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We introduce and compare three different Monte Carlo determinantal algorithms that allow one to compute
dynamical quantities, such as the self-energy, of fermionic systems in their thermodynamic limit. We show
that the most efficient approach expresses the sum of a factorial number of one-particle-irreducible diagrams
as a recursive sum of determinants with exponential complexity. By comparing results for the two-dimensional
Hubbard model with those obtained from state-of-the-art diagrammatic Monte Carlo, we show that we can reach
higher perturbation orders and greater accuracy for the same computational effort.
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I. INTRODUCTION

Perturbation expansions are at the heart of many important
developments in many-body physics. They appear both in the
construction of new theoretical frameworks and in the design
of numerical algorithms that have greatly contributed to push
further our understanding of interacting quantum systems.

Continuous-time quantum Monte Carlo algorithms [1] such
as CT-INT [2,3], CT-AUX [4], or CT-HYB [5,6] are examples
of such algorithms. They have been a breakthrough in finding
solutions of quantum impurity problems and have opened a
new realm for the development of extensions of dynamical
mean-field theory [7–12].

One of the reasons for the success of these algorithms
is that they are based on a perturbation expansion of the
partition function Z. The contributions to Z can be reorganized
into determinants that effectively sum a factorial number of
perturbation diagrams. As a result, large perturbation orders
can be computed and, for smaller clusters, the strong-coupling,
low-temperature regime can be addressed. These methods
are, however, limited by the number of sites that can be
treated in the auxiliary quantum impurity cluster. For large
clusters the fermionic sign problem [13] becomes very severe
as temperature is decreased or interaction increased [14], and
it is very difficult to extrapolate the solution of the infinite size
system from a limited number of small clusters.

An alternative and complementary approach is to investi-
gate quantum systems directly in their thermodynamic limit, as
in the DiagMC [15–19] algorithm that has also benefited from
great advances. With this approach, controlled results were
obtained, e.g., for the normal phase of the unitary Fermi gas
[20,21], the ground-state phase diagram of the Hubbard model
in the weak-coupling regime away from half-filling [22–25],
and even in parts of its phase diagram where a pseudogap has
already formed [26].

In this method, the perturbation series is written directly for
the physical quantity of interest, for example, the self-energy.
Contributions to the series are given by individual perturbation
Feynman diagrams (one-particle-irreducible ones for the self-
energy) that are sampled stochastically. While the sign alter-

nation between individual diagrams is a necessary condition
for the convergence of the series, it introduces a fermionic sign
problem that makes it difficult to precisely compute high-order
coefficients of the series. Another difficulty of the DiagMC
approach is that it can be challenging to resum the perturbation
series and obtain converged results even if many coefficients
are known with great accuracy.

In order to reduce the sign problem of the DiagMC, a
connected determinant algorithm (CDet) has been recently in-
troduced in Ref. [27]. The key idea of the approach is to express
the sum of a factorial number of connected perturbation dia-
grams as a sum of determinants (a similar strategy is used in an
algorithm for correlated out-of-equilibrium systems) [28]. The
physical quantity of interest is then obtained by stochastically
sampling these contributions. This algorithm has been shown
to scale as 3n with the perturbation order n. It has proven to give
quantitative improvements in the computation of static prop-
erties such as pressure [27]. However, no computation of dy-
namical quantities with the CDet approach has been attempted
so far.

In this article, we introduce and compare three different
Monte Carlo determinantal algorithms that allow one to
compute dynamical quantities of a fermionic system. Two
of them are directly based on the CDet approach, while the
third algorithm, which we will show is the most efficient, is a
generalization of the CDet approach to one-particle-irreducible
(1PI) diagrams. It directly samples the contributions to the
self-energy with a recursive algorithm scaling as n23n. By
comparing results for the two-dimensional Hubbard model
with those obtained from DiagMC, we will show that this new
approach leads to much smaller error bars for the same numer-
ical effort. It therefore represents an important alternative to
compute dynamical quantities.

The article is organized as follows. In Sec. II, we briefly
summarize the CDet approach introduced in Ref. [27], as it
will be one of the building blocks of our proposal. In Sec. III,
we present three algorithms that allow one to derive dynamical
quantities. We discuss their practical implementation as a
Monte Carlo method in Sec. IV. We then compare and discuss
the results of these algorithms and of the DiagMC for the
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two-dimensional Hubbard model in Sec. V. We finally con-
clude in Sec. VI.

II. CONNECTED DETERMINANT APPROACH

First, we briefly summarize the CDet approach introduced
in Ref. [27] as it is one of the building blocks of our proposed al-
gorithms. This approach provides a general scheme to compute
connected correlators. For concreteness, we consider in this
article models described by a noninteracting Green’s function
G0 and a local interaction vertex Un↑n↓. This is the case, for
example, in the Hubbard model, in some quantum impurity
problems, or in the simple case of an isolated Hubbard atom
(that we will later use for benchmark purposes).

In a diagrammatic approach, a perturbation series in the
interaction U is constructed. Correlation functions C of two
operators A and B, defined as

C(xout,xin) ≡ −〈TτB(xout)A(xin)〉, (1)

where Tτ is the time-ordering operator and x denotes a vertex,
are then expressed as a sum of connected diagrams. In real
space and imaginary time, x writes (i,τ ) for the Hubbard
model, where i describes the lattice position and τ ∈ [0,β] the
imaginary time (β = 1/T being the inverse temperature). At a
given order n in the perturbation series, a diagram contributing
to C(xout,xin) is characterized by the set of its internal vertices
V = {x1,...,xn}, where xl is associated with the lth interaction
vertex. The topology of such a diagram is given by two
adjacency matrices describing the way the interaction vertices
and the external vertices xin and xout are connected.

