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Fractionalized Fermi liquids and exotic superconductivity in the Kitaev-Kondo lattice

Urban F. P. Seifert,1 Tobias Meng,1 and Matthias Vojta1,2

1Institut für Theoretische Physik, Technische Universität Dresden, 01062 Dresden, Germany
2Center for Transport and Devices of Emergent Materials, Technische Universität Dresden, 01062 Dresden, Germany

(Received 29 October 2017; revised manuscript received 21 January 2018; published 12 February 2018)

Fractionalized Fermi liquids (FL∗) have been introduced as non-Fermi-liquid metallic phases, characterized
by coexisting electron-like charge carriers and local moments which form a fractionalized spin liquid. Here we
investigate a Kondo lattice model on the honeycomb lattice with Kitaev interactions among the local moments,
a concrete model hosting FL∗ phases based on Kitaev’s Z2 spin liquid. We characterize the FL∗ phases via
perturbation theory, and we employ a Majorana-fermion mean-field theory to map out the full phase diagram.
Most remarkably we find nematic triplet superconducting phases which mask the quantum phase transition
between fractionalized and conventional Fermi liquid phases. Their pairing structure is inherited from the Kitaev
spin liquid; i.e., superconductivity is driven by Majorana glue.
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I. INTRODUCTION

Metals with strong electronic correlations can host a vari-
ety of fascinating phases, including unconventional spin and
charge density waves as well as high-temperature supercon-
ductivity. In addition, they often show marked deviations from
the Fermi-liquid phenomenology. These deviations can have
various sources: anomalously low coherence temperatures,
nearby quantum critical points, quenched disorder, or they can
be the property of genuine non-Fermi-liquid phases [1–4].

While stable non-Fermi-liquid behavior is generic to
one-dimensional interacting electrons, theoretically well-
established examples in higher dimensions are rare. One is
given by fractionalized Fermi-liquid phases, dubbed FL∗.
Motivated by heavy-fermion non-Fermi liquids, FL∗ were
originally proposed as phases of Kondo-lattice models where
Kondo screening is ineffective and the local moments form a
fractionalized spin-liquid state instead [5,6]. In the context of
multiorbital or multiband Hubbard models, an FL∗ phase is
an orbital-selective Mott phase where a subset of bands have
undergone a Mott transition [7,8]. A defining characteristic
of FL∗ is the presence of a Fermi surface of conventional
charge-e spin-1/2 quasiparticles which, however, encloses a
momentum-space volume determined by conduction electrons
alone and therefore, in general, violates Luttinger’s theorem in
a quantized fashion.

More recently, fractionalized Fermi liquids have been
suggested as candidate phases for the pseudogap regime of
underdoped cuprates [9–11], a concept which was inspired by
early ideas of cuprates being described as doped spin liquids
[12]. The main difference to the heavy-fermion case is that,
for a one-band description of cuprates, local moments and
doped holes coexist in the same band, such that an asymptotic
decoupling of the two FL∗ components cannot be achieved.

While the proof of the existence of fractionalized Fermi
liquids in two-band models only relies on the existence of frac-
tionalized spin liquids, concrete calculations have been mainly
restricted to toy models, and discussions for more realistic
lattices and interactions are scarce. Given that the last decade

has seen tremendous progress in finding and characterizing
spin-liquid states in concrete microscopic settings [13,14], it
is a timely issue to close this gap; this is the purpose of this
paper.

To this end, we will utilize Kitaev’s model for a Z2 spin
liquid on the honeycomb lattice [15] and augment this by a band
of conduction electrons, with a Kondo-type coupling between
the electrons and the local moments, Fig. 1(a). The resulting
Kitaev-Kondo lattice hosts an FL∗ phase which can be treated
in a controlled fashion, and we discuss its key properties. We
then use a Majorana-based mean-field theory to study the full
phase diagram. Most interestingly, we find emergent exotic
superconducting states at intermediate coupling: These states
mask the quantum phase transition between the fractionalized
Fermi liquid at small Kondo coupling and a more conventional
heavy Fermi liquid at large Kondo coupling, Fig. 1(b). The
superconducting states display triplet pairing, break discrete
rotation and reflection symmetries of the underlying model,
and show accidental nodes in the excitation spectrum over
significant portions of parameter space. We argue that many
of these unconventional properties are inherited from the
Kitaev spin liquid, i.e., emerge from those of the matter
Majorana fermions of the Kitaev model. This demonstrates
that superconductivity here is driven by “Majorana glue.”

We note that superconducting phases have also been ob-
tained in mean-field [16–19] and approximate RG [20] studies
of the doped Heisenberg-Kitaev model. However, the character
of those superconducting phases is significantly different from
the ones of the present work, as will become clear in the course
of the paper.

The remainder of the paper is organized as follows: In Sec. II
we introduce the Kitaev-Kondo lattice model. In Sec. III we
discuss the physics of the FL∗ phase using perturbation theory
in the Kondo coupling. Section IV describes the Majorana-
based mean-field theory and discusses aspects of gauge re-
dundancies and projective symmetries. Section V is devoted
to the results of the mean-field treatment, i.e., the mean-field
phases and phase diagrams. In particular, we will highlight
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FIG. 1. (a) Sketch of the Kitaev-Kondo-lattice model: Conduction
electrons move on a honeycomb lattice with hopping energy t (upper
layer) and are coupled locally, via a Kondo interaction JK, to spins
which interact among themselves via compass interactions Kx,y,z

(lower layer). (b) Schematic phase diagram of the Kitaev-Kondo
lattice as a function of Kondo coupling JK and temperature T , keeping
the conduction-band filling nc and the Kitaev coupling K fixed. Solid
lines are symmetry-breaking phase transitions, while dashed lines
denote crossovers (which become phase transitions in the mean-field
treatment); for details see text.

the properties of the emergent superconducting phases. A
discussion and outlook will close the paper. Technical details,
including a full symmetry analysis of the model, are relegated
to the appendices.

II. KITAEV-KONDO-LATTICE MODEL

For definiteness, we consider a Kondo-lattice model where
both conduction and local-moment electrons live on a two-
dimensional bipartite honeycomb lattice; see Fig. 1(a). The
key ingredient is the compass (or Kitaev) interaction between
the local moments [15]. The total Hamiltonian is H = Ht +
HK + HJ with

Ht = −t
∑
〈ij〉σ

(c†iσ cjσ + H.c.),

HK = −
∑
〈ij〉α

KαSα
i Sα

j , (1)

HJ = 1

2

∑
iσσ ′α

J α
Kc

†
iσ τ α

σσ ′ciσ ′Sα
i ,

in standard notation. The first term represents the conduction-
electron kinetic energy, the second the Kitaev coupling among
the spin-1/2 local moments, with 〈ij 〉α denoting an α bond

on the lattice (α = x,y,z), and the last term represents the
local Kondo coupling, with τα the vector of Pauli matrices. A
chemical potential μ is applied to the conduction electrons to
control their filling,

nc = 1

N

∑
iσ

c
†
iσ ciσ , (2)

where N is the number of unit cells. We note that nc = 2
corresponds to the “half-filled” case where, in the absence of a
coupling to the local moments, the chemical potential is at the
Dirac point. We will concentrate on nc � 2; phases for nc � 2
are related by particle-hole symmetry.

The Kitaev model HK alone describes an exactly solvable
Z2 spin liquid [15]. Its degrees of freedom are itinerant
“matter” Majorana fermions and static Z2 gauge fluxes. The
matter-Majorana spectrum is gapless and of Dirac type for
isotropic couplings, Kx = Ky = Kz ≡ K , but acquires a gap
for large anisotropies. In this paper, we will assume isotropic
Kitaev couplings as well as isotropic Kondo couplings, J x

K =
J

y

K = J z
K ≡ JK, unless otherwise noted.

In analogy to earlier work [5], the Kitaev-Kondo-lattice
model H (1) is expected to host a fractionalized Fermi liquid
for JK � K,t because the Kitaev spin liquid is stable against a
small coupling to conduction electrons. Conversely, the model
is expected to realize a heavy Fermi liquid for K � JK ∼ t

(or K � TK where TK is the Kondo temperature) due to robust
Kondo screening of the local moments.

The symmetry properties of the model (1), with isotropic
Kitaev and Kondo couplings, are dictated by the symmetries
of the Kitaev model HK . Its spin structure breaks continuous
SU(2) spin rotation symmetry, but combinations of spin and
lattice transformations are discrete symmetries of the model
[16,21]. A full analysis, presented in Appendix A, shows
that the symmetries at the K point generate the symmetric
group S4.

III. FRACTIONALIZED FERMI LIQUIDS AT SMALL
KONDO COUPLING

We start the analysis of the Kitaev-Kondo-lattice model
(1) by considering the limit of small Kondo coupling JK. For
JK = 0 we have two noninteracting subsystems described by
Ht and HK alone. Perturbation theory in JK is regular, as the
Z2 spin liquid described by HK is protected by its gap to Z2

flux excitations; hence small JK is an irrelevant coupling. The
resulting phase is a fractionalized Fermi liquid, and we analyze
its properties perturbatively.

