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Fractons are emergent particles which are immobile in isolation, but which can move together in dipolar pairs
or other small clusters. These exotic excitations naturally occur in certain quantum phases of matter described
by tensor gauge theories. Previous research has focused on the properties of small numbers of fractons and their
interactions, effectively mapping out the “standard model” of fractons. In the present work, however, we consider
systems with a finite density of either fractons or their dipolar bound states, with a focus on the U (1) fracton
models. We study some of the phases in which emergent fractonic matter can exist, thereby initiating the study of
the “condensed matter” of fractons. We begin by considering a system with a finite density of fractons, which we
show can exhibit microemulsion physics, in which fractons form small-scale clusters emulsed in a phase dominated
by long-range repulsion. We then move on to study systems with a finite density of mobile dipoles, which have
phases analogous to many conventional condensed matter phases. We focus on two major examples: Fermi liquids
and quantum Hall phases. A finite density of fermionic dipoles will form a Fermi surface and enter a Fermi liquid
phase. Interestingly, this dipolar Fermi liquid exhibits a finite-temperature phase transition, corresponding to an
unbinding transition of fractons. Finally, we study chiral two-dimensional phases corresponding to dipoles in
“quantum Hall” states of their emergent magnetic field. We study numerous aspects of these generalized quantum
Hall systems, such as their edge theories and ground state degeneracies.
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I. INTRODUCTION

Quantum phases of matter with long-range entanglement,
such as spin liquids and fractional quantum Hall systems,
are strikingly characterized by the presence of fractionalized
quasiparticles. As a familiar example, two-dimensional sys-
tems can host anyon excitations, characterized by their nontriv-
ial braiding statistics. In the presence of symmetries, these ex-
citations can carry fractional quantum numbers, exhibiting the
phenomenon of symmetry fractionalization. Perhaps the most
famous manifestation of this behavior occurs in the celebrated
ν = 1/3 Laughlin fractional quantum Hall state [1], where
the charge e/3 quasiparticles have been directly observed in
experiment [2–4]. The phenomenon of fractionalization has
been studied in great detail, specifically in the context of
symmetry enriched topological (SET) phases [5–12]. It is now
well established that the appropriate theoretical framework
for understanding fractionalization is that of gauge theories,
which also describe the fundamental forces of our universe.
The resulting theoretical developments on fractionalization
have led to a fruitful exchange of ideas between the condensed
matter and high energy communities.

The most familiar types of gauge theories can be formu-
lated in terms of a vector gauge field �A, just as in ordinary
electromagnetism. Such vector gauge fields account not only
for all gauge-mediated interactions in the standard model, but
also for the theory of the fractional quantum Hall effect [13],
superconductors with dynamical electromagnetism [14,15],
and most known examples of spin liquid states [5]. As such,
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treatments of fractionalization have historically focused almost
exclusively on vector gauge fields. However, there is no reason
in principle why the gauge field must transform as a vector
object under rotations. Motivated by this, recent work has
set out to study fractionalization patterns described by more
general tensor gauge fields [16–18]. For instance, a quantum
phase of matter could be described by a two-index tensor Aij ,
or a tensor of even higher rank.

Gauge theories with such a tensor gauge field can describe a
radically different form of fractionalization from that occurring
in conventional vector gauge theories. Whereas vector gauge
theories only feature fractionalization of internal quantum
numbers, like charge or spin, particles coupled to a tensor
gauge field can exhibit fractionalization of the ability to move
through space. The most notable example of this phenomenon
is the existence of “fracton” excitations in certain tensor
gauge theories. These new particles, first seen in the context
of exactly solvable spin models [19–26], have no ability
to move by themselves; i.e., an isolated fracton is strictly
immobile. Nevertheless, when a fracton combines with an
appropriate number of other fractons, it can form a mobile
bound state which is free to move around the system.1 In this
sense, a fracton is only a fraction of a conventional mobile
excitation. The condensed matter literature has seen a flurry of

1The smallest mobile bound state of fractons is usually also a
nontrivial excitation of the system, which cannot decay directly into
the vacuum, and therefore exists as a stable particle. The exception to
this is in certain “fractal” fracton models, such as Haah’s code, where
all mobile bound states are trivial [22].
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recent activity fleshing out the properties of these strange new
particles [27–45].

More generally, the restriction on mobility of charges in
tensor gauge theories need not occur in all directions. There are
other types of “subdimensional particles” which are immobile
in only certain directions [17]. For example, some tensor
gauge theories host one-dimensional particles, which are free
to move only along a particular line. The physics of tensor
gauge theories is therefore much richer than simply the theory
of fractons. Nevertheless, fracton excitations have been studied
in more detail than the other members of the subdimensional
family, and we will focus in this work on fractons and their
bound states.

Essentially all research in this area to date has focused on
the properties of fractons in isolation, or in the presence of
a small number of other fractons. Such treatments are, in a
sense, determining the fundamental particle physics governing
the behavior of fractons. For example, previous work has for-
mulated the generalized electromagnetic interactions between
fractons and U (1) tensor gauge fields [18]. We can regard all
of these previous studies as mapping out the “standard model”
of fractons.