In the standard DiagMC [15–19] technique, individual
connected diagrams are stochastically sampled in a way that
preserves their connectivity, with a probability given by the
absolute value of their contribution to C(xout,xin). Note that
even if some diagrams share the same vertices, they may have
alternating signs from one topology to another, which is one
of the ingredients leading to a significant sign problem in this
approach. The idea of the CDet algorithm is to regroup all
diagrams sharing the same internal vertices V in a contribution
CV (xout,xin) and then stochastically sample the sets V . The
stochastic weight of this group of diagrams in the Monte Carlo
sampling of C(xout,xin) is the absolute value of their sum, which
is only a function of V .

One could naturally expect that summing this factorial
number of diagrams would come with a factorial cost, but it was
shown [27] that it can actually be achieved exponentially. The
sum of connected diagrams entering CV (xout,xin) is expressed
as the sum of all diagrams (connected and disconnected
ones) from which the disconnected components are recursively
subtracted. This can be formalized as follows:

CV (xout,xin) = DV (xout,xin) −
∑
S�V

CS(xout,xin)DV \S(∅),

C

V

xin

xout

=
All vert. in V
(incl. disc.)

xin

xout

−
∑

S�V

C

S

xin

xout

× All vert. in V \S
(incl. disc.) , (2)

where DV (xout,xin) denotes the sum of all diagrams (including
disconnected ones) with internal vertices V , external vertices
xin and xout. DV (∅) is the sum of all diagrams with vertices
V and no external vertices. The cancellation of disconnected
diagrams is illustrated in the second line of Eq. (2). A key
feature of this recursive sum is that DV terms can be expressed
as determinants (and hence with a polynomial computational
cost) [29].

Algorithmically, the evaluation of CV (xout,xin) at order n is
done in two steps. First, determinants DS are computed for all
subsets S of V , with a total effort 2nn3. The leading complexity,
however, comes from the progressive computation, from low
to high orders, of CS . More precisely, if all CS ′ are known for
subsets S ′ with less than p � n vertices, one can compute a
given p-order CS using Eq. (2) with V = S, in 2p operations
[see right-hand side (rhs) of Eq. (2)]. This has to be done for all
the (n

p) subsets S at order p before computing contributions at
the next order p + 1. The final result is obtained when this has
been done for all p � n and the leading complexity of the al-
gorithm to compute CV (xout,xin) is therefore

∑n
p=0(n

p)2p = 3n.
Note that a similar cancellation of disconnected diagrams

had been introduced in a quantum Monte Carlo algorithm for
correlated out-of-equilibrium systems [28] where connected
correlators are expressed as a sum of 2n determinants thanks
to Keldysh diagrammatic techniques.

The CDet approach leads to an important reduction of
statistical error with respect to the DiagMC and has allowed
for great progress in the computation of static properties, such
as pressure in the Hubbard model [27]. This method, however,
has not yet been used to compute dynamical quantities.

In the following, we will investigate how this can be done.
We could examine, e.g., the Green’s function but choose
instead to focus on the self-energy � that is a more irreducible
object where signatures of numerical noise are clearer. Other
single-particle quantities can then be computed from �. A
straightforward way to obtain � is to compute the Green’s
function G with the CDet approach and derive the self-energy
through Dyson’s equation. However, even if one can compute
G with great accuracy, its inversion in Dyson’s equation leads
to an amplification of the statistical noise and, as we will show
below, the resulting � can only be accurately obtained for low
orders. It is therefore desirable to look for other techniques to
compute the self-energy. This is the purpose of the following
section.

III. SELF-ENERGY COMPUTATION

We introduce three different techniques to compute dy-
namical quantities. In order to compare their efficiencies, we
focus on the self-energy �σ (here σ denotes the spin) that
they yield, because numerical noise is particularly visible in
this quantity. First, we use Dyson’s equation to obtain the
self-energy from a computation of the Green’s function using
the CDet technique. We then present a diagrammatic method
that allows us to compute the self-energy recursively from
the knowledge of a different correlator F̄ that can still be
computed using the CDet. We finally introduce an extension
of the CDet algorithm that efficiently computes the sum of
all one-particle-irreducible diagrams of a perturbation series
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and therefore allows us to directly stochastically sample the
contributions to the self-energy. As we discuss in Sec. V, the
latter allows for a much better determination of dynamical
quantities.

A. Dyson’s equation

The most straightforward way to compute the self-energy
�σ is to first compute the Green’s function Gσ using the CDet
algorithm and then use Dyson’s equation,

�σ = (
Gσ

0

)−1 − (Gσ )−1. (3)

We show in Sec. V that it is very difficult to obtain precise
data with this method because of the inversion of G that
dramatically increases the noise.