A. Effect of JK on spin liquid

First, we discuss how the Kondo coupling modifies the
properties of the spin-liquid component. The perturbation
theory is organized in powers of HJ and hence in the number
of electron-spin interactions: The connected diagrams at nth
order in perturbation theory represent processes in which an
electron interacts n times with the local moments. The Hilbert
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space of HK alone can be divided into flux sectors which are
separated by energy gaps of order K . Focusing at low energies,
we restrict our attention to the lowest (flux-free) sector by
projecting the effect of the perturbation back into the flux-free
state; i.e., states with excited fluxes may only occur as virtual
intermediate states [15].

Inspecting the connected diagrams at any order in perturba-
tion theory, we find that the Kondo coupling induces retarded
spin exchanges between the local moments that the electron
has interacted with in the respective process. The form of these
exchange couplings is strongly restricted by the requirement to
return the system to the flux-free sector. Because the interaction∑

σσ ′ J
α
Kc

†
iσ τ α

σσ ′ciσ ′Sα
i creates two fluxes in the hexagons next

to the α bond of site i, it is for example clear that there
is no process of first order in JK that keeps the system in
the flux-free sector. Since, in addition, the system has time-
reversal symmetry T , which flips the spins, T Sα

i T −1 = −Sα
i ,

we more generally find that the instantaneous part of all
exchange couplings involving an odd number of spins must
vanish.

The first nonvanishing contribution in perturbation theory
is thus second order in JK. To leave the system in the flux-free
sector, the second electron-spin interaction needs to annihilate
the fluxes created by the first one. We find that the Kondo
coupling then simply renormalizes the Kitaev couplings by a
correction of the order of J 2

K/max(t,K); see Appendix B. In
higher orders, the Kondo coupling leads to couplings involving
a larger number of matter Majoranas. Besides processes that
correspond to the creation and subsequent annihilation of
pairs of fluxes at different locations in the lattice, there are
also ring exchange couplings (at sixth order in perturbation
theory, there is for example a processes involving the six local
moments around a hexagon), and processes in which fluxes are
subsequently created and annihilated at all hexagons alongside
paths through the lattice that induce long-range hoppings for
the matter Majoranas.

We conclude that the lowest flux sector will be described by
weakly interacting matter Majorana fermions with renormal-
ized dispersion. Importantly, for isotropic Kitaev couplings the
Majorana spectrum will remain gapless for finite small JK at
any order in perturbation theory: The Dirac points are protected
by a combination of time-reversal and lattice symmetries.

Beyond the flux-free sector, the Kondo coupling leads to
dynamics for the fluxes (visons): spin flips between electrons
and local moments allow the fluxes to hop. For a time-reversal
symmetric system, the Kondo coupling induces a (gapped)
vison dispersion at order J 2

K.
In addition, the conduction electrons mediate a Ruderman-

Kittel-Kasuya-Yosida (RKKY) interaction between the local
moments which—by analogy to graphene—scales as J 2

K and
decays as 1/R3 (1/R2) for nc = 2 (nc 	= 2) [22–24], where
R is the distance between two local moments. This interaction
implies that spin correlations become generically long-ranged,
〈
Si · 
Sj 〉 ∝ 1/R3

ij (1/R2
ij ) for nc = 2 (nc 	= 2).

Importantly, the generated interactions will not destabilize
the underlying spin liquid: Spontaneous symmetry breaking
is suppressed for small JK because of the vanishing Majorana
density of states in the low-energy limit. This follows from the
analogy to graphene, which remains a gapless semimetal even
in the presence of long-range Coulomb interactions [25].

B. Effect of JK on conduction electrons

Second, we discuss the scattering of conduction electrons
off local moments, restricting our attention to small JK and low
T . Instead of using bare perturbation theory, we account for
higher-order effects by noting that the local-moment operator
in general acquires a decay channel into two matter Majoranas
[26]. This yields the most important low-energy scattering
process for c electrons, with a self-energy Im�c scaling as ω4

for the gapless Kitaev model because of the Dirac nature of the
matter Majoranas; this is subleading compared to interaction
effects among the c electrons. Trivially, for the anisotropic
gapped Kitaev model, low-energy scattering is fully absent.

C. Thermodynamic and transport properties

Finally, the Kondo coupling also constitutes a subleading
perturbation for the low-temperature thermodynamics such as
specific heat, simply because the density of states of the matter
Majoranas vanishes linearly at their Dirac node (again for the
gapless Kitaev model), while the conduction electrons have a
finite density of states at the Fermi level (we assume a filling
nc 	= 2 of the conduction electrons, i.e., away from half filling,
in the remainder). Similarly, the Wiedemann-Franz law should
hold: even in the presence of weak disorder, which induces a
finite density of states, we expect the thermal conductivity of
the matter Majoranas to go to a universal constant [27], while
the thermal conductivity of the metallic conduction electrons
diverges for divergent scattering times.

D. How topological is a fractionalized Fermi liquid?

Given that an FL∗ phase is based on a fractionalized spin
liquid, it is worth asking which of its topological properties it
inherits. To keep the following discussion simple, we concen-
trate on an FL∗ phase derived from a gapped Z2 spin liquid,
i.e., having in mind the gapped anisotropic Kitaev model, but
most of the following applies more generally.

(i) Any FL∗ phase displays a Fermi surface whose
momentum-space volume is given by that of the conduction
electrons alone,

VFL∗ = Kd (nc mod 2), (3)

where Kd = (2π )d/(2v0) is a phase space factor, with v0 the
unit cell volume, and the factor of 2 accounts for the spin
degeneracy of the bands. In contrast, in a Fermi liquid the
Fermi volume is determined by the total number of electrons,

VFL = Kd (ntot mod 2) (4)

with ntot = nc + nf where nf is the number of local-moment
electrons per unit cell. Hence, FL∗ is in general characterized
by a quantized violation of Luttinger’s theorem. We note that
in the present case of a honeycomb lattice,VFL∗ = VFL because
nf = 2.

(ii) FL∗ is characterized by nontrivial emergent excitations
of the spin-liquid component, in addition to conventional
electronic quasiparticles. In fact, it is these excitations which
enable a violation of Luttinger’s theorem [5,28].

(iii) The existence of gapped vison excitations, which
protect FL∗ and which cannot be created individually by any
local operator, implies the existence of topologically distinct
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sectors if placed on a torus. These sectors are distinguished
by visons selectively threaded through the torus holes, with
degenerate ground states in the thermodynamic limit. Note,
however, that the coupling between the sectors does not scale
exponentially to zero with increasing system size, as is the case
in a fully gapped spin liquid. In FL∗, the fact that correlation
functions become in general long-ranged changes the finite-
size scaling of the total energy; i.e., finite-size corrections are
generically of power-law type.

(iv) The combination of the spin-liquid and conduction-
electron components can be expected to lead to violations of
the area law of the entanglement entropy [29], with details
depending on the nature of the underlying spin liquid. A
detailed study of this is left for future work.

IV. MAJORANA-FERMION MEAN-FIELD THEORY

The model H (1) is not exactly solvable in the presence of
a finite Kondo coupling. In order to go beyond perturbation
theory, we pursue an approximate solution using a suitable
mean-field approach. In contrast to most mean-field treatments
of Kondo-lattice models in the literature, the Majorana mean-
field theory described below has the advantage that it is exact
in the JK = 0 case; i.e., it correctly reproduces the physics of
the Kitaev spin liquid.

A. Majorana representation

Spin liquids are commonly studied by representing the spin
operator of local moments in terms of slave fermions fjσ

as Sα
i = f

†
iσ τ α

σσ ′fiσ /2 along with the local single-occupancy
ni↑ + ni↓ = 1 constraint. There is a SU(2) gauge redundancy
in the above description which amounts to taking the Nambu
spinor (f↑,f

†
↓ )T �→ W (f↑,f

†
↓ )T for some W ∈ SU(2) [30].

The Kitaev model HK , however, can be solved exactly
by using a representation of a local moment Sα

i = iχ0
i χα

i in

terms of Majorana fermions χ
μ

i = χ
μ

i

† (in real space and
μ = 0, . . . ,3) with the anticommutation relations {χμ

i ,χν
j } =

δμνδij [31] and the local constraint Di = 4χ0
i χ1

i χ2
i χ3

i = 1 for
physical states [15].

It has been pointed out [16] that by decomposing the slave
fermions into Majorana fermions one can obtain Kitaev’s
representation of the spin operators. Specifically, one can
choose f↑ = (χ0 + iχ3)/

√
2 and f↓ = (iχ1 − χ2)/

√
2 and

obtain [32]

Sα
i = i

4

(
χ0

i χα
i − χα

i χ0
i − εαβγ χ

β

i χ
γ

i

)
; (5)

this is the representation to be used below. The single-
occupancy constraint

0 = ni↑ + ni↓ − 1 = iχ0
i χ3

i + iχ1
i χ2

i (6)

can be shown to generate the operator D = 4χ0χ1χ2χ3 with
the constraint D = 1 for physical states (cf. Appendix F). For
states which fulfill the constraint, the form of Sα given above
reduces to the representation used by Kitaev, Sα = iχ0χα .
Equation (5) can be written in a more compact manner by
introducing the four-vector χ with components χμ and the
spin operator as Sα

i = (i/4)χT Mαχ , where the matrices Mα ∈

SO(4) are given by

M1 = τ 3 ⊗ iτ 2, M2 = iτ 2 ⊗ τ 0, M3 = τ 1 ⊗ iτ 2.