While the fundamental behavior of fractons has been stud-
ied in detail, there has been comparatively little work studying
the behavior of a system with a finite density of fractons. This
is an important problem to study, since a system with emergent
tensor gauge structure will not necessarily be at zero chemical
potential of fractons. In fact, there are multiple different
chemical potentials to consider. As we will review, these
tensor gauge theories have higher moment charge conservation
laws, beyond the conventional monopolar charge conservation
law. As a simple example, some systems exhibit conservation
of both charge and dipole moment of fractons, which leads
directly to their immobility. This extra conservation law allows
us to consider a second type of chemical potential in the system.
Even when there is zero net charge density of fractons, we can
still tune a dipolar chemical potential to obtain a finite density
of dipoles. To fully understand the behavior of fracton systems,
we must therefore study not only finite densities of fractons,
but also finite densities of the nontrivial bound states. In doing
so, we will be formulating the “condensed matter theory” of
fractons, mapping out the phases in which emergent fractonic
matter can exist. In this paper, we will content ourselves with
studying fracton systems which have two nontrivial types of
particles: immobile fractons and fully mobile dipoles. Many of
these principles can be carried over to future studies of more
complicated systems.

We will begin by studying the case of a finite density of
fractons. This may seem trivial at first, since fractons tend to be
locked in place. However, while a fracton in isolation is strictly
immobile, multiple fractons are capable of limited motion via
“pushing off” of each other, leading to a mutual sense of inertia,
in a manifestation of Mach’s principle [31]. In particular, for
a system of fractons at density ρ, the fractons will possess a
finite effective mass, m ∼ ρ−1. While the fractons have now
lost their characteristic immobility, there is still one crucial
difference between fractons and conventional mobile particles.
Like-charged fractons in a U (1) tensor gauge theory experience
two types of forces: a long-range repulsion mediated by the
gauge field [18], and an effective “gravitational” attraction

which is generically short-ranged [31]. This type of situation,
with short-range attraction and long-range repulsion, provides
the natural conditions for microemulsion physics. The fractons
will bind into small-scale clusters dominated by the short-range
attraction, which in turn act as droplets “emulsed” in a phase
dominated by the long-range repulsion. At low densities, the
system will form a Wigner crystal of such fracton clusters. As
the strength of the repulsion is increased, the size of clusters
will decrease until the system becomes a Wigner crystal of in-
dividual fractons. We will determine the necessary conditions
on the repulsive potential for microemulsion physics to hold
and will estimate the typical size of fracton clusters.

We will then move on to the study of systems with zero
fracton density, but with a finite density of dipoles. We will
assume throughout that dipole moment is quantized (such
that there is a minimal dipole moment) as is always the case
when the theory arises from an underlying lattice model [17].
Dipoles are intrinsically mobile particles, which allows their
phases of matter to be studied through more conventional
means. Furthermore, these dipoles can have either bosonic
or fermionic statistics. We can therefore imagine putting
these mobile dipoles into almost any phase encountered in
conventional condensed matter. In this paper, we will focus
on the dipolar analogs of two familiar phases of matter: Fermi
liquids in three dimensions (3D) and quantum Hall phases in
two dimensions (2D).

We study a system with a finite density of fermionic dipoles,
primarily focusing on the case of a single species of dipole
(i.e., all polarized in one direction) in 3D. In this case, we
expect the dipoles to form a Fermi surface. In the fracton
model we focus on, the dipoles interact with a 1/r repulsive
interaction, which will be screened at finite density, just like
the conventional Coulomb interaction between electrons. All
of the usual arguments for Fermi liquid theory can be carried
over essentially unchanged. One notable feature of this dipolar
Fermi liquid is the behavior of fractons. We show that fractons
in such a system have a logarithmic interaction energy. This
leads to a finite-temperature phase transition, corresponding to
the unbinding of fractons, in similar spirit to a BKT transition.
In the low-temperature phase, the presence of a sharp Fermi
surface will result in Friedel oscillations in the spin density,
which is a useful experimental diagnostic. When this phase
is realized in a weak Mott insulator (i.e., close to the metal-
insulator transition), one should also be able to observe Friedel
oscillations in the charge density.

Finally, we will consider systems in two spatial dimensions
which have both a finite density of dipoles and a nonzero expec-
tation value of the emergent magnetic field associated with the
tensor gauge field. In this case, the mobile dipoles will respond
to this field much like an electron would respond to an external
magnetic field, forming the dipolar analog of a quantum Hall
state.2 We will show that these dipolar quantum Hall states fit
naturally into the framework of the recently discovered chiral
fracton phases, described by tensor Chern-Simons theories
[38]. We will study many of the natural questions associated

2Importantly, there is no quantum Hall effect of normal electrical
conductivity. Physically, these states will be most likely to occur in
Mott insulating spin liquids.
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with these generalized quantum Hall states, such as their
level quantization and ground state degeneracy. We will also
demonstrate the existence of gapless chiral edge modes, which
will result in a robust thermal Hall effect.