B. Equations of motion

We present a diagrammatic approach to compute the self-
energy based on the computation of a different correlator with
the CDet algorithm. Let us first write the self-energy as the sum
of a constant Hartree term and a frequency-dependent part

�σ (xout,xin) ≡ �H,σ δxin,xout + �̃σ (xout,xin). (4)

We recall that x is a combined index, e.g., (i,τ ) for the Hubbard
model, where i is the lattice site and τ the imaginary time. The
Hartree term contribution is given by

. (5)

It can be directly computed from the knowledge of the
Green’s function Gσ̄ , which is a connected correlator that can
be obtained from Eq. (2). The self-energy �σ can then be
obtained recursively using the following expression:

�σ = �H,σ + F̄ σ − �σGσ�σ , (6a)

, (6b)

where the correlation function F̄ σ is defined by

F̄ σ (xout,xin) ≡ −U 2〈Tτnσ̄ cσ (xout)nσ̄ c†σ (xin)〉. (7)

Equation (6) can be derived from the equations of motion
(EOM) of the Green’s function, as detailed in Appendix A, and
we will use this terminology in the following to unambiguously
refer to this method. It has a simple diagrammatic interpretation
[see the second line of Eq. (6)] that illustrates how 1PI diagrams
are isolated. Indeed, according to Eq. (4), the self-energy is the
sum of contributions with a single external vertex (Hartree term
�H,σ ) and contributions with two external vertices (�̃σ ). The
former is easy to compute, and the latter is the sum of all 1PI
diagrams with two external vertices. The term F̄ σ on the rhs
of Eq. (6) represents the sum of all connected diagrams with
the same external vertices as �̃σ . From this, one then has to

subtract all non-1PI diagrams, which can always be expressed
in the form �σGσ�σ .

We now reorganize the equation above in order to be able
to compute the contributions to the self-energy at a given
perturbation order just from the knowledge of the contributions
to F̄ σ and �H,σ . We first multiply Eq. (6) by Gσ

0 on the right
and we obtain

�σGσ
0 = �H,σGσ

0 + F̄ σGσ
0 − �σGσ�σGσ

0 . (8)

Reorganizing the terms,

F̄ σGσ
0 + �H,σGσ

0 = �σ
[
Gσ

0 + Gσ�σGσ
0

] = �σGσ . (9)

Substituting this expression for �σGσ in Eq. (6), we find

�σ = �H,σ + F̄ σ − [
F̄ σGσ

0 + �H,σGσ
0

]
�σ . (10)

This equation allows us to recursively compute the contri-
butions to the self-energy at all perturbation orders. Indeed,
because F̄ σ is at least of order 2 in U and �H,σ is at least
of order 1 in U , the computation of the contribution to the
self-energy at ordernon the left-hand side can be obtained from
the knowledge of the contributions to F̄ and the contributions
to the self-energy at strictly lower orders < n on the rhs.
As a result, the left-hand side contributions can be computed
without any inversion, and there is no noise amplification as
in Dyson’s equation. We can therefore expect this approach to
be more efficient.

The algorithm is implemented by computing the Green’s
function Gσ and the correlator F̄ σ using the CDet algorithm.
Then, Eq. (10) is used to recursively compute the contributions
to �σ at a given order. As we use the CDet algorithm to
obtain two correlators and the self-energy is only computed in a
postprocessing part, the complexity of this algorithm naturally
scales as 3n.

C. Determinantal approach to sum all 1PI diagrams

We now introduce an extension of the CDet algorithm to
efficiently compute the sum of all one-particle irreducible
diagrams of a perturbation series. At a given perturbation order
n in the interaction U , a self-energy diagram is characterized
by xin, xout, its internal interaction vertices V = {x1, . . . ,xn−2},
and the adjacency matrices that connect the vertices. Note that
we choose n − 2 points in the set of internal vertices V because
xin and xout both carry an interaction vertex as well. We wish
to group all diagrams that share the same internal vertices V

into a contribution �σ
V (xout,xin) so that

�σ (xout,xin) =
∑
V

�σ
V (xout,xin)

=
∑
V

(
�

H,σ
V δxin,xout + �̃σ

V (xout,xin)
)
. (11)

The contribution �σ
V (xout,xin) is theoretically a sum of a

factorial number of diagrams, but we will express it with the
help of a recursion, very much in the spirit of Ref. [27], that
only involves connected correlators that can be computed with
exponential effort using Eq. (2). The numerical effort to obtain
�σ

V (xout,xin) will then turn out to also be exponential.
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The frequency-dependent part of the self-energy �̃σ
V (xout,xin) can be expressed via the following recursive formula

�̃σ
V (xout,xin) = F̄ σ

V (xout,xin) −
∑

x ′ ∈ V

S ⊆ V \{x ′}
S ′ = V \(S ∪ {x ′})

Fσ
S ′ (xout,x

′)�̃σ
S (x ′,xin) −

∑
S ⊆ V

S ′ = V \S

F σ
S ′ (xout,xin)

(
UGσ̄

S (0−)
)
, (12a)

(12b)

where the correlation function Fσ is given by [30]

Fσ (xout,xin) = �σGσ (xout,xin) (13)

≡ −U 〈Tτnσ̄ cσ (xout)c
†
σ (xin)〉, (14)

and F̄ σ by Eq. (7). The starting point of the recursion is the
order-2 diagram

. (15)

The second line of Eq. (12) illustrates the cancellation of
non-1PI diagrams. The self-energy contributions �̃σ

V that are
calculated recursively are indicated as red circles, while blue
diagrams correspond to the correlation function Fσ = �σGσ .
An explicit example of this formula at third order is shown
in Appendix C. Let us note that, in this formula, the starting
point of the recursion is already an order-2 diagram, while it
is an order-0 diagram in Eq. (2), justifying a set V with n − 2
vertices.