Note that [Mα,Mβ] = 2εαβγ Mγ , so that the matrices Mα

furnish a representation of SU(2). In the following, we will
refer to theses matrices as spin matrices. Spin rotations can be
implemented by transforming χ �→ Rχ , where R ∈ SO(4) is
formed by an appropriate linear combination

RS = a01 + aα Mα (7)

with a2
0 + aαaα = 1.

The above mentioned SU(2) redundancy manifests itself in
the present formalism as the invariance of Sα under χ �→ Gχ ,
where G is an SO(4) matrix in the subspace that commutes
with Mα . A basis for this subspace is given by the matrices

G1 = −τ 0 ⊗ iτ 2, G2 = −iτ 2 ⊗ τ 3, G3 = −iτ 2 ⊗ τ 1,

where [Gα,Gβ] = 2εαβγ Gγ , so that these matrices fur-
nish another SU(2) representation. Indeed, SO(4) � SU(2) ⊗
SU(2)/Z2. We will refer to the Gα as isospin matrices. These
matrices can be understood as the Majorana analog of the Pauli
matrices for the Nambu spinor introduced above.

The isospin matrices naturally define the isospin J α =
(i/4)χT Gαχ , which is sometimes also referred to as pseu-
dospin. It is the generator of particle-hole and U(1)-charge
transformations and first been discussed in the large-U limit
of the Hubbard model [33,34].

Note that the constraint amounts to working with isospin
singlet states [30] with

χT Gαχ = 0. (8)

Kitaev’s representation of the spin operators is obtained in the
present formalism by taking

Sα = i

4
χT [Mα − Gα]χ = iχ0χα, (9)

which amounts to including the constraint in each spin operator
[35]. As opposed to the Mα and Gα , the matrices [Mα − Gα]
do not form a Lie algebra itself, leading to the projective
realization of spin rotations (see also Sec. IV D).

B. Mean-field theory for the Kitaev model

We start with a mean-field analysis of the pure Kitaev model
HK , targeting at paramagnetic solutions. Using the Majorana
representation (5) and performing a mean-field decoupling, the
Hamiltonian now reads

HK = − K
∑
〈ij〉α

i2

42
χT

i Mαχ iχ
T
j Mαχ j +

∑
i,α

λαiχT
i Gαχ i

= K

4

∑
〈ij〉α

[
−iχT

i MαU ij Mαχ j + 1

2
tr MαU ij MαUT

ij

]

+
∑
i,α

λαiχT
i Gαχ i , (10)

where the real mean fields

U
μν

ij = 〈
iχ

μ

i χν
j

〉
(11)
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are to be determined self-consistently. We emphasize that
instead of using the representation (9) for the spin operators,
we use the more general (gauge-equivalent) expression (5)
and include Lagrange multipliers λα to enforce the isospin-
singlet constraint on each site. This allows us to later address
mean-field regimes that are inherently different from the
Kitaev model (in particular involving the delocalization of the
χ1,χ2,χ3 Majoranas), as occurring in the full model H.

Guided by the exact solution of the Kitaev model and
previous mean-field treatments [16], we parametrize the mean-
field ansatz for the Kitaev model as U 00 = 〈iχ0

i χ0
j 〉 =: u0,

Uαα = 〈iχα
i χα

j 〉 =: ua on 〈ij 〉α links, and Uββ = 〈iχβ

i χ
β

j 〉 =:
ub for β 	= α, yielding

HK = K

4

∑
〈ij〉α,β 	= α

iuaχ0
i χ0

j + iu0χα
i χα

j

+ iubχ
β

i χ
β

j − u0ua − ubub, (12)

where we adopt the convention that i ∈ A sublattice and j ∈ B.
Note that we have omitted the Lagrange multipliers since the
constraints are automatically satisfied for λ = 0.

The resulting Majorana-bilinear Hamiltonian can then
straightforwardly be solved in momentum space. Since χ

†
k =

χ−k for Majorana fermions, the Fourier expansion only extends
over half of the Brillouin zone [36],

χj = 1√
N

∑
k∈BZ/2

[χke
ikxj + χ

†
k e

−ikxj ], (13)

so that one obtains a double spectrum with ε(k) = −ε(−k)
upon diagonalization on one half of the Brillouin zone. By
means of a particle-hole transformation one can then recover
four Majorana bands on the full Brillouin zone. This solution
can then be used to compute expectation values needed to
solve the mean-field equations. Their self-consistent solutions
at T = 0 are given by

u0(γ ) = ±0.2624, ua(γ ) = ∓0.5, ub = 0, (14)

for γ = x,y,z bonds, reproducing the mean-field theory found
by You et al. [16]. Note that there isZ2 redundancy of choosing
the signs of u0 and ua on γ bonds as long as u0ua < 0.
This redundancy can be understood by performing gauge
transformations to the gauge field uij in the exact solution of
the Kitaev model [15].

Since we chose the spin representation (5) [instead of (9)],
the global Kitaev coupling differs by a factor of 1/4. To
compare our results with the exact solution, we henceforth
set K = 4 unless otherwise noted.

The double spectrum for the Kitaev model is shown in
Fig. 2. The dispersing Majorana mode χ0 with a graphene-like
dispersion

E(kx,ky) = K

4
|ua(x)ei
k·
n1 + ua(y)ei
k·
n2 + ua(z)|, (15)

with the lattice vectors of the honeycomb lattice 
n1,2 =
(±1,

√
3)T /2, is clearly visible. In addition, we obtain three flat

bands associated with the χ1,χ2, and χ3 Majoranas localized
on the respective bonds.

The mean-field theory developed above hence reproduces
the exact solution of the Kitaev model. The mean-field param-

(a) (b)

Γ

M K

−6−4−2 0 2 4 6
kx

−4

−2

0

2

4

k
y

Γ M K Γ
−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5

E

FIG. 2. (a) Double spectrum obtained from Majorana mean-field
theory for the Kitaev model at K = 4; see text. The flat bands at
±0.26 are each threefold degenerate. (b) First Brillouin zone of the
honeycomb lattice, together with the path used in this and subsequent
figures.

eter ua = 〈iχα
i χα

j 〉 effectively takes the role of the Z2 gauge
field in the flux-free ground state, as found in the exact solution.
Furthermore, we obtain for the equal-time spin-spin correlators

〈
Sα

i Sα
j

〉 = −1

4

〈
iχ0

i χ0
j

〉〈
iχα

i χα
j

〉
δ〈ij〉α = −u0ua

4
δ〈ij〉α . (16)

This matches the exact result up to a factor of 1/4, the latter
originating from our choice of the spin representation.

For the most general case with ub 	= 0 (which is of relevance
for the further sections), the nonvanishing spin-spin correlation
functions for the local moments on neighboring sites can be
expressed using the mean-field decoupling as〈

Sα
i Sα

j

〉 = − 1
4 [u0ua + (ub)2] on 〈ij 〉 = α links, and〈

Sα
i Sα

j

〉 = − 1
4 [u0ub + uaub] on 〈ij 〉 	= α links. (17)

Note that the spin correlation functions above are clearly
invariant underZ2 gauge transformations which flip the sign of
the mean fields u0,ua → −u0, − ua as detailed above, as long
as ub = 0. A finite value of ub thus spoils the gauge structure
of the Kitaev spin liquid.

For a further discussion of the mean-field theory for the
Kitaev spin liquid, in particular for the case of anisotropic
couplings, we refer the reader to Appendix E. We note that the
Kitaev model can also be treated in a slave-fermion mean-field
approximation, as demonstrated by Burnell and Nayak [37].
There, the resulting fermion-bilinear mean fields explicitly
break the C3 symmetry, requiring a more careful treatment
of the gauge transformations needed to obtain a form-invariant
Hamiltonian.

C. Mean-field theory for the Kitaev-Kondo lattice

Since the Kitaev spin liquid is most naturally described via
Majorana fermions, it appears to be sensible to introduce a
description of the Kitaev-Kondo lattice in terms of Majorana
fermions as well. A Majorana representation of conduction
electrons has previously been used in the study of odd-
frequency superconductivity [36]. We introduce a phase factor
for the c electrons on the B sublattice, cB → icB , and then
decompose canonical fermions c↑,c↓ on each site into four
Majorana fermions ην , using the mapping c↑ = (η0 + iη3)/

√
2

and c↓ = (iη1 − η2)/
√

2. This amounts to different Majorana
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representations on the two sublattices, such that the kinetic
energy Ht assumes the simple form (implicit summation over
λ = 0, . . . ,3) [36,38]

Ht − μN = −t
∑
〈ij〉

iηλ
i η

λ
j − μ

∑
j

[
1 + i

(
η0

j η
3
j + η1

j η
2
j

)]

= −t
∑
〈ij〉

iηT
i ηj − μ

∑
j

[
1 + i

2
ηT

j G3ηj

]
, (18)

where N = ∑
iσ c

†
iσ ciσ is the number of conduction electrons.