II. REVIEW OF U(1) FRACTONS

Recently, in a series of papers [17,18,31,35,38], one of the
authors (M.P.) has worked out the properties of 3D U(1) tensor
gauge theories, which host fractons and other subdimensional
excitations. These theories provide the natural analog of the
discrete fracton theories formulated by Vijay, Haah, and Fu
[25,26]. We will here review the simplest example of a U (1)
tensor gauge theory—the “scalar charge theory”—in order to
illustrate the main principles underlying these phases.

Instead of a conventional vector gauge field Ai , this theory
is formulated in terms of a rank 2 symmetric tensor gauge
field Aij and its canonical conjugate, Eij . The properties of
the theory are almost entirely determined by the form of the
Gauss’s law for the theory, which takes the form3

∂i∂jE
ij = ρ. (1)

Whereas the conventional Gauss’s law only leads to the con-
servation of charge, this new Gauss’s law has two associated
conservation laws,∫

ρ = const.,
∫

�xρ = const., (2)

corresponding to conservation of charge and dipole moment,
respectively. This extra conservation law has a severe conse-
quence for the charges of the theory. A single charge cannot
move while conserving the dipole moment of the system.
Therefore, isolated charges in this system are locked in place
and are fracton excitations. A charge can only move if it
combines with an opposite charge to form a dipolar bound
state, which is free to move around the system. Such dipoles
are themselves nontrivial objects, since dipole conservation
prevents them from decaying directly into the vacuum.

Within the low-energy sector, where ∂i∂jE
ij = 0, the sys-

tem is invariant under the following gauge transformation,

Aij → Aij + ∂i∂jα, (3)

for gauge parameter α(�x) with arbitrary spatial dependence.
The most relevant “magnetic field” object consistent with
this gauge transformation takes the form of a nonsymmetric
traceless rank 2 tensor

Bij = εiab ∂aAb
j . (4)

In terms of the electric and magnetic fields, the Hamiltonian
for this theory is given by

H =
∫ (

1

2
EijEij + 1

2
BijBij + AijJij

)
, (5)

3In this paper, we use a notation in which Greek indices vary over
space-time components (μ = 0,1,2,3) and Latin indices are used
for spatial components only (i = 1,2,3). Repeated indices will be
implicitly summed over and we will work in units where e = h̄ =
c = 1, with c being the velocity of the gauge mode.

where Jij is a symmetric current tensor describing the motion
of fractons. Note that whereas normal particles have a vec-
tor current describing their motion, fractons can only move
through multibody hopping processes, which are conveniently
captured by a symmetric tensor satisfying

∂tρ + ∂i∂jJ
ij = 0, (6)

which serves as the generalized continuity equation of the
theory [18].

This theory can also be formulated in Lagrangian language
as

L = 1
2 (Ȧij − ∂i∂jφ)2 − 1

2BijBij − AijJij − φρ, (7)

where dots denote temporal derivatives and where φ is a field
analogous to the temporal component, A0, of the more familiar
rank 1 gauge theory, serving as a Lagrange multiplier enforcing
Gauss’s law [38]. (Note that this theory does not have Lorentz
invariance, so φ does not transform as a “0 component” of the
gauge field.) In this language, we can write a more general
time-dependent gauge transformation within the low-energy
sector

Aij → Aij + ∂i∂jα, φ → φ + α̇ (8)

for scalar field α(�x,t) with arbitrary dependence on space and
time.

One curious feature of this particular model is the fact that
the interfracton potential grows linearly, V (r) ∼ r . [This is not
generic to U (1) fractons, which in other models have a standard
decaying potential.] In conventional vector gauge theories, a
linear interparticle potential is indicative of an instability to a
gapped confined phase. In this theory, however, there is a stable
gapless phase, regardless of the large energy cost necessary
to separate particles [16,17]. Furthermore, once this energy
cost has been paid, the immobility of fractons stabilizes them
from collapsing directly back into the vacuum. Nevertheless,
the linear energy cost indicates that these fractons cannot be
thermally excited in large numbers. We will see later, however,
that the presence of a dipolar Fermi surface can screen the linear
potential down to a logarithmic interaction, which will allow
for the proliferation of fractons above a certain temperature.

III. MICROEMULSIONS OF FRACTONS

We begin by considering a three-dimensional system which
has a finite density of U (1) fractons. At finite density, fractons
endow each other with inertia through the virtual exchange of
dipole moment, and their characteristic immobility disappears
[31]. Even though the fractons can now freely move around
the system, there is still one crucial feature which sets fractons
apart from conventional mobile particles. A fracton will lower
its effective inertia, and thereby move more quickly, when it
is in the immediate vicinity of another fracton. The result is
an always-attractive geometric force between fractons, which
plays the role of an effective gravitational interaction. As
shown in previous work [31], the gravitational attraction
between fractons is generically short-ranged in the models
studied in the condensed matter literature. The effective short-
ranged attractive potential takes the form

Vs(r) = −V0e
−Mr, (9)
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where M is the mass scale of the mobile dipoles and V0 is a
constant.