The first term F̄ σ
V (xout,xin) on the rhs of Eq. (12) is the

contribution to the correlation function F̄ σ (xout,xin) for the set
of internal vertices V . It is the sum of all connected diagrams
that have interaction vertices at xin, xout and all x ∈ V as
interaction vertices. In order to obtain the contributions to
the self-energy �̃σ

V (xout,xin), one has to subtract from this
term all diagrams that are not 1PI. These can be expressed
in the form �σGσ�σ = Fσ�σ = Fσ (�H,σ + �̃σ ), and there
are therefore two families of diagrams to subtract for a given
set of vertices V : first all terms Fσ

S ′ (xout,xin)�H,σ
S such that

S � S ′ = V , then all terms Fσ
S ′ (xout,x

′)�̃σ
S (x ′,xin) such that

S � {x ′} � S ′ = V . In the latter family, note that S � V is a
proper subset of V , so that the calculation of �̃σ

V involves only
some �̃σ

S that have been previously computed in the recursion.
We have therefore derived a recursive formula for the con-

tributions �̃σ
V (xout,xin) that involves the computation of only

connected correlation functions. The recursion is completed
in two steps. First, all correlators F̄ σ , Fσ , and Gσ have to
be enumerated, the main effort coming from the Fσ

S that
have to be computed for all pairs of external vertices [as a
consequence of the explicit use of an intermediate vertex point
x ′ in Eq. (12)]. The computational cost for the precomputation
is therefore dominated by n23n. Second, the recursion has to be

implemented, as in the CDet, by computing the contributions
�̃σ

S starting from low to higher orders. At a given order p, it
takes an effort p2p to get a given �̃σ

S (x ′,xin). This has to be
done for all subsets S at order p and all x ′ before computing
contributions at the next order p + 1 and requires a total effort
(n

p)p22p. All in all the recursion will take
∑n

p=0(n

p)p22p with

a complexity n23n. The leading complexity of the algorithm is
therefore n23n.

We will show in Sec. V that despite this additional n2

factor, this method leads to smaller error bars compared to
the approaches above. It also gives more accurate results
than the state-of-the-art DiagMC calculations for the same
computational effort.

IV. MONTE CARLO IMPLEMENTATION

In this section, we describe how to compute the different
quantities that appear in the algorithms above using a Monte
Carlo (MC) method. We generically denote these quantities
as Mσ . The quantities that need to be computed depend on
the algorithm considered. The Green’s function Gσ has to be
computed for all three approaches. In addition, F̄ σ must be
computed for the equations of motion algorithm and �̃σ for the
direct sampling of the self-energy. We write Mσ as a sum over
all contributions described by a set Vm with m internal vertices:

Mσ (xout,xin) =
∞∑

m=0

∑
Vm

Mσ
Vm

(xout,xin). (16)

Note that a configuration with m internal vertices contributes,
in the perturbation series in U , to the coefficient of order
n = m for the Green’s function, n = m + 1 for Fσ and
n = m + 2 for �̃σ .

In order to compute Mσ (xout,xin), we stochastically gener-
ate Monte Carlo configurations that sample the rhs terms of the
sum. A configuration C is described by the number of internal
vertices m, the spin σ , and the set of all vertices,

C = {m; σ ; xin,xout; x1, . . . ,xm}, (17)

and its weight in the Monte Carlo sampling is

wc = ∣∣Mσ
Vm

(xout,xin)
∣∣. (18)

We use a standard Metropolis [31] algorithm to generate a
Markov chain distributed according to wc. For concreteness,
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we consider the case of the Hubbard model where x = (i,τ ).
Starting from a given C, a new configuration C

′ is proposed by
applying one of the following Monte Carlo updates:

(i) Pick one of the interaction vertices in C and change its
position and imaginary time. One can increase the probability
of the move being accepted by choosing a new position either
among the neighbors of the chosen vertex or from a Gaussian
distribution. The imaginary time can be chosen uniformly.

(ii) Flip the spin σ → σ̄ .
(iii) Remove a randomly chosen internal interaction vertex

from C.
(iv) Add a new internal interaction vertex in C. The new

lattice site can be chosen from a Gaussian distribution around
the center of gravity of the vertices in C. The imaginary time
can be chosen with uniform probability.

The new configuration C
′ is accepted or rejected with the

usual Metropolis ratio

p
accept
C→C′ = min

(
1,

TC′C wC′

TCC′ wC

)
, (19)

where TCC′ is the probability to propose C
′ after C.

This algorithm will sample the configurations according
to the weights wC; however, it is necessary to normalize the
result. To do so, it is convenient to restrict the Monte Carlo
simulation to only two consecutive orders, m and m + 1. A
vertex can be added (resp. removed) only if the current C is
at order m (resp. m + 1). In the lowest order m the following
normalization quantity is measured

Nm =
∑

xin,xout,σ

∑
Vm

∣∣Mσ
Vm

(xout,xin)
∣∣, (20)

while at order m + 1, both Nm+1 and the contribution to
Mσ are measured. The knowledge of the expected value for
Nm allows us to find the normalization factor and obtain
a normalized value for the contribution to Mσ and Nm+1

at order m + 1. The latter can then be used to normalize a
further simulation at orders m + 1 and m + 2, and so on. The
contribution at m = 0, for instance, the pair-bubble diagram
for the self-energy, can be computed analytically, allowing for
a precise determination of N0.

We performed several calculations for the special case of a
single correlated site (especially for benchmarking purposes).
In that situation, it is possible to restrict the simulation to a fixed
order m and propose updates that change only the spin σ and
the imaginary time of a randomly chosen interaction vertex.
The normalization is obtained by computing an integral whose
value is known. The simple choice

Im =
∑

σ

∫ β

0
dτindτoutdτ1 . . . dτm = 2βm+2

turns out to provide a good normalization.
Let us note that statistical errors in the normalization factor

propagate from one order to the other. One must therefore be
careful in the computation of error bars using, e.g., a binning
or jackknife analysis.