Analogously to the decoupling of the quartic Majorana term
in Eq. (10), the Kondo interaction HJ in (1) in the mean-field
approximation assumes the form

HJ = JK

4

∑
i,α

[
iχT

i MαW i Mαηi − 1

2
tr MαW i MαWT

i

]

(19)

with the real mean-field parameters

W
μν

i = 〈
iχ

μ

i ην
i

〉
(20)

to be determined self-consistently.
We note that the mean-field decouplings introduced here

(and above for the spin liquid) favor paramagnetic solutions
with 〈
S〉 = 0 and for the conduction electrons 〈c†σ 
τσσ ′cσ ′ 〉/
2 = 0.

D. Quantum order and projective symmetries

A quantum-ordered spin liquid can be classified in terms
of its projective symmetry group (PSG) [30]. Due to the
redundancy in the slave-fermion representation of the spins,
physical symmetries (of the projected wave function) do not
necessarily originate in the symmetry of the ansatz itself, but
rather from a transformation that takes the mean-field ansatz
to a gauge-equivalent ansatz.

As previously described, spin rotations can act projec-
tively on fermionic partons [16,39]. In the Kitaev model, the
spin rotation symmetry is realized by a combination of spin
rotation and gauge (isospin) rotation, which has previously
been dubbed “spin-gauge locking.” This is particularly evident
from the representation (9). To achieve a rotation of the
object [Mα − Gα], a simultaneous spin rotation RS and gauge
transformation RG need to act on the Majorana fermions χ ,
such that the spin in this representation transforms as

Sα → i

4
χT RT

G RT
S [Mα − Gα]RS RGχ (21a)

= i

4
χT

[
RT

S Mα RS − RT
GGα RG

]
χ . (21b)

If the spin rotation matrix RS is given by RS = a01 + aα Mα

with (a0)2 + aαaα = 1, the isospin transformation matrix RG

required is simply given by

RG = ±(a01 + aα Gα), (22)

so that both terms in Eq. (21b) transform in the same way. Note
that there is a residual Z2 freedom when choosing the sign of
RG, allowing for the classification of the quantum order of the
Kitaev model in terms of Z2 PSGs [16].

The conduction band Majorana fermions in Eq. (18), how-
ever, do not obey such quantum order. Clearly, the Hamiltonian
is invariant under spin rotations η → RSη. In the case of half
filling (μ = 0), we furthermore have the SU(2) isospin sym-
metry η → RGη of rotations in the particle-hole and charge
sector. Going away from half filling, this SU(2) symmetry is
lowered to a residual U(1) symmetry η → RCη with RC =
a01 + a3G3, which corresponds to particle number/charge
conservation [40].

The above considerations allow us to formulate how the
decoupling fields W i in Eq. (19) transform under a symmetry
transformation Ŝ. This transformation may act on the real-
space index (such as point group operations), on the local-
moment Majoranas χ and the conduction-band Majoranas
η as

Ŝ−1χ j Ŝ = R(χ)
S R(χ)

G χS(j ), Ŝ−1ηj Ŝ = R(η)
S ηS(j ), (23)

where we allow for different matrix representations of the
transformation for χ and η, respectively. Consequently, W j

transforms under the symmetry operation Ŝ as

Ŝ−1W j Ŝ = R(χ)
G R(χ)

S WS(j ) R(η)
S

T
. (24)

With the transformation properties of the mean fields W at
hand, we will be able to discuss the symmetries of the mean-
field phases described in the next section.

V. MEAN-FIELD PHASES OF THE KITAEV-KONDO
LATTICE

We have solved the mean-field equations (11) and (20),
together with the constraints (2) and (8), for a range of Kondo
couplings JK/t , band fillings nc, and temperatures T . We
employ units where t = 1, leading to a c-electron bandwidth
of 6, and we set K = 4 unless noted otherwise. Assuming
unbroken lattice translation invariance, the problem involves
four chemical potentials and 9 + 16 real scalar mean-field
parameters (9 for u and 16 for W ). To find solutions to the
mean-field equations, we have employed an iterative scheme
with randomly weighted updates in each step. The iterations
were started with different randomly selected initial conditions.
If multiple inequivalent solutions occurred, we selected the
solution with the lowest (Helmholtz) free energy. Most results
have been obtained with a momentum discretization of 162

points; a higher momentum resolution was used to extract
spectral properties.

A. Overview

A schematic phase diagram is shown in Fig. 1(b), and
quantitative results are presented in Figs. 3 and 4. Similarly
to earlier works [5], there are four main phases.

(i) At high temperatures there is a decoupled phase, with
U = W = 0. As discussed in earlier works [5], this decoupling
is an artifact of mean-field theory and indicates a regime
where conduction electrons are incoherently scattered off local
moments.

(ii) At small JK/t and sufficiently low temperatures, a phase
with U mean-field parameters identical to those of the Kitaev
spin liquid and vanishing Kondo mean fields, W = 0, emerges.
This is the advertised FL∗ state; for details see Sec. V B.
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FIG. 3. Mean-field parameters and Helmholtz free energy F ≡
U − T S as a function of JK at [42] T = 0. For clarity we select a
diagonal solution (of type |Z+〉; see also Sec. V D and Appendix C)
in the superconducting phase, thus also fixing a U(1) phase. Note
that in this case, always w11 = w22 holds [cf. discussion succeeding
Eq. (28)]. Here, α = z and β = x,y. The conduction-band filling is
(a) nc = 2.4, (b) nc = 3.0, (c) nc = 3.4. In (a) and (b), a first-order
transition within the superconducting phase is visible where the nodal
structure changes. In (c) a different gauge for the u parameters has
been chosen according to the redundancy described in Sec. IV B.

(iii) For large JK/t we obtain a heavy Fermi liquid (HFL),
with nonzero and diagonal U and W mean-field parameters,
the latter describing Kondo screening. In this phase, the
topological properties of the Kitaev sector are destroyed, as
discussed in more detail in Sec. V C.

(iv) Finally, there is a class of intermediate-coupling low-
temperature phases which represent nematic superconductors
(SCs). Also here, both U and W are nonzero, but their structure
is more complicated and preserves some of the properties of
the Kitaev spin liquid; for details see Sec. V D.

We note that, while FL∗ is a deconfined topological phase,
both FL and SC are confined phases. Beyond mean-field theory,
an additional SC∗ phase is conceivable in which the fraction-
alized spin-liquid component coexists with superconducting
conduction electrons [41]. Such a deconfined phase may arise
via a superconducting instability of FL∗; a detailed study of
this is left for future work.

B. Fractionalized Fermi liquid

In the FL∗ phase, the local moments and conduction elec-
trons are decoupled at the mean-field level. A plot of the mean-
field band structure along high-symmetry lines (with color-
coded quasiparticle overlap) and the lowest quasiparticle band
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FIG. 4. Mean-field parameters as in Fig. 3, but now as function
of temperature T at fixed nc = 2.4. (a) Transition from FL∗ to the
decoupled regime for JK = 1.0. (b) Transition for JK = 2.9 from SC
to HFL (at T � 0.17) and then to the decoupled regime (at T � 0.25).
(c) Transition from HFL to the decoupled regime for JK = 3.4 (at
T � 0.31).

are shown in Fig. 5. As expected, FL∗ features a small Fermi
volume, sharp electronic (charge e and S = 1/2) quasiparticles
arising from the c band, and Kitaev spin-liquid excitations
carrying a Z2 gauge charge. Beyond mean field, the properties
of the FL∗ phase can be studied in perturbation theory in JK;
see Sec. III.

C. Heavy Fermi liquid

We now turn to the heavy-Fermi-liquid phase (HFL). Here
we observe that the Kondo mean-field parameters can be
reduced (by symmetry and gauge transformations) to the
form W = a01. The Kitaev mean fields are now identical,
u0 = ua = ub or U = u01, such that all χμ Majoranas become
dispersive; this is similar to a recent mean-field treatment
of the doped Heisenberg-Kitaev model [16]. Inspecting the
resulting (effective) Hamiltonian HK ∝ i

∑
〈ij〉 χ

T
i χ j shows

an invariance under χ → RGχ for arbitrary isospin matrices
RG, giving rise to a manifold of equivalent mean-field solutions
given by W → RGW . We therefore conclude that, given the
particular structure and symmetry of the mean-field ansatz,
there is no need to realize spin rotations for the Kitaev Ma-
joranas projectively, and the quantum order of the spin liquid
is destroyed. The solution is invariant under spin rotations, as
can be seen easily from Eq. (17) in the case of u0 = ua = ub,
and thus indicates the formation of Kondo singlets between
the local moments and conduction electrons. In fact, this
solution of the Majorana mean-field theory can be mapped
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FIG. 5. Mean-field band structure in the fractionalized Fermi
liquid at JK = 1.0. (a) Cut along high-symmetry lines at nc = 2.4 with
color-coded quasiparticle weights (averaged over spin and sublattice
and normalized to take into account the double spectrum). (b) Energy
of the lowest quasiparticle band at nc = 2.4, with borders of the first
Brillouin zone marked in orange (dashed) and the conduction electron
Fermi surface in green (dash-dotted); the latter coincides with the
Fermi surface of FL∗ at the mean-field level. (c), (d) Same as (a), (b),
but for higher filling nc = 3.0. In both (b) and (d), the Dirac nodes of
the spin-liquid component are clearly visible.

to a more conventional slave-boson treatment as we show in
Appendix C.