While the emergent gravitational force provides a
short-range attraction, this is not the only interaction between
fractons. Like-charged fractons in U (1) models also exhibit
a conventional gauge-mediated long-range repulsion. The
precise power law of this repulsive interaction depends on the
model, but we can readily identify an interesting universal
feature which holds for a range of different potentials. A model
with short-range attraction and long-range repulsion provides
precisely the sort of conditions necessary for microemulsion
physics (for discussions of microemulsion physics in a more
traditional context, see [46–48]). At short distances, fractons
attract each other and will have a tendency to bind together
into clusters. At longer distances, however, we expect the
power-law repulsion to take over, preventing the fractons from
coalescing into a single large cluster. Instead, fracton clusters
will have some typical intermediate size and will behave as
mesoscopic “particles” with an effective repulsive interaction.
This repulsion will keep the fracton clusters emulsed in
the surrounding medium, instead of phase-separating into a
single large cluster. The situation is reminiscent of protons
in a nucleus, held together by short-range attraction, which
interact with other nuclei through a long-range Coulomb
repulsion. At low densities, the system will form a Wigner
crystal of fracton clusters.

This physical picture, while appealing, will turn out to hold
only for a certain range of potentials. If the repulsion is too
weak, all fractons will collapse into a single cluster. If the
repulsion is too strong, all clusters will break apart into a
Wigner crystal of individual fractons. In order to make more
concrete statements, we must consider the precise form of the
repulsive interaction. We will break up the analysis into two
classes of repulsive power-law potentials, both of which are
relevant in fracton phases.

A. Decaying potentials

We first assume that, in addition to the short-range at-
traction, the fractons have a conventional decaying repulsive
potential

Vl(r) = α

rn
, (10)

for some power n. This is the situation which holds in some
fracton models, such as the Gu-Wen emergent gravity model,
for which n = 1 (i.e., a Coulomb potential) [49,50]. Such
a potential provides both a long-range repulsion and also
a “hard-core” repulsion at the shortest distances, with the
short-range interaction providing an attraction immediately
outside the core (see Fig. 1).

On short scales, we expect to see fractons clustering together
into bound states. Taking the fractons to have a hard core of
radius a, the lowest energy configuration will be approximately
close-packed out to some radius R, as in Fig. 2. The total
number N of particles in the cluster scales as N ∼ (R/a)3. In
order to determine the most energetically favorable value for
N (and thereby R), we need to estimate the contributions to the
energy of the cluster from both the short-range and long-range
potentials.

FIG. 1. V (r) vs r . The decaying potential has both long-range
and “hard-core” repulsions, with a region of attraction just outside
the core.

For the short-range potential, it is sufficient to consider
interaction energy between nearest neighbors. We therefore
approximate the potential by Vs = −V0 for nearest neighbor
pairs, Vs = 0 otherwise. The total contribution to the energy
of the cluster from the short-range interaction is then given by

Es = −c1V0N + c2V0N
2/3, (11)

where c1 and c2 are positive numbers of order unity. The first
term represents the interaction energy of particles in the bulk,
with c1 quantifying the number of nearest neighbors. The
positive N2/3 term represents the number of particles on the
surface, which do not get all the energetic benefits of particles
in the bulk, due to having fewer nearest neighbors. Keeping
this surface term will turn out to be crucial.

In addition to the short-range interaction energy, we also
need the contribution to the energy from the long-range
repulsive potential. This interaction energy behaves as El ∼
αN2/Rn ∼ αN2− n

3 /an, so we write

El = c3
α

an
N2− n

3 , (12)

for c3 of order unity. The total energy of the cluster is then
given by

E = −c1V0N + c2V0N
2/3 + c3

α

an
N2− n

3 , (13)

and the energy per fracton is

E

N
= −c1V0 + c2V0N

−1/3 + c3
α

an
N1− n

3 . (14)

FIG. 2. We consider a cluster of fractons that is approximately
close-packed, assuming a hard-core radius a for the fractons. The
radius of the cluster scales as R ∼ N1/3.
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We can find the most energetically favorable configuration of
the whole system by minimizing the energy per fracton

d(E/N)

dN
= −1

3
c2V0N

−4/3 + c3

(
1 − n

3

)
α

an
N−n/3 (15)

⇒ Nc ∼
(

V0a
n

α
(
1 − n

3

)
) 3

4−n

∼
(

Vs(a)

Vl(a)
(
1 − n

3

)
) 3

4−n

. (16)

In other words, the optimal particle number of the cluster
is determined by the ratio of the short-range and long-range
interaction energies of neighboring fractons. When the total
number of fractons in the system is less than Nc, all of
the fractons will clump together into a single cluster. At
larger particle numbers, the system will have multiple clusters,
interacting with each other through the long-range repulsion.
The typical size of these clusters is given by

R ∼ aN1/3
c ∼ a

(
Vs(a)

Vl(a)
(
1 − n

3

)
) 1

4−n

. (17)

It is worth noting that, for n � 3, the cluster size blows up.
This indicates that a long-range repulsion weaker than 1/r3 is
no longer enough to keep the fractons from phase-separating
into a single cluster, in a form of “gravitational collapse” of
the system.4 We therefore see that only repulsive interactions
with n < 3 will exhibit microemulsion physics.