V. RESULTS

In this section, we present actual computations of the self-
energy according to the implementations described in Sec. III.

For clarity, we respectively denote by Dyson, EOM, and �Det
the use of Dyson’s equation, the equations of motion, and
the direct calculation of the self-energy from the sum of 1PI
diagrams.

We consider two models in the following. The first is a single
correlated electronic level, that we will refer to as a Hubbard
atom, described by the Hamiltonian

Hatom = Un↑n↓ + ε, (21)

where nσ is the number of the spin-σ fermion, U is the onsite
repulsion, and ε the energy of the electronic level. This model
has an analytical solution and allows us to both benchmark and
compare the different methods introduced above. The second
model is the prototypical two-dimensional Hubbard model
given by

HHubbard = −t
∑
〈i,j〉σ

c
†
iσ cjσ + U

∑
i

ni↑ni↓, (22)

where c
†
iσ creates a spin-σ electron on site i of a square lattice,

t > 0 is the nearest-neighbor hopping, and U is the onsite
interaction. This is the model that we eventually aim to solve
in its thermodynamic limit (infinite lattice). In our results,
t = 1 will be our energy unit. Note that in the computations
of the Hubbard model, we use an α shift that redefines the
noninteracting propagator [3,26,28,32].

We first benchmark our results against both analytical and
standard DiagMC [15–19] solutions and verify the theoretical
complexity of our models in Appendix B. We then compare
the three different methods between them, showing that �Det
performs better both on the isolated atom and on the lattice.
This method is finally shown to also improve state-of-the-art
results from recent DiagMC calculations.

A. Comparison with Dyson’s equation

Until now, no dynamical quantities have been computed
with the CDet algorithm and it is therefore instructive to see
how the use of Dyson’s equation compares to the calculation
of the self-energy from the EOM and �Det methods.

We first consider the Hubbard atom. Figure 1 shows the
contribution to the imaginary part of the Matsubara frequency
self-energy �̃σ (iωn) from perturbation order 8. The direct
measurement of the self-energy and the EOM method yield
results that have very small error bars (smaller than the symbol
size) and that are in perfect agreement (both curves lie on top of
one another). In contrast, starting from the Green’s function as
obtained by Eq. (2), the results for the self-energy display large
statistical errors that increase with the Matsubara frequency in-
dex. The reason is simple and expected: when Dyson’s equation
is used to compute the self-energy, there is an amplification of
the numerical noise because of the inversion of the Green’s
function. In practice, it becomes quickly impossible to obtain
accurate data. This is problematic, because large error bars
make it very difficult, e.g., to analytically continue the results
to the real axis.

Figure 2 shows results for the two-dimensional Hubbard
model on a 32 × 32 lattice (for βt = 2 the Hubbard model
is in its thermodynamic limit on this lattice). At order 3, the
contribution to the self-energy taken at the first Matsubara
frequency iω0 obtained from �Det on a chosen path in the
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2 4 6
ωn

−200

−100

0

100

Im
Σ̃

(i
ω

n
)

Order 8

Dyson EOM ΣDet

FIG. 1. Imaginary part of the Hubbard atom self-energy at order
8 in U as obtained from Dyson’s equation (green), the equations of
motion approach (orange), and the direct self-energy measurement
(blue). We use β = 10, U = 1, ε = −0.2. All simulations lasted 120
CPU hours.

Brillouin zone is in perfect agreement with the EOM method,
and error bars for both methods are very small (smaller than
symbol size, both curves being on top). The computation of
�σ from the Green’s function is noisier. Error bars actually
increase with the Matsubara frequency index when using
Dyson’s equation, resulting in reasonable results only for the
first few frequencies even for small perturbation orders. Again,
the reason for this large noise is the amplification due to
the inversion of the Green’s function. Also, on the lattice, a
direct measurement of the self-energy has the advantage of
mainly sampling fairly local diagrams. Indeed, at a temperature
T = t/2, the self-energy very quickly vanishes for nonlocal
components. The same is not true for the Green’s function that
has a slower decay; its stochastic sampling is therefore less
efficient.
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FIG. 2. Hubbard model self-energy at the first Matsubara fre-
quency �̃�k(iω0) along the �k = (0,0) → (π,0) → (π,π ) → (0,0) path
at order 3 in U , as obtained from Dyson’s equation (green), the
equations of motion approach (orange), and the direct self-energy
measurement (blue). We use a 32 × 32 lattice with βt = 2, U = 4t ,
μ = 0 and a uniform α shift α↑ = α↓ = 1.53t . All simulations lasted
120 CPU hours.
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ωn

−1000

0

1000

2000

Im
Σ̃

(i
ω

n
)

Order 12

EOM ΣDet

FIG. 3. Imaginary part of the Hubbard atom self-energy at order
12 in U as obtained from the equations of motion approach (orange)
and the direct self-energy measurement (blue). We use β = 10, U =
1, ε = −0.2. All simulations lasted 120 CPU hours.

B. Comparison between the equations of motion
and the direct sampling of the self-energy

We now compare the use of equations of motion to the direct
sampling of the self-energy expressed as a sum of 1PI diagrams
(�Det). It is not clear which method is more efficient, as the
�Det allows for a precise cancellation of diagrams and directly
samples the quantity of interest but scales as n23n, while the
EOM method cancels diagrams on average but has a better
scaling as 3n.

