood if we formally set p̃0 � 1 in the above
formulas. In this case the band-contact helix will look like a
practically straight line terminating on the opposite faces of the
Brillouin zone, λ in Eq. (22) tends to cos θH , Mxy defined by
Eq. (23) becomes small, and Eqs. (23) and (24) at cot θH � p̃0

transform into

Mz ≈ vF (2H | cos θH |)1/2

√
πd

( e

h̄c

)3/2
νH K(u),

Mxy ≈ p̃2
0

4
tan θH h⊥Mz, (29)

where νH is a sign of cos θH , and u is given by Eq. (21) with
λ = cos θH . At small u, one has K(u) ≈ const, and Mz is

proportional to | cos θH |1/2, whereas Mxy ∝
sin θH/| cos θH |1/2; cf. Fig. 4. Since at u � 1, K(u) is
the oscillating function of u,

K(u) ≈ 0.5
√

u(u − [u] − 0.5), (30)

Eqs. (29) shows that Mz and Mxy oscillate with changing
H | cos θH |, cf. Fig. 5.

V. CONCLUSIONS

Whatever the shape of the band-contact line in a topological
line-node semimetal, formulas (5), (7), (8), and (10)–(15)
enable one to calculate the magnetization of this semimetal
either as a function of chemical potential or as a function
of the charge-carrier density in it. The formulas take into
account a dispersion of the degeneracy energy εd along the
nodal line, but it is implied in their deriving that the difference
εmax − εmin ≡ 2� between the maximal and minimal values of
εd is essentially less than the characteristic scale (∼1 eV) of the
electron-band structure of crystals. In the case of the semimetal
with a closed band-contact line lying in a plane perpendicular
to an axis of n-fold symmetry, the obtained formulas reduce to
those derived in Ref. [5].

At low temperatures the magnetization of the line-node
semimetals generally exhibits the de Haas-van Alphen oscilla-
tions, and these oscillations are shifted in phase as compared
to the case of usual metals due to the Berry phase π for
electron orbits surrounding the band-contact line. This shift
is the characteristic property of the topological line-node
semimetals. However, the H dependence of the chemical
potential can be strong in these semimetals, and the shift of
the oscillations can differ from π , simulating the case of the
Berry phase deviating from this value.

To illustrate the obtained formulas, we apply them to rhom-
bohedral graphite and calculate dependencies of the magnetic
susceptibility Mi/H of this semimetal on the temperature and
the magnetic field, Figs. 3–5. In particular, for magnetic fields
directed along the z axis, we find that the strong dependence
of the chemical potential on the magnetic field noticeably
changes the shape of the de Haas-van Alphen oscillations and
completely masks their phase shift caused by the Berry phase.

APPENDIX: ELECTRON SPECTRUM
IN A MAGNETIC FIELD

Here we justify formulas (2) and (3). If θ = 0, these for-
mulas exactly describe the electron spectrum in the magnetic
field [36]. At a nonzero θ , for points of the line, pc, at which
εd (p3) reaches its minimum εmin or maximum εmax values,
i.e., where εd (p3) can be represented in the form εd (p3) ≈
εmin + B(p3 − pc)2 or εd (p3) ≈ εmax − B(p3 − pc)2 with a
positive constant B, formulas (2) and (3) approximately hold
in the leading order in the small parameter η2 [36],

η2 = B|ζ − εc| tan2 θ

V 2
� 1. (A1)

Here, V 2 ∼ (b11b22)1/2, ζ is the chemical potential of the
electrons in a semimetal, εc = εmin or εmax, and it is implied
in Eq. (A1) that θ is not close to π/2. Consider now a point
of the line, p(0)

3 , at which a3 ≡ dεd (p3)/dp3 �= 0. At this point
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of general position, the spectrum described by Eq. (1) can be
formally obtained, setting b33 → 0 in the spectrum of the Dirac
point:

εc,v = εd

(
p

(0)
3

) + a3δp3 + a⊥p⊥ ± Ec,v,

E2
c,v = b11(p1)2 + b22(p2)2 + b33(δp3)2, (A2)

where δp3 ≡ p3 − p
(0)
3 . In a magnetic field H = nH directed

along an arbitrary unit vector n, the exact spectrum of electrons
described by Hamiltonian (A2) has the form [5,36]

εl
c,v(pn) = εd (p(0)

3 ) + vpn ±
[
eh̄αDH

c
l + L (pn)2

]1/2

, (A3)

where l = 0,1,2, . . . ; pn is the component of the quasimomen-
tum along the magnetic field,

αD = 2R
3/2
n

b11b22b33ñ2
,

L = Rn

b11b22b33ñ4
,

Rn = b11b22b33(̃n2 − [̃n × ã]2),

v = (ãñ)

ñ2
, (A4)

and the components of the vectors ñ and ã are defined by the
relations:

ñi ≡ ni√
bii

, ãi ≡ ai√
bii

. (A5)

In the limit b33 → 0, we find

Rn ≈ b11b22
(
n2

3(1 − ã2
⊥) − a2

3

(
ñ2

1 + ñ2
2

))
,

v ≈ a3

n3
,

αD ≈ 2(b11b22)1/2(1 − ã2
⊥)3/2n3

(
1 − a2

3

(
ñ2

1 + ñ2
2

)
n2

3(1 − ã2
⊥)

)
,

L ∝ b33 → 0, (A6)

where n3 = cos θ . Estimating the ratio a2
3(ñ2

1 + ñ2
2)/n2

3(1 −
ã2

⊥), we obtain

a2
3

(
ñ2

1 + ñ2
2

)
n2

3(1 − ã2
⊥)

∼ a2
3 tan2 θ

V 2
∼ �2 tan2 θ

L2V 2
, (A7)

where 2� ≡ εmax − εmin, and L is the length of the band-
contact line in the Brillouin zone. Since � is assumed to
be small as compared to the characteristic scale LV ∼ 1 eV
of the electron band structure in the line-node semimetals,
the above ratio is small, too, and it does not exceed the
parameter η2. Hence αD ≈ α cos θ , where α is given by Eq. (3).
With the relation vpn ≈ (a3/ cos θ )pn = a3δp3, we find that
formula (A3) reduces to Eq. (2) for a point p

(0)
3 of general

position.
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