B. Growing potentials

While some U (1) fracton models feature a conventional
decaying potential, other models have a repulsive potential
which increases in magnitude as the fractons are separated.
For example, we have already discussed that the scalar charge
theory exhibits a linear repulsive potential between fractons,
V = −αr . More generally, we can consider a growing repul-
sive potential of the form

Vl(r) = −αrn. (18)

When combined with short-range effects, this produces the
potential energy profile seen in Fig. 3. For a potential of this
form, the system can always lower its energy by breaking apart
a cluster into a configuration with well-separated fractons.
This becomes readily apparent if we attempt to determine the
typical cluster size using the strategy of the previous section.
All previous statements about the short-range interaction carry
over directly. The long-range interaction is slightly trickier.
This contribution to the energy behaves as

El ∼ −αN2(Rn − Ln), (19)

where L is the system size. We are here writing the energy
of the cluster relative to a state in which the fractons are well
separated, which has energy of order −αN2Ln. With respect
to this reference point, the total energy of a cluster is given by

E = −c1V0N + c2V0N
2/3 + c3αLnN2 − c4αanN2+ n

3 . (20)

4Note that the hard core prevents the fractons from further collapsing
into a black hole. Whether or not black hole physics is accessible
within the fracton framework remains an important open question.

FIG. 3. V (r) vs r . The growing potential has a similar profile to
the decaying case, except that the long-range repulsive potential now
grows unbounded in magnitude, destabilizing the microemulsion.

The energy per particle is given by

E

N
= −c1V0 + c2V0N

−1/3 + c3αLnN − c4αanN1+ n
3 . (21)

Since L � a, the fourth term is negligible compared to the
third, so we can drop it. [The fourth term only becomes relevant
when N ∼ (L/a)3, at which point the notion of separate
clusters breaks down anyway.] Within this approximation, we
can find the optimal cluster size by minimizing the remaining
terms with respect to N ,

d(E/N)

dN
= −1

3
c2V0N

−4/3 + c3αLn (22)

⇒ Nc ∼
(

V0

αLn

)3/4

. (23)

If we take the thermodynamic limit, L → ∞, we see that
the typical cluster size vanishes, Nc → 0, indicating that the
repulsion has caused all clusters to break apart. The resulting
state will feature fractons which are spaced apart as much as
possible, in a Wigner crystal configuration.

We have now seen that a repulsive potential V ∼ rn for
n > 0 leads to no clusters at all in the system, whereas a
potential V ∼ r−n for n � 3 leads to the formation of a
single phase-separated cluster. We can therefore conclude that
microemulsion physics, with finite size clusters emulsed in a
Wigner crystal of clusters, only holds for repulsive potentials
V ∼ r−n with 0 < n < 3. Stronger repulsions will result in a
single-particle Wigner crystal, while weaker repulsions will
result in the “gravitational collapse” of the fractons.

IV. DIPOLAR FERMI LIQUIDS

We now move on to study a system which does not have
a finite density of fractons, but rather a finite density of
mobile dipoles. We will focus our attention specifically on
the dipoles of the scalar charge theory, discussed in Sec. II.
We will assume throughout that there is a certain minimal
size for dipole moments (i.e., dipole moment is quantized),
as is always the case when the scalar charge theory arises from
an underlying lattice model [17]. These dipoles can be either
bosons or fermions, as discussed in Appendix B. In this paper,
we will focus on fermionic dipoles, which have phases of
matter directly analogous to conventional electronic phases.
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For a system with a finite density of fermionic dipoles, the
simplest fate for the system would seem to be that the dipoles
form a Fermi surface, which is the first possibility that we will
explore. We will study a three-dimensional system, where there
are no instanton effects which could destabilize the system. It is
possible that a two-dimensional dipolar Fermi surface is stable
as well, similarly to the conventional 2D spinon Fermi surface
[51], but this would require a more detailed analysis which we
leave to future studies.

We first study the case where there is only a finite density
of one species of dipole pi , with a specific orientation of
dipole moment. Recall that dipole moment is a conserved
quantity, so an isolated dipole cannot change its orientation.
Furthermore, dipole moment is quantized in the system, so
scattering between dipoles cannot change the orientation
without paying a large finite energy cost. We assume that
all interaction energies in the problem are small compared
to this scale. It is then valid to consider a system of only
pi-oriented dipoles. Of course, such a polarized state breaks
any rotational or inversion symmetries of the system. In terms
of the microscopic degrees of freedom from which these
dipoles emerge (e.g., spins in a spin liquid), a single-species
dipolar Fermi liquid will be a state in which symmetry
breaking and long-range entanglement coexist.