We first consider the Hubbard atom. In Fig. 3 we show the
contribution to the imaginary part of the Matsubara frequency
�̃σ (iωn) at order 12 for both methods. The equations of
motion method has error bars that are seen to be about 1
order of magnitude greater than the �Det ones. In order to
quantify the efficiency more accurately, we plot in Fig. 4 the
variance at the first Matsubara frequency ω0 as a function of
the perturbation order for both methods. We see from this plot
that �Det performs better at low perturbation order, and that
both methods tend to become equivalent at higher orders.

The comparison of the resulting self-energies on the lattice
Hubbard model (Fig. 5) shows an even more pronounced
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FIG. 4. Variance of the imaginary part of the Hubbard atom self-
energy at the first Matsubara frequency. Orange lines with stars is
the result of the equations of motion. Blue line with dots corresponds
to the direct self-energy measurement. We use β = 10, U = 1, ε =
−0.2.
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FIG. 5. Hubbard model self-energy at order 6 in U on a 32 × 32
lattice with βt = 2, U = 4t , μ = 0 and with a uniform α shift
α↑ = α↓ = 1.53t . Blue symbols are results for the direct self-energy
measurement; orange symbols are results from the equations of
motion approach. Upper panel: Self-energy at the first Matsubara
frequency �̃�k(iω0) along the �k = (0,0) → (π,0) → (π,π ) → (0,0)
path. Lower panel: Self-energy as a function of iωn at �k = (π,π/2).
All simulations lasted 120 CPU hours.

difference between the two approaches. At order 6, the contri-
bution to the self-energy taken at the first Matsubara frequency
(upper panel) obtained from �Det on a chosen path in the
Brillouin zone is very well converged and the error bars
for this method are very small (smaller than symbol size).
The computation of �σ from the equations of motion is less
accurate, even if it agrees with the �Det within its error bars.
We then look at the Matsubara frequency evolution for a given
reciprocal lattice vector �k = (π,π/2). The error bar for the
EOM method is seen to be large for all Matsubara frequencies.
To be quantitative, we plot in Fig. 6 the variance at the first
Matsubara frequency ω0 for this same value of �k = (π,π/2) as
function a of the perturbation order. We see from this plot that
�Det always performs better than the EOM method, by about
1 order of magnitude.

We believe the explanation for this behavior comes from
two ingredients. First, the cancellation of non-one-particle-
irreducible diagrams is done on average in the EOM approach,
while it is exact in the �Det algorithm and therefore more
efficient to measure the self-energy. This is particularly visible
on the lattice that has more degrees of freedom. Second, the
self-energy �σ is more local on the lattice than the correlator F̄ .
Hence the direct MC sampling of the self-energy still performs
better, even though its numerical complexity is greater by a
factor n2. Let us note here that the EOM approach could be
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FIG. 6. Variance of the imaginary part of the Hubbard model self-
energy Im �̃(π,π/2)(iω0). Orange lines with stars is the result equations
of motion. Blue line with dots corresponds to the direct self-energy
measurement. We use a 32 × 32 lattice with βt = 2, U = 4t , μ = 0
and with a uniform α shift α↑ = α↓ = 1.53t .

useful in the context of the real-time algorithm of Ref. [28].
There the complexity of the EOM approach would be 2n while
a direct self-energy approach would scale as n23n. It may well
be that the EOM approach is more efficient in that case.

C. Comparison between �Det and DiagMC algorithms

As the direct calculation of the self-energy �Det proves to
be a very accurate method to get the self-energy, it is natural
to compare it to the state-of-the-art DiagMC results on the
two-dimensional Hubbard model. To this end, we compute
in Fig. 7 the contribution to the first Matsubara frequency
ω0 of the self-energy at perturbation order 7 for both �Det
and DiagMC methods. Error bars at this perturbation order,
the highest currently reachable with DiagMC techniques, are
much smaller with the �Det algorithm than with the standard
DiagMC approach for simulations of the same length. This
algorithm canceling directly non-1PI diagrams in the MC
sampling is therefore an interesting alternative to the current
diagrammatic Monte Carlo approach.
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FIG. 7. Hubbard model self-energy at the first Matsubara fre-
quency �̃�k(iω0) along the �k = (0,0) → (π,0) → (π,π ) → (0,0) path
at order 7 in U , as obtained from DiagMC (red) and the direct self-
energy measurement (blue). We use a 32 × 32 lattice with βt = 2,
U = 4t , μ = 0 and a uniform α shift α↑ = α↓ = 1.53t . Simulations
lasted 1440 CPU hours for the �Det and 4000 CPU hours for the
DiagMC.
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FIG. 8. Imaginary part of the local lattice self-energy �σ
loc(iωn)

as a function of Matsubara frequency, as computed using k orders,
with k = 2, . . . ,9. The red squares are results obtained from DQMC
(error bars are smaller than the symbol size). Inset: Zoom on the
first Matsubara frequency. It is seen that the results are converged
with an error bar smaller than 1%. We use a 32 × 32 lattice with
βt = 2,U = 4t,μ = 0 and with a uniform α shift α↑ = α↓ = 1.53t .
The discrete time interval in DQMC is �τ = 1/32.

As a final illustration of the method, we compute contribu-
tions up to order 9. The resummed local self-energy is shown in
Fig. 8. We observe that with a reasonable choice for the α shift,
one can completely converge the results with an uncertainty
below 1%.