The mean-field band structure of the HFL phase is displayed
in Fig. 6. It features a well-defined Fermi surface and rather flat
bands near the Fermi level, indicating that the quasiparticles
indeed have become “heavy.”

D. Superconductors

The most interesting mean-field solutions are obtained at
intermediate coupling JK and correspond to unconventional
superconductors, with point nodes and a nontrivial structure
in both momentum and spin space. For all tested values of
nc and K , the solutions break the C3 symmetry of combined
lattice and spin rotations of the Hamiltonian: As we show
below, they transform under a linear combination of two
three-dimensional irreducible representations (irreps) of the
group S4; see Appendix A.

1. Mean-field parameters and symmetries

Analyzing the symmetries of the mean-field solutions, we
first note that all solutions have a U(1) degeneracy; i.e., given
the mean-field parameters W , the isospin-rotated ansatz W RT

C

is also a (physically inequivalent, but energy-degenerate)
solution, where

RC = cos φ 1 + sin φ G3 (25)
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FIG. 6. Mean-field band structure in the HFL phase at JK = 8.0.
(a) Cut along high-symmetry lines at nc = 2.4 with color-coded
quasiparticle weights. (b) Energy of the lowest quasiparticle band
at nc = 2.4 with borders of the first Brillouin zone marked in orange
(dashed) and the bare conduction electron Fermi surface in green
(dash-dotted). (c), (d) Same as (a), (b), but for higher filling nc =
3.0 [44].

with φ ∈ [0,2π ) arbitrary. This transformation is equivalent
to taking η → RCη, which corresponds to the transformation
cσ → eiφcσ . Indeed, the phase of the anomalous expectation
values 〈cc〉 changes by 2φ upon a rotation of the ansatz
by φ. The U(1) degeneracy in our mean-field solutions thus
corresponds to the spontaneously broken U(1) phase-rotation
symmetry of a superconductor. Choosing a certain phase φ, we
further find six distinct but energy-degenerate solutions |X±〉,
|Y±〉, and |Z±〉 which are connected by the C3 operation of
rotating bonds x → y → z and spin components Sx → Sy →
Sz, as described in Appendix A, i.e., acting on the Kondo
mean-field parameters as

RG RS W (X±) RT
S = W (Y±), (26)

with the coefficients for RG and RS given by a0 = 1/2, aα =
−1/2, and analogously for cyclic permutations of (XYZ). The
Kitaev mean-field parameters and the kinetic energy of the
electrons on the corresponding bonds will also be cyclically
permuted, i.e., u0,a,b(x,y,z) → u0,a,b(y,z,x). The index +,−
of |X±〉, etc., denotes the freedom of an additional relative
phase of π between two components of the triplet vector
[defined in Eq. (29) below]. Applying an appropriate C∗

α

operation switches between the two solutions, e.g., C∗
x |Z±〉 =

|Z∓〉; see Appendix A. We choose the convention that |Z+〉
corresponds to a diagonal solution and |X+〉 and |Y+〉 are in
the orbit of the C3 operation. |Z−〉 is obtained by complex
conjugation of the 
d vector for |Z+〉, and |X−〉, |Y−〉 lie in the
orbit of C3 applied to |Z−〉. Concretely, the Kondo mean-field
parameters W for the solutions |Z+〉 of the third type are [for
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a suitably chosen U(1) phase] diagonal and of the form

W (Z+) = diag(a,b,b,c) (27)

where a,b,c ∈ R. The Kitaev mean-field parameters
u0,a,b(x) = u0,a,b(y) 	= u0,a,b(z) corresponding to this solution
indicate a spontaneously broken spin and lattice rotation
symmetry. Alternatively, we can express any four-dimensional
diagonal matrix by a linear combination of the identity matrix
and products of spin and isospin matrices of equal components,

W (Z+) = b01 + b1 M1G1 + b2 M2G2 + b3 M3G3, (28)

where the coefficients are related to the mean-field parameters
by b0 = (a + 2b + c)/4, b1 = b2 = (a − c)/4, and b3 = (a −
2b + c)/4. The decoupling field W for the solutions of type
|X±〉 and |Y±〉 can be then obtained by the symmetry rotation
(26), and additional reflection operations.

Hence, the superconducting solutions are not invariant
under the C3 rotation; i.e., they are nematic. They transform
under a three-dimensional irrep of the symmetry group; see
Appendix A. The fact that the additional multiplication with
RG in Eq. (26), i.e., a gauge rotation, is required implies
that the symmetry properties of the superconducting phase are
influenced by the quantum order of the parent spin liquid (by
which we refer to the projective realization of symmetries).
Note, however, that there is no Z2 redundancy for the U mean
fields, as opposed to the spin liquid or FL∗ phases. Beyond
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FIG. 7. Mean-field band structure in the superconducting phase
for nc = 2.4. (a) Cut along high-symmetry lines with color-coded
quasiparticle weights close to the transition to FL∗ (JK = 2.8). (b)
Energy of the lowest quasiparticle band at JK = 2.8, with borders
of Brillouin zone marked orange (dashed), nodal points marked red
(crosses), and the bare conduction electron Fermi surface marked
green (dash-dotted). (c), (d) Same as (a), (b), but close to the transition
the HFL (JK = 3.6). The spectrum corresponds to the solution |Z〉;
the spectrum of the energy-degenerate solutions |X〉 and |Y 〉 can be
obtained by ±2π/3 rotations around the center of the Brillouin zone.

mean-field theory, the SC phase hence does not possess a Z2

gauge structure and is a topologically trivial confined phase (in
contrast to a possible SC∗ phase; see Sec. V A).

2. Excitation spectrum

The band structure and a plot of the lowest quasiparticle
dispersion at [42] T = 0 for two points in the phase diagram
close to the transitions to the FL∗ and HFL phases are shown
for nc = 2.4 and nc = 3.0 in Figs. 7 and 8, respectively. The
broken rotational symmetry is clearly visible from panels
(b) and (d) in both figures. For the chosen parameters, the
quasiparticle energy displays multiple point nodes. Near the
FL∗-SC transition the nodes are located near the original
c-electron Fermi surface as well as very close to the K points,
as shown in panels (a) and (b) in Figs. 7 and 8, but the
node count and location change continuously as a function
of JK. We emphasize that these nodes are accidental, and we
also found regions in parameter space (e.g., around nc = 3,
JK = 5) where the spectrum is fully gapped [43]. Technically,
the appearance or disappearance of nodes corresponds to a
Lifshitz transition in the superconducting state. However, most
of these transitions leave only weak thermodynamic signatures,
with the exception of those which are first order; see Fig. 3 as
well as Figs. 10 and 11 below.

We note that some of the nodes in the excitation spectrum
have an extremely anisotropic dispersion, i.e., are characterized
by two velocities which differ by 2–3 orders of magnitude. As
a result, the near-nodal energies along lines in the Brillouin
zone are very small, such that the thermodynamic behavior
above a small temperature scale is essentially metallic. This is
illustrated in Fig. 9 which shows the specific heat plotted as
C/T as a function of temperature.
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FIG. 8. Same as Fig. 7, but now for nc = 3.0. (a), (b) JK = 3.2.
(c), (d) JK = 8.0.
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FIG. 9. (a) Momentum-space zoom into a highly anisotropic node
in the superconducting phase for JK = 3.2 and nc = 3.0. Note that kx

and ky have been rescaled to illustrate the nodal character. (b) Specific
heat C/T as a function of temperature T in the superconducting
phase at nc = 3.0 and JK = 3.2 [for comparison also JK = 2.0 (FL∗

and decoupled regime), olive markers] [45]. The specific heat in the
superconducting phase shows metallic-like behavior at intermediate
T . Note that the indicated phase boundaries refer to the curve
at JK = 3.2.

3. Pairing and anomalous expectation values

For a more comprehensive symmetry analysis we compute
the anomalous expectation values 〈ciσ cjσ ′ 〉 of the conduction
electrons on nearest-neighbor bonds and recast them into a
spin-singlet component d0 and a spin-triplet vector 
d as [46]

〈ciσ cjσ ′ 〉 = [d0iτ 2 + (
τ · 
d)iτ 2]σσ ′ . (29)

We find that across all SC phases, pairing is purely triplet,
i.e., d0 = 0. In a similar manner, we express the normal
expectation values as 〈c†iσ cjσ ′ 〉 = [tτ 0 + 
t · 
τ ]σσ ′ and observe
that, depending on the solution type |γ 〉 = |X〉,|Y 〉,|Z〉, the
kinetic energy develops a nonzero spin component tγ as well
as a nonzero local spin polarization in the same direction.
Exemplary results for the normal and anomalous expectation
values for the solution |Z+〉 are given in Table I, where we
use the short form d = (d0, 
d) and analogous for t . We note
that 
t · 
d = 0 for all observed solutions. Given the spontaneous
spin polarization and that pairing is purely triplet, one might
draw an analogy to the nonunitary pairing in the A1 phase of
3He [47]; however, we stress that the analogy is limited as our
model is strongly spin-orbit coupled.