A. Justification of Fermi liquid theory

A finite density of noninteracting fermions will always form
a Fermi surface. But in order to justify the existence of a
stable interacting Fermi liquid, we must examine precisely
how these dipoles interact with each other. We will confine our
attention to the scalar charge theory discussed earlier. From
the generalized electromagnetism of this model [18], we know
that the interparticle potential between two dipoles, p and p′,
takes the form

V (r) = (p · p′)
8πr

− (p · r)(p′ · r)

8πr3
. (24)

For identical dipoles, p = p′, this reduces to

V (r) = p2 sin2 θ

8πr
, (25)

where θ is the angle between p and r . The corresponding force
between identical dipoles is generically repulsive, except for
a line of zero force at θ = 0. Importantly, the force is never
attractive. Also, we note that the 1/r potential (and corre-
sponding 1/r2 force) scales exactly like the normal Coulomb
interaction between electrons. We can hence essentially regard
the interaction between dipoles as simply an anisotropic
Coulomb force. Then, just as in normal Fermi liquid theory, the
dipoles will be able to screen each other. (The details of dipolar
screening are worked out explicitly in Appendix A.) After
accounting for screening, the resulting screened quasiparticles
will only have weak short-range interactions.

At this point, the dipole moment of the fermions becomes
mostly irrelevant to the problem. We have a system of fermions
with short-range interactions, with the dipole moment simply
serving as an extra internal quantum number which has no
effect on the traditional Fermi liquid analysis. All of the
usual interesting aspects of Fermi liquid theory will carry over

FIG. 4. The anisotropic nature of the interaction between dipoles
will cause the Fermi surface to elongate in the direction of the dipole
moment, forming roughly a prolate spheroid.

unchanged. There will be a discontinuity in dipole occupation
number at a sharp Fermi surface in momentum space (with a
quasiparticle residue Z < 1). Also, for appropriate values of
Landau parameters, the system will host a zero sound mode,
representing oscillations of the Fermi surface, which provides a
way to distinguish the system from a free Fermi gas of dipoles.

While the dipole quantum number does not significantly
affect the Fermi liquid analysis, there is one important way in
which it makes its presence known in the low-energy physics.
While the bare interaction of Eq. (25) is screened, it remains
highly anisotropic, with a strong repulsion between side-by-
side dipoles and zero interaction between end-to-end dipoles.
As such, the dipoles will tend to be arranged more densely
in the direction of their dipole moment. This corresponds to
a larger Fermi momentum kF in this direction than in the
two perpendicular directions. Thus, the anisotropic interaction
between dipoles will lead to a Fermi surface which is elongated
along the direction of the dipole orientation. Starting from a
nearly isotropic system, the interactions will cause the Fermi
surface to roughly take the shape of a prolate spheroid, as
illustrated in Fig. 4.

This elongation should manifest itself in the Friedel oscil-
lations of the system, which will have a shorter wavelength in
the direction of the dipole moment. When this dipolar phase of
matter is realized in a Mott insulating spin liquid, these Friedel
oscillations will be most prominently seen in the spin density,
since the dipoles will carry spin but not charge. However, for
a weak Mott insulator (close to the metal-insulator transition),
the coupling between the charge and spin sectors is strong
enough to observe Friedel oscillations in the charge density as
well, as seen in certain Mott transitions with a “ghost” Fermi
surface [52].

It is worth noting that, as in more familiar U (1) spin liquids
with spinon Fermi surfaces, the Fermi velocity of the dipoles
will generically be of the same order as the speed of the
gapless gauge mode. As such, the dynamical screening of this
system will be more complicated than that of a normal metal,
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which should manifest itself in the response functions of the
system. We leave the detailed study of dynamical screening as
a problem for future study.

B. Finite-temperature phase transition

Another important aspect of the dipolar Fermi liquid to
investigate is the behavior of fractons, which still occur as ex-
citations of the system (even though they are no longer at finite
density). The bare fractons of the scalar charge theory have a
linear interfracton potential, V ∼ r . This is the phenomenon
of “electrostatic confinement” [17], which usually makes these
fractons irrelevant to the low-energy physics. In the presence
of a finite density of dipoles, however, previous work [35] has
indicated that the interfracton potential is partially screened.
The present case is slightly different from previous work due to
the presence of a Fermi surface and also due to having only one
orientation of dipole. We leave the details of the calculation to
Appendix A. Here, we simply quote the result that the screened
potential grows only logarithmically,

Vscr (r) ∼ 1√
g

log r, (26)

where g is the density of states of dipoles at the Fermi surface.
The fractons now interact through a logarithmically increasing
potential, which is a much milder sort of growth than the bare
linear potential.