VI. CONCLUSION

We have introduced and compared three methods to com-
pute the self-energy of fermionic systems. Two of them rely
on the computation of correlators using the CDet technique,
while the third one is an extension of the CDet that allows one
to sum all diagrams that share the same interaction vertices and
are one-particle irreducible. This allows us to design a Monte
Carlo scheme that directly samples the contributions to the self-
energy. This �Det algorithm has an exponential complexity
n23n where n is the perturbation order. We have shown that
even if it has higher complexity, an approach that computes
the self-energy directly leads to much smaller error bars with
respect to the use of Dyson’s equation or more sophisticated
equations of motion (nevertheless, the latter could be useful in
the context of real-time quantum Monte Carlo algorithms) [28].

With the parameters that we have discussed above, β =
2/t , U = 4t , and μ = 0 (corresponding to a total density
n = 0.66), the direct self-energy measurement also leads to
much smaller error bars than the usual DiagMC algorithm
on the two-dimensional Hubbard model and sets the cur-
rent state of the art of these approaches. In practice, one
can completely converge the results for 9 orders with an
uncertainty below 1%. Note that for these parameters, other
approaches, such as determinant quantum Monte Carlo

(DQMC) [33], also converge (see Fig. 8). It is therefore
important to more systematically compare the �Det approach,
the DiagMC, and other algorithms in different regimes of
parameters in order to determine in what regions of the
Hubbard model solutions can be converged. Work is in progress
along these lines. (See also the recent article of Šimkovic and
Kozik [34].)

Finally, further progress is still needed to be able to reach
stronger coupling regimes and lower temperatures. While
the summation over all topologies certainly reduces the sign
problem, the stochastic integration over imaginary times still
yields large error bars at high orders. It is therefore necessary
to investigate how this sign problem could be reduced.
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APPENDIX A: EQUATIONS OF MOTION

Here we show that Eq. (6) can be obtained from the
equations of motion of the Green’s function. For concreteness,
we consider the two-dimensional Hubbard model

H = −t
∑
〈i,j〉σ

c
†
iσ cjσ + U

∑
i

ni↑ni↓ (A1a)

≡ Hhop + Hint, (A1b)

where c
†
iσ creates a spin-σ electron on the site i of a square

lattice, t > 0 is the nearest-neighbor hopping, and U the onsite
interaction. Note that the derivation below yields the same
result for an interacting impurity coupled to a bath or for
the Hubbard atom. These models are used in the article to
benchmark and compare results from the different methods
introduced in Sec. III.

We define the imaginary-time Green’s function of two op-
erators A and B as GA,B(τ ) = −〈TτA(τ )B(0)〉. The equation
of motion for G is given by

∂τGA,B(τ ) = −δ(τ )〈{A(τ ),B(0)}〉 − 〈Tτ [H,A](τ )B(0)〉,
(A2)

which, in Matsubara frequencies, is written

iωnGA,B(iωn) = −G[H,A],B (iωn) + 〈{A,B}〉. (A3)

Let us note for later use that by writing GA,B(τ ) =
−〈TτA(0)B(−τ )〉, one obtains a similar expression that in-
volves a commutator between the Hamiltonian and B rather
than A,

iωnGA,B(iωn) = GA,[H,B](iωn) + 〈{A,B}〉. (A4)
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The equation of motion [Eq. (A3)] for the one-particle Green’s
function Gσ

ij ≡ −〈Tτ ciσ (τ )c†jσ (0)〉 is

iωnG
σ
ij = −G[H,ciσ ],c†jσ

+ 〈{ciσ ,c
†
jσ }〉. (A5)

Using the expression for the commutators

[Hhop,ciσ ] = t
∑
〈a,b〉

cbσ δia, (A6a)

[Hint,ciσ ] = −Uniσ̄ ciσ , (A6b)

we find that

iωnG
σ
ij = −t

∑
〈a,b〉

δiaG
σ
bj + UG

niσ̄ ciσ ,c
†
jσ

+ δij , (A7a)

∑
〈a,b〉

(iωnδib + tδia)Gσ
bj = UG

niσ̄ ciσ ,c
†
jσ

+ δij . (A7b)

Introducing the correlator Fσ
ij ≡ UG

niσ̄ ciσ ,c
†
jσ

, the equation

above can be rewritten in matrix form as

Fσ = (
Gσ−1

0 − Gσ−1)Gσ = �σGσ . (A8)

Note that this definition of Fσ is consistent with Eq. (13). We
can now apply Eq. (A4) to Fσ

ij ,

iωnF
σ
ij = UG

niσ̄ ciσ ,[H,c
†
jσ ] + U 〈{niσ̄ ciσ ,c

†
jσ }〉. (A9)

Using the commutators

[Hhop,c
†
jσ ] = −t

∑
〈a,b〉

c†aσ δbj , (A10a)

[Hint,c
†
jσ ] = Unjσ̄ c

†
jσ , (A10b)

we find that∑
〈a,b〉

(iωnδaj + tδbj )Fσ
ia = U 2G

niσ̄ ciσ ,njσ̄ c
†
jσ

+ 〈niσ̄ 〉δij . (A11)

Introducing the correlator F̄ σ
ij ≡ U 2G

niσ̄ ciσ ,njσ̄ c
†
jσ

and the

Hartree term �
H,σ
ij = 〈niσ̄ 〉δij the equation above becomes

FσGσ−1
0 = F̄ σ + �H,σ . (A12)

Using Eq. (A8) for Fσ and Dyson’s equation we have that

FσGσ−1
0 = �σGσ (Gσ−1 + �σ ) = �σ + �σGσ�σ ,

(A13)
which yields the final result

�σ = �H,σ + F̄ σ − �σGσ�σ . (A14)

This is the relation between the self-energy and the correlator
F̄ σ used in Eq. (6). The definitions of F̄ σ and �H,σ are
respectively consistent with Eqs. (7) and (5).