Having rewritten the anomalous expectation values in terms
of the 
d vector on the α bonds, we can now relate the
observables for the solutions |X〉,|Y 〉, and |Z〉, by identifying
how the transformations on the Majorana fermions η and χ act
on physical observables, and classify the pairing structure in
terms of the symmetry group of the model. The advantage of
this approach is that the expectation values of the c electrons
can be regarded as physical observables, such that a discussion
of the projective realization is not needed for the symmetry
classification.

We find that the solutions transform in a linear combination
of the two three-dimensional irreducible representations of the
symmetry group of the model. For a detailed discussion, we
refer the reader to Appendix A.

TABLE I. Components of normal and anomalous expectation
values on x,y,z bonds for the conduction electrons in the supercon-
ducting phase for a solution of type |Z+〉, on x,y,z bonds at T = 0.03,
JK = 2.8, K = 4.0, t = 1.0, and nc = 1.2. The four components
of t occur in the decomposition 〈c†iσ cjσ ′ 〉 = [tτ 0 + tατ α]σσ ′ , and
d = (d0, 
d) denotes the singlet pairing amplitude and triplet pairing
vector [cf. Eq. (29)].

t(x) t(y) t(z) d(x) d(y) d(z)

0.2023 0.2023 0.1936 0 0 0
0 0 0 −0.01936 0.00365 0.00771
0 0 0 0.00365 i −0.01936 i 0.00771 i

−0.0026 −0.0026 0.0123 0 0 0

4. Pairing glue

One can understand the emergence of this superconducting
state by integrating out the Kitaev spinons (here represented by
χ ) to obtain an effective theory for the conduction electrons [5].
Spinons in a spin liquid have generically some finite pairing
amplitude (in particular, the Kitaev model can be mapped to a
p-wave BCS-type pairing model [48]), thus inducing a finite
pairing amplitude for the conduction electrons.

Interestingly, in the framework of our mean-field approach
we find that mapping the Kitaev Majorana fermions to
canonical fermions fσ results in a pairing structure for the fσ

fermions—even in the pure Kitaev model—which is similar
to the pairing of the conduction electrons in our SC phase (cf.
Appendix D). We note, however, that the fσ pairing itself does
not correspond to superconductivity as the fσ do not carry
charge.

This inheritance of the pairing structure can be understood
as a consequence of the origin of the pairing of c electrons,
which is mediated by the quasiparticles in the spin liquid. In
the case at hand, the fractionalized excitations in the spin liquid
are Majorana fermions [15,49], such that the superconductivity
in the Kitaev-Kondo lattice at intermediate JK originates from
“Majorana glue.”

E. Sample phase diagrams
Exemplary quantitative phase diagrams obtained from

Majorana-fermion mean-field theory as a function of JK/t

and T , and JK/t and nc, respectively, are shown in Figs. 10
and 11. The transition from FL∗ to FL is generically masked
by unconventional superconductivity, and we find that the
superconducting region persists for larger JK and for higher
temperatures T as nc is increased.

Within the superconducting region, we often find multiple
distinct solutions to the mean-field equations which have
the same symmetry properties (as described above and in
Appendix A), but differ in their nodal structure and in their free
energy. By comparing the (Helmholtz) free energies of the re-
spective solutions we determine the location of these first-order
Lifshitz transitions in the superconducting phase. Examples of
the behavior of the mean-field parameters near these transitions
are shown in Fig. 3. We note that there are multiple additional
continuous Lifshitz transitions associated with changes in the
nodal structure, which we have not mapped out in detail. We
also note that the overall properties of the mean-field solutions
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FIG. 10. Quantitative phase diagrams for the Kitaev-Kondo lattice, obtained from Majorana mean-field theory, as function of temperature
T and Kondo coupling JK for parameters t = 1 and K = 4 and different conduction-band fillings nc. (a) nc = 2.4, (b) nc = 3.0, (c) nc = 3.4.
The transitions inside the superconducting phase are accompanied by changes in the nodal structure. Thick (thin) lines indicate first (second)
order phase transitions.

do not appear to be affected by proximity to the Van Hove
filling of the conduction band (nc = 1.5 and 2.5).

The transitions surrounding the superconducting phase are
observed to be first order, while the thermal transitions out of
the FL∗ and HFL phases are of second order. As discussed
previously, latter transitions will become crossovers when
going beyond mean-field theory [5].

VI. SUMMARY

We have introduced and studied a honeycomb Kondo-lattice
model with Kitaev interactions among the local moments. We
have mapped out the phase diagram using a Majorana-based
mean-field theory. While large Kondo coupling yields the
expected heavy Fermi liquid (HFL), small Kondo coupling
leads to a fractionalized Fermi-liquid phase (FL∗) whose
properties we have studied beyond mean field.

Most interestingly, the quantum confinement transition
between FL∗ and FL is masked by a novel superconducting
phase. It features triplet pairing driven by “Majorana glue,”
with the pairing structure inherited from the Kitaev spin liquid.
It is an electron-nematic phase breaking lattice rotation sym-
metry, with its superconducting order parameter transforming
as a linear combination of two unusual three-dimensional
irreducible representations of the symmetry group, and its
excitation spectrum being either gapless or displays strongly
anisotropic accidental point nodes, depending on parameters.

On the experimental front, dominant Kitaev interactions
have been found in a number of insulators [50], most promi-
nently Na2IrO3 [51,52] and α-RuCl3 [53–55]. Hence, an

0 1 2 3 4 5 6 7 8
JK/t

2.0

2.4

2.8

3.2

3.6

4.0

n
c

FL∗
SC

HFL

FIG. 11. Same as Fig. 10, but now as a function of Kondo coupling
JK and conduction band filling nc at T = 0 [42].

experimental realization of the Kitaev-Kondo lattice appears
within reach, either by adding charge carriers via doping or
by engineering layered structure where, e.g., a monolayer of
α-RuCl3 is placed on a metallic substrate.
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APPENDIX A: SYMMETRIES AND IRREDUCIBLE
REPRESENTATIONS

1. Symmetries of the Kitaev-Kondo-lattice model

The symmetry properties of the Kitaev-Kondo lattice can be
inferred from the Kitaev model, and we restrict our attention to
isotropic Kitaev and Kondo couplings. The symmetry group of
the whole lattice can be generated by three operations discussed
below, two of which are generalized point-group operations
(which act also in the spin sector due to spin-orbit coupling),
as well as a inversion symmetry.

(1) The honeycomb lattice has a C6 rotation symmetry
at the � point. For our purpose of analyzing the anomalous
expectation values, it is sufficient to consider the symmetry
group at K point which reduces C6 → C3, since the triplet
pairing amplitude is odd in the sublattice index. From HK in
(1) it is evident that the C3 lattice rotation operation also needs
to map the spin components Sx → Sy → Sz.

This operation can be implemented in the Majorana for-
malism by multiplication of the Majorana four-vectors χ ,η

with the SO(4) spin matrix RC3
S = (1 − M1 − M2 − M3)/2.

Due to the spin-gauge locking in the Kitaev model (cf. Sec.
IV D), also a gauge transformation (given by the identical
coefficients) RC3

G = (1 − G1 − G2 − G3)/2 needs to act such
that the Kitaev Majoranas transform as χ → RC3

G RC3
S χ .

(2) There is a reflection symmetry σ across an axis per-
pendicular to the x bonds of the lattice. Spin-orbit coupling
requires the (unitary) spin transformation Sx → −Sx , Sy →
−Sz, and Sz → −Sy for this operation to be a symmetry. This
spin transformation acts on the Majorana four-vectors with
Rσ

S = (M2 − M3)/
√

2 and an analogous form for Rσ
G.
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(3) There is a further symmetry operation in the Kitaev
model which amounts to inversion of a single spin component,
e.g., Sx → −Sx . However this transformation is not unitary;
one can instead consider inverting two spin components. We
denote this operation by C�

x : (Sx,Sy,Sz) → (Sx, − Sy, − Sz).
This operation C�

α acts on the Majorana fermions as χ →
Gα Mαχ and η → Mαη.

Applying the symmetry transformations to a given solution
|{X,Y,Z}±〉 results in a symmetry-transformed solution that
is degenerate with respect to the free energy. In particular,
we find that the 
d vector on a given bond γ transforms
under a symmetry transformation Ŝ as Ŝ−1 
d(γ )Ŝ = R 
d(S(γ )),
where R is a 3 × 3 representation matrix acting on the spin
components.

2. Symmetry properties of superconducting mean-field phase

To find the irreducible representation under which our SC
solutions transform, we consider the symmetry group of the
model to be generated by the elements C3,σ,C∗

x , as detailed
above. Note that it is sufficient to determine the symmetry
properties of the 
d vector with the respect to the symmetry
group of the K point, since all further symmetry properties
can be deduced from requiring the antisymmetry of the gap
with respect to the sublattice index.