The logarithmic potential still results in a significant energy
cost for an isolated fracton, scaling as log L, where L is
the system size, much like a vortex in a two-dimensional
superfluid. Just as in a superfluid, we expect that the fractons
will only proliferate above a certain temperature. The free
energy associated with an isolated fracton in a system of size
L will take the schematic form

F ∼
(

1√
g

− kBT

)
log L. (27)

Fractons will therefore only proliferate at temperatures above a
certain critical temperature, where the free energy per particle
becomes negative,

Tc ∼ 1

kB

√
g

. (28)

Below this temperature, fractons will mostly exist in small
bound states, such as dipoles. Above the transition temperature,
fractons will be able to unbind and behave independently,
just like in the BKT transition of vortices in a superfluid.
When this happens, the dipoles will lose their integrity and
break apart into separate fractons, destroying the Fermi surface.
Furthermore, in such a finite temperature system, fractons lose
their characteristic immobility and can move around the system
(albeit very slowly) [35]. At this point, all interesting properties
of both fractons and dipoles have been lost, and the system is
in a trivial phase.

We note that for a three-dimensional system, the density of
states g increases with the size of the Fermi surface, indicating
a decrease in Tc as the Fermi surface gets bigger. In contrast,
the Fermi temperature TF ∼ EF increases with the size of the
Fermi surface. For a sufficiently large dipolar Fermi surface,
the transition will happen at temperatures well below the Fermi

FIG. 5. Fermi surfaces of different species of dipoles will be
elongated along different directions, which drastically reduces their
overlap, shown here by the solid black curves.

temperature, Tc 
 TF , so we do not need to worry about
thermal smearing of the Fermi surface. The Fermi surface
should remain fairly sharp up until the critical temperature,
where the dipoles are destroyed.

C. Multispecies Fermi liquids

One might also consider the case where there are finite
densities of two or more different orientations of dipoles in
the system. We would like to imagine each species as entering
its own Fermi liquid phase, with perhaps some weak coupling
between them. However, the form of the interaction between
dipoles [Eq. (24)] brings a complication into this picture.
For simplicity, consider the case of two species, p and p′,
with dipole moments of equal magnitude but in perpendicular
directions. The resulting interparticle potential is

V (r) = − (p · r)(p′ · r)

8πr3
= −p2 sin 2θ

16πr
, (29)

where θ is the angle between p and the component of r in
the p-p′ plane. Note that whereas the interaction between
identical dipoles was strictly repulsive, the interaction between
perpendicular dipoles can be either attractive or repulsive
depending on the relative positions of the dipoles. We now
have a channel with an attractive interaction, so the system
may have pairing instabilities. A further complication is the
fact that the Fermi surfaces of the different dipole orientations
will not overlap, as shown in Fig. 5, which will make the
interspecies pairing problem more intricate. Ultimately, the
study of multispecies dipolar Fermi liquids will be a much
more difficult problem than the single-species case, and we
leave this to future work.

V. DIPOLAR “QUANTUM HALL” PHASES

The preceding sections of this paper have focused on fracton
models in three spatial dimensions, which until recently had
been the sole focus of the fracton community, due to folklore
that fractons could not occur in less than three dimensions. The
discrete spin models [25,26] seem to have some fundamental
obstruction to being realized in two dimensions (though this
issue is not yet fully settled). Meanwhile, the lattice rotor
fracton models [16,17] are described by compact U (1) tensor
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gauge theories, which are unstable in two dimensions due to
instanton effects, just like a conventional compact U (1) gauge
field in 2D.

Despite these earlier difficulties, recent work has shown
that fractons can exist in two spatial dimensions, and in fact are
realized in a simple two-dimensional quantum crystal as discli-
nation defects [45]. The elastic theory of such a crystal can be
mapped directly onto a noncompact U (1) tensor gauge theory,
which avoids instanton effects, thereby providing an example
of a stable fracton model in two dimensions. This realization
opens the door to a whole new class of fractonic phases of mat-
ter. For example, we can place the mobile dipoles into any of the
conventional two-dimensional phases of matter. In this work,
we will focus on dipolar analogs of one of the most well-studied
types of two-dimensional phases: quantum Hall systems.

Conventional quantum Hall phases can be productively
studied through the use of Chern-Simons theories, which
capture the flux attachment physics of the composite fermion
picture. Similarly, we should be able to study dipole “quantum
Hall” states by attaching to each dipole some amount of its
effective magnetic flux. Luckily, the appropriate tool for study-
ing such dipolar flux attachment has already been developed,
in the form of tensor Chern-Simons theories, first seen in
the context of boundary theories to certain three-dimensional
fracton models [38]. We will here apply these generalized
Chern-Simons theories to the study of purely two-dimensional
dipolar “quantum Hall” phases. (We will drop the quotes from
here on, with the understanding that these phases do not exhibit
a quantum Hall response to the physical electromagnetic field.)
By coupling a Maxwell-type tensor gauge theory (arising from
elasticity theory, for example) to a tensor Chern-Simons gauge
field, we obtain a gapped chiral phase of matter hosting fracton
excitations. We work out some of the basic properties of these
new two-dimensional gapped phases, such as their response
properties, ground state degeneracies, and edge modes.