APPENDIX B: BENCHMARKS

Here, we present benchmarks for the three methods in-
troduced in the main text and we check their theoretical
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n
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Order 5

Exact Dyson EOM ΣDet

FIG. 9. Benchmark of the contribution to the Matsubara fre-
quency self-energy �̃(iωn) for the Hubbard atom at order 5 in the
perturbation series in U . Red squares are the analytical solution.
Green lines are obtained from a calculation of the Green’s function
with Eq. (2). Orange line is the result of the equations of motion and
lies on top of the blue curve corresponding to the direct self-energy
measurement. We use β = 10, U = 1, ε = −0.2. All simulations
lasted 1200 CPU hours.

complexity. We first consider the simple problem of a Hubbard
atom. The self-energy is given by

�σ (iωn) = 〈nσ̄ 〉U + 〈nσ̄ 〉(1 − 〈nσ̄ 〉)U 2

iωn − ε − (1 − 〈nσ̄ 〉)U , (B1)

and the contributions to �̃(iωn) at different orders in U

can be computed analytically. In Fig. 9, we show results
for the contributions to �̃(iωn) at order 5 as obtained from
the proposed algorithms. The results clearly agree with the
analytical values within the error bars.

Next we consider the Hubbard model on a 32 × 32
square lattice. In Fig. 10 we plot the momentum-dependent
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FIG. 10. Hubbard model self-energy at the first Matsubara fre-
quency �̃�k(iω0) along the �k = (0,0) → (π,0) → (π,π ) → (0,0) path
at order 4 in U , as obtained from DiagMC (red), Dyson’s equation
(green), the equations of motion approach (orange), and the direct self-
energy measurement (blue). We use a 32 × 32 lattice with βt = 2,
U = 4t , μ = 0 and a uniform α shift α↑ = α↓ = 1.53t . The DiagMC
simulation lasted 400 CPU hours, while all other simulations lasted
1440 CPU hours.

085117-9



ALICE MOUTENET, WEI WU, AND MICHEL FERRERO PHYSICAL REVIEW B 97, 085117 (2018)

2 4 6 8 10 12 14 16

Perturbation order n

10−1

100

101

102

103

104

105

106

107

T
im

e
fo

r
on

e
M

C
cy

cl
e

[m
ic

ro
se

co
nd

s]

ΣDet

γΣn23n

Dyson - EOM
γG3n

5 10 15

n

0

2

4

6

t Σ
/t

G

FIG. 11. Comparison of the time for one Monte Carlo cycle (in
microseconds) between the direct accumulation of the self-energy
(blue curve with dots) and the computation of the Green’s function
using CDet (green curve with dots), on a semilog scale, as a function
of the perturbation order n. Each curve is fitted by its expected
high-n behavior: γ�n23n for the �Det (dotted red line) and γG3n

for Dyson (dashed red line), where γG = 0.0464 and γ� = 0.0012
are implementation-dependent constants. Inset: Ratio of the time of
one MC cycle for �Det (t�) and for the CDet (tG), as a function of
the perturbation order n.

self-energy �̃�k(iω0) at its first Matsubara frequency along
the �k = (0,0) → (π,0) → (π,π ) → (0,0) path of the Brillouin
zone. Results from the three approaches are are shown at order
4 and compared to results obtained using the standard DiagMC
[15–19] algorithm. (This implementation of the algorithm
has been benchmarked and used in earlier calculations, see,
e.g., Ref. [26].) Results agree with the benchmark DiagMC
calculation within error bars.

A measurement of the time to perform one MC step allows
us to study the complexity of the algorithms. This is shown
in Fig. 11, where the time for a single step is shown both for
the direct measurement of the self-energy using the �Det and
for the measurement of G using the CDet, that is then used
in Dyson’s equation. We know that the EOM method takes
twice the CDet complexity, so we consider these two methods
together in this study. The expected high-order behavior in
n23n for the self-energy measurement and 3n for the CDet is
found. At smaller perturbation orders, the asymptotic behavior
is not yet settled. At orders smaller than 5, the self-energy
measurement takes less time mainly because the algorithm
starts at order 2. [The recursion starts with the pair-bubble
diagram, see Eq. (15) with V = ∅.] On the contrary, the CDet
algorithm for the Green’s function starts at order 0. As a
consequence, the direct measurement of the self-energy is only
about a factor 3 slower than the CDet approach at order 10 (see
inset of Fig. 11), which is the order that is currently accessible
with reasonable error bars.

APPENDIX C: CANCELLATION
OF NON-SELF-ENERGY DIAGRAMS

Let us explicitly show the cancellation of non-self-energy
diagrams in Eq. (12) for the specific case V = {x1} at order 3
in U . We start by considering

. (C1)

The first term F̄ σ
V (xout,xin) in Eq. (12) corresponds to all

connected diagrams with two external points xin and xout and
one internal interaction vertex x1:

. (C2)

From this sum, we subtract the second and third terms of
Eq. (12). The former gives

, (C3)

while the latter’s contribution is the sum of

(C4)

and of

. (C5)

We see that the remaining contributions to the self-energy
that remain are only those diagrams that are one-particle
irreducible.
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