By arranging the α components of the 
d vector on bond γ

in a 3 × 3 matrix with elements

[dα
γ ] =

⎛
⎜⎝

dx
x dx

y dx
z

d
y
x d

y
y d

y
z

dz
x dz

y dz
z

⎞
⎟⎠, (A1)

it is easy to see that the generators fulfill the relations

C3C
∗
y = C∗

z C3 with cyclic permutations of (xyz), (A2a)

σC∗
x = C∗

xσ and σC∗
y = C∗

z σ, (A2b)

and σC3 = C2
3σ. (A2c)

In particular, we find that the generators above transform
the states |{X,Y,Z}±〉 introduced in Sec. V D as

C3 : {|X±〉,|Y±〉,|Z±〉} �→ {|Y±〉,|Z±〉,|Y±〉}, (A3a)

σ : {|X±〉,|Y±〉,|Z±〉} �→ {∓i|X∓〉, ∓ i|Z∓〉, ∓ i|Y∓〉},
(A3b)

C∗
x : {|X±〉,|Y±〉,|Z±〉} �→ {−|X±〉, − |Y∓〉,|Z∓〉}. (A3c)

One may introduce representation matrices of the genera-
tors, acting on the 6-dimensional representation space spanned
by above states, and verify the group relations given in Eq. (A2)
explicitly.

Proceeding, we may give the group presentation 〈σ,C3,

C∗
x |σ 2 = C3

3 = (C∗
x )2 = (C3σ )2 = (C∗

xσ )2 = (C3C
∗
x )3 = 1〉.

It is easy to see (e.g., by identifying σ → s1, C3σ → s2, and
σC∗

x → s3) that this group is isomorphic to the symmetric

TABLE II. Character table of the symmetric group of degree four
S4 defined in (A4). The group can be generated by the permutations
si := (i,i + 1) for i = 1,2,3.

1 6 s1 8 s1s2 6 s1s2s3 3 s1s3

A1 1 1 1 1 1
A2 1 −1 1 −1 1
E 2 0 −1 0 2
T1 3 1 0 −1 −1
T2 3 −1 0 1 −1
T1 ⊕ T2 6 0 0 0 −2

group of degree four S4 [56], given by

S4 = 〈s1,s2,s3| s2
1 = s2

2 = s2
3 = 1,

(s1s2)3 = (s2s3)3 = (s3s1)2 = 1〉. (A4)

This group is isomorphic to the symmetry group of a cube O
and the tetrahedral group Td . The characters of the irreducible
representations of S4 as well as the characters of the observed
representation are given in Table II. Employing the reduction
formula for decomposing a reducible representation with
characters χ (g) into the j th irreducible representation with
character χ (j )(g) [57],

aj = 1

|S4|
∑
g∈S4

[χ (j )(g)]∗χ (g), (A5)

we find that the observed solutions to the mean-field equations
transform in the linear combination of two three-dimensional
representations T1 and T2.

One can find basis elements for the corresponding represen-
tation spaces by computing a projector Ij to the j th irreducible
representation (of dimension d (j )) in the basis of the group
elements g in the reducible representation, given by [57]

Ij = 1

|S4|
∑
g∈S4

d (j )[χ (j )(g)]∗g. (A6)

We can then give basis states [by choosing convenient (but in
principle arbitrary) linear combinations of the images of basis
vectors under Ij ] that span the representation space VT1 as

|1〉 = 1
2 (|X+〉 + i|Z+〉 + |X−〉 − i|Z−〉), (A7a)

|2〉 = 1
2 (i|X+〉 + |Y+〉 − i|X−〉 + |Y−〉), (A7b)

|3〉 = 1
2 (i|Y+〉 + |Z+〉 − i|Y−〉 + |Z−〉). (A7c)

Similarly we obtain the basis states for VT2 as

∣∣1̄〉 = 1
2 (|X+〉 − i|Z+〉 + |X−〉 + i|Z−〉), (A8a)∣∣2̄〉 = 1
2 (−i|X+〉 + |Y+〉 + i|X−〉 + |Y−〉), (A8b)∣∣3̄〉 = 1
2 (−i|Y+〉 + |Z+〉 + i|Y−〉 + |Z−〉). (A8c)

Note that the coefficients of |1̄〉, etc., are the complex
conjugated coefficients of |1̄〉, etc. By inspecting the action
of the group elements on the above basis vectors, it can be
seen that the representation matrices acting on VT1 ⊕ VT2 are
now (by construction) block-diagonal. We emphasize that our
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choice of basis implies that the representation matrices D(g)
are now real.

APPENDIX B: PERTURBATION THEORY
IN JK IN THE FL∗ PHASE

This appendix supplements Sec. III, discussing aspects of
the perturbative treatment of the Kondo coupling JK in the
fractionalized Fermi liquid phase.

As explained in the main text, the application ofHJ changes
the flux sector. Applied to a flux-free state, it creates two fluxes.
Focusing on an effective theory within the lowest flux sector,
the leading effect of HJ can thus be found in second-order
perturbation theory, and corresponds to a process in which two
neighboring spins communicate via the exchange of a particle-
hole pair. In this process, the first electron-spin interaction
creates two fluxes on the hexagons next to the link connecting
these neighboring spins, which are then annihilated by the
second electron-spin interaction. One can formally derive
this process by integrating out the electrons. (Note that the
first-order term is proportional to the expectation value of the
electron spin and vanishes by time-reversal symmetry). At sec-
ond order one obtains a retarded exchange coupling of the form

S2 =
∫

dτdτ ′ ∑
ij

∑
α,β

Sα
i (τ ) χ

αβ

ij (τ − τ ′) S
β

j (τ ′) (B1)

with

χ
αβ

ij (τ − τ ′) = 1

4

∑
σσ ′

∑
σ̄ σ̄ ′

J α
K J

β

K τα
σσ ′ τ

β

σ̄ σ̄ ′ 〈Tτ c
†
iσ (τ )cjσ̄ ′(τ ′)〉c

× 〈Tτ c
†
j σ̄ (τ ′)ciσ ′(τ )〉c, (B2)

where τ and τ ′ denote imaginary times. Now introducing a
projector onto the flux-free sector �0, and dropping global
energy shifts, we find the Kondo coupling to generate an
exchange of the same form as the original Kitaev coupling,

�0 S2 �0 =
∫

dτdτ ′ ∑
〈ij〉α

Sα
i (τ ) χαα

ij (τ − τ ′) Sα
j (τ ′). (B3)

If the Kitaev coupling is much smaller than the electronic
bandwidth, |K| � |t |, one can approximate �0 S2 �0 by its
instantaneous part. This yields a correction of the order J 2

K/t to
the Kitaev exchangeK , with a numerical prefactor that depends
on the chemical potential. Since the conduction electrons hop
on a honeycomb lattice, this correction can be calculated
analogously to the RKKY exchange in graphene [24].

If, on the contrary, the flux gap is not small compared to
the electronic bandwidth, the electron dynamics cannot be
considered faster than the spin dynamics: while the time scale
for electronic hopping between neighboring sites is set by their
inverse bandwidth, virtual fluctuations of the flux sector have a
typical time scale of 1/K . This implies that retardation effects
need to be taken into account for t 	� K , which in turn leads to
an additional suppression of the exchange coupling due to the
energy of the intermediate state with two fluxes. An estimate of
this additional suppression can be derived from second-order
Rayleigh-Schrödinger perturbation theory: For an eigenstate
|n0〉 of H0 with H0 |n0〉 = En,0 |n0〉 in the flux-free sector, the

second-order correction to its energy is of the form

En,2 = 〈n0|HJ

1

En,0 − H0
HJ |n0〉 =

∑
m	=n

|〈n0|HJ |m0〉|2
En,0 − Em,0

.

(B4)

The energy difference of the initial state |n0〉 and the interme-
diate state |m0〉 arises from the creation of an electron-hole pair
(which mediates the RKKY-type exchange), and the creation
of two fluxes. Denoting the energy of a particle-hole pair with
hole momentum q and electron momentum q ′ by ε(q,q ′) > 0,
and the energy of two fluxes in the intermediate state by ε� > 0
(hence ε� ∼ K), we find

En,2 ∼
∑
q,q ′

J 2
K

ε(q,q ′) + ε�

∼ J 2
K

max{t,K} , (B5)

where the summation is restricted to momenta q (q ′) that are
occupied (empty) in the state |n0〉.

We conclude that the proper scaling of the second-order cor-
rection to the Kitaev coupling entering the Majorana dynamics
in the lowest flux sector is given by J 2

K/max(t,K).

APPENDIX C: MEAN-FIELD THEORY FOR THE HEAVY
FERMI LIQUID

The purpose of this appendix is to show that our Majorana
mean-field description of the heavy Fermi liquid is equivalent
to that using conventional slave-boson mean-field theory.

To this end, we consider a mean-field solution of the
form W = a1. This is a (for our purposes) convenient choice
of ansatz, since the heavy Fermi liquid is invariant under
W → RM RGW RT

C , where RM is a spin-rotation matrix (with
the invariance corresponding to the spin-rotation invariance
of the HFL), RG an arbitrary isospin matrix (resulting from
the redundancy χ → RGχ), and RC = cos φ1 + sin φG3 is
a U(1) symmetry transformation of the conduction electrons
(which is broken in the SC phase; cf. Sec. V D).

The Kondo interaction term in the mean-field ap-
proximation then reads (omitting the site index) HK =
−3JKa/4

∑
λ iχληλ. Inserting the expressions for the Majo-

rana fermions in terms of slave fermions (cf. Sec. IV), we
obtain

HK = −3JK

4
ia[f †

↑c↑ + f
†
↓c↓] + H.c. (C1)

Note that the factor 3/4 is usually not obtained in large-
N treatments of the Kondo lattice since terms of the form
(1/N)c†αcαf

†
βfβ (implicit sum over α,β = −N . . . N ) are not

decoupled explicitly, but rather absorbed in a redefinition of
the chemical potential [58].