We note that these tensor Chern-Simons theories also
provide a way to stabilize compact U (1) tensor gauge theories
in two dimensions. Such theories can arise, for example, by
coupling a two-dimensional quantum crystal to a substrate
[45]. They can also arise directly in lattice rotor models.
A compact Maxwell tensor gauge theory of this sort has
an instability to a trivial gapped confined phase, driven by
instanton effects. However, by adding a tensor Chern-Simons
term to the critical point, we can drive the system towards a
different nontrivial gapped fixed point, described by dipolar
quantum Hall physics.

We emphasize that the U (1) fracton models we consider
evade the usual arguments for nonexistence of fracton theories
in two dimensions. Such arguments apply to stabilizer code
models where the fracton charge is only conserved modulo
an integer. In contrast, we consider only systems of U (1)
fractons with an absolutely conserved charge, such as the
topological defects in two-dimensional quantum crystals [45].
In the following, we will always take the tensor Chern-Simons
theories to be coupled to such fractons with conserved charge.

A. Review of Chern-Simons theory

We begin by reviewing the basics of Chern-Simons field
theories described by vector gauge fields, highlighting the

elements most relevant for our higher rank generalizations
(for a more comprehensive review, we refer the reader to
Refs. [13,53]). The structure of these topological quantum
field theories (TQFTs) was elucidated in a remarkable paper by
Witten [54], and it has since been realized that they describe
the low-energy physics of a large class of two-dimensional
gapped topological phases of matter, including quantum Hall
fluids [55–57], superconductors [14,15], and spin liquids [5].
In particular, they correctly capture the nontrivial ground state
degeneracy (GSD) of topological phases on a torus (a direct
manifestation of topological order), in addition to the braiding
and statistics of fractionalized excitations. While a general
discussion should include non-Abelian Chern-Simons theories
(which appear, e.g., in the context of the ν = 5/2 quantum Hall
state [58] and chiral spin liquids [59]), for simplicity we will
restrict our discussion to the Abelian case.

The Chern-Simons action at level k for a vector gauge field
Aμ is

SCS = k

4π

∫
d3x εμνλAμ∂νAλ, (30)

where μ,ν,λ = 0,1,2. This term is rotationally invariant but
breaks parity and time reversal. Moreover, it is gauge-invariant
under Aμ → Aμ + ∂μα

SCS → SCS +
∫

d3x ∂μ(αεμνλ∂νAλ), (31)

only up to a total derivative term which vanishes on closed
manifolds. The Chern-Simons term (30) naturally captures the
basic physics of the integer quantum Hall (IQH) effect, since

δSCS

δA0
= J0 = k

2π
B, (32)

δSCS

δAi

= Ji = − k

2π
εijEi. (33)

Identifying k with the number of filled Landau levels ν, we
see that the Chern-Simons term captures the flux attachment
in the quantum Hall state and describes a Hall conductivity
σxy = ν/(2π ). While ν is naturally quantized since it describes
the number of filled Landau levels, at first glance k need not
be quantized. However, the level k is necessarily quantized as
a result of gauge invariance (see Appendix C 1 for details).

While the above discussion focused only on the integer
quantum Hall state, Chern-Simons theory can more generally
describe the low-energy physics of phases with fractionalized
excitations. The long-distance physics of (Abelian) topological
phases is captured by an Abelian Chern-Simons field theory,
with the Lagrangian

L = 1

4π
εμνλaI

μKIJ ∂νa
J
λ . (34)

Here, aI is a multiplet (I = 1,2, . . . ,N) of compact U(1)
statistical gauge fields and KIJ is a symmetric integer-valued
N × N matrix which encodes the statistics of quasiparticles.
The parity of the diagonal entries of the K matrix specifies
whether the state is fermionic (odd) or bosonic (even). The K

matrix describing a gapped Z2 spin liquid is given by

K =
(

0 2

2 0

)
, (35)
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while fractional quantum Hall (FQH) states are described by
N = 1 and K = m, with m odd (even) for fermionic (bosonic)
states.

As an additional simplification, let us consider this latter
case, where K is simply an integer and the theory is governed
by a single statistical gauge field a,

L = m

4π
εμνλaμ∂νaλ. (36)

In order to completely specify the phase, we would also need to
specify the quantum numbers carried by quasiparticles, which
in the context of FQH states refers to their charge. While this
is easily accomplished within the Chern-Simons formalism by
adding a mixed Chern-Simons term

Lmixed = − 1

2π
εμνλAμ∂νaλ (37)

to the Lagrangian (36), it leads to a description of the phase
as not simply topologically ordered, but rather as a