Since the mean-field parameter a = 〈iχληλ〉 ∈ R for λ =
0, . . . ,3, we can rewrite the Majorana mean field as

a = i

2
[〈f †

σ cσ 〉 + 〈fσ c†σ 〉] (C2)

for σ = ↑,↓. The second term in the brackets above is the
negative of the complex conjugated first term, and therefore a

being real (as easily seen from the Majorana representation)
implies that the diagonal gauge for W chosen above is one
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such that the mean fields 〈f †
σ cσ 〉 are purely imaginary, and

thus a = i〈f †
σ cσ 〉 = −i〈c†σ fσ 〉.

Hence HK in Eq. (C1) with a expressed with canonical
fermions reproduces the usual mean-field decoupling using a
auxiliary-fermion/slave-boson formalism with spin-isotropic
mean fields [59,60].

APPENDIX D: PAIRING OF SPINONS
IN THE KITAEV MODEL

It is instructive to investigate the nature of the pairing of
spinons in the mean-field treatment of the Kitaev model. While
the anomalous propagators and expectation values in the spin-
liquid phase are unobservable, we will see that the pairing
structure in the superconducting phase is rather similar.

Rewriting HK in terms of slave fermions, by employing the
inverse of the mapping detailed in Sec. IV A, the Hamiltonian
splits into two parts, H↑

K and H↓
K with

H↓
K = iu0

2

∑
〈ij〉x

[f †
i↓fj↓ − fi↓fj↓ − H.c.]

+ iu0

2

∑
〈ij〉y

[f †
i↓fj↓ + fi↓fj↓ − H.c.], (D1)

H↑
K = iua

2

∑
〈ij〉

[f †
i↑fj↑ + fi↑fj↑ − H.c.]

+ iu0

2

∑
〈ij〉z

[f †
i↑fj↑ − fi↑fj↑ − H.c.]. (D2)

It is thus clear that there may only be spin-triplet pairing. In
particular, the pairing amplitude can be specified in real space
on the three inequivalent bonds x,y,z,

�↓↓ = iu0

2
(−1,1,0), (D3a)

�↑↑ = iua

2

(
1,1,1 − u0

ua

)
. (D3b)

Using these results to compute the 
d vector for the pairing
of slave fermions in the spin-liquid phase yields the results
displayed in Table III. Note that the structure of these anoma-
lous expectation values resembles the pairing amplitudes of
the conduction electrons for the (diagonal) |Z+〉 solution, as
shown in Table I.

TABLE III. Components of normal and anomalous expectation
values for the slave fermions in the spin-liquid phase, on x,y,z

bonds with 〈f †
σ fσ ′ 〉 = tμτ

μ

σσ ′ and 〈fσ fσ ′ 〉 = dμ(τμiτ 2)σσ ′ (implicit
sum over μ = 0, . . . ,3).

t(x) t(y) t(z) d(x) d(y) d(z)

0.0594 0.0594 0.0594 0 0 0
0 0 0 −0.0594 0.1906 0.1906
0 0 0 0.1906 i −0.0594 i 0.1906 i

−0.01906 −0.1906 0.0594 0 0 0

We note that (after adopting different conventions regarding
the definition of d) these values are identical to the mean-field
parameters obtained in Ref. [61] by requiring self-consistency
for the singlet and triplet pairing channels of the slave fermions
directly.

APPENDIX E: MEAN-FIELD TREATMENT OF THE
ANISOTROPIC KITAEV MODEL

The purpose of this appendix is to study to what end the
mean-field theory developed by You et al. [16] reproduces
the exact solution of the Kitaev model in the anisotropic
case. We consider a decoupling using the Kitaev spin rep-
resentation Sα = iχ0χα and introduce link-dependent mean
fields u0(γ ) = 〈iχ0

i χ0
j 〉 and ua(γ ) = 〈iχγ

i χ
γ

j 〉 on 〈ij 〉γ links,
yielding the mean-field Hamiltonian

HK =
∑
〈ij〉γ

Kγ
[
iua(γ )χ0

i χ0
j + iu0(γ )χγ

i χ
γ

j − u0(γ )ua(γ )
]
.

(E1)

Note that here we are using Kitaev’s spin representation (9)
as opposed to the main text, where we use the more general
decoupling (5). The decoupling (5), with link-dependent mean
fields ub, leads to a full dimerization for strongly anisotropic
Kitaev coupling, yielding nonzero mean-field parameters only
on one type of bond.

The mean fields can be determined by demanding self-
consistency. Since the χγ Majorana fermions remain localized
to their respective bond type, the value of the mean field ua =
∓0.5 is insensitive to an anisotropy of Kγ . The expectation
values of the matter Majorana fermions can be determined as

u0(γ ) = ± 1

N

∑
k∈BZ/2

cos(φ(
k) − 
k · 
nγ ), (E2)

where we define φ(
k) = arg
∑

α Kαei
k·
nα , with the reciprocal
lattice vectors 
nx , 
ny , and 
nz ≡ 0 for notational convenience,
and N is the number of unit cells.

We parametrize the anisotropy as Kx = Ky = λKz with
λ � 1. Expanding u0(γ ) in lowest nontrivial order of λ yields
on the respective bonds

u0(x) = u0(y) = 1
4λ + O(λ2), (E3a)

u0(z) = − 1
2 + 1

4λ2 + O(λ3). (E3b)

Going beyond perturbation theory, we find that the exact
value [62] of the nonvanishing static spin-correlation function
〈Sγ

i S
γ

j 〉 on 〈ij 〉γ links is reproduced in the mean-field treatment
with 〈

S
γ

i S
γ

j

〉 = −u0ua, (E4)

as can be seen in Fig. 12. Considering the mean-field band
structure and the static spin correlators as shown, it is evident
that the mean-field theory reproduces the exact solution.

We stress that the value of the mean-field parameter u0 =
0.262433 should not be associated with the energy of the flux
gap �E � 0.26, since the flux gap scales as (Kx)4/(Kz)3 =
Kzλ4 (obtained by perturbation theory in λ on the dimer limit
by Kitaev [15]) for λ � 1, while the mean-field parameters
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FIG. 12. Static spin-correlation functions as obtained by the exact
solution [62] and by the mean-field approximation for anisotropic
couplings Kx = Ky = λKz. Note that 〈Sx

i Sx
j 〉 = 〈Sy

i S
y

j 〉.

u0(x) = u0(y) = O(λ) and u0(z) = O(1) in lowest order. It
is thus clear that the utility of the mean-field description is
restricted to the flux-free sector, where it yields the exact
matter-Majorana spectrum, whereas flat bands arising from the
localized Majorana fermions do not correspond to excitations
of the gauge field.

APPENDIX F: CONSTRAINTS AND GAUGE
TRANSFORMATIONS

In this appendix we show that the local Hilbert-space
constraint χT

i G3χ i = 0 generates the gauge operator Di =
4χ0

i χ1
i χ2

i χ3
i as introduced by Kitaev [15].

The D operator (omitting site indices) acting on the Ma-
jorana fermions can be understood as a Z2 gauge transfor-
mation on states in the Majorana basis, and is the identity on
physical states D|ψ〉 = |ψ〉. To this end, we first consider the
unitary operator U = exp[αχT G3χ]. Considering the series

expansion acting on physical states |ψ〉, it is clear that U needs
to act as the identity,

U |ψ〉 =
∞∑

j=0

αj

j !
(χT G3χ)j |ψ〉 = |ψ〉, (F1)

since all terms with j > 0 annihilate |ψ〉. Thus only the term
with j = 0 contributes in the sum, verifying that U is indeed
a symmetry transformation.

We now show that the explicit resummation yields the
operator D. We define the operators X = χ0χ3 and Y = χ1χ2

such that we may rewrite χT G3χ = X + Y . In particular, we
note the properties X2 = Y 2 = −1/4, XY = D/4, and XD =
−Y as well as YD = −X which follow straightforwardly from
the anticommutation relations of the Majorana fermions.

Using these operators, the series expansion reads

eαχT G3χ = eα(X+Y )

= 1 +
∞∑

j=1

α2j

(2j )!
(X + Y )2j

+
∞∑

j=0

α2j+1

(2j + 1)!
(X + Y )2j+1,

where we already have grouped terms of even and odd powers.
It is easy to prove (e.g., by induction) that (X + Y )2j =
(−1)j (X + Y ) and (X + Y )2j+1 = (−1)j (D − 1)/2. Inserting
these expressions and performing a resummation of the series,
we obtain

U = 1 + χT G3χ sin α + 1
2 (D − 1)(cos α − 1). (F2)

Since the exponential on the right-hand side of Eq. (F2) is the
identity on physical states (as reasoned above) it follows imme-
diately for α = π that D|ψ〉 = |ψ〉. In fact, since χT G3χ = 0
for physical states, the operator D = 4χ0χ1χ2χ3 is generated
along with the Hilbert-space constraint D|ψ〉 = |ψ〉 for all
values α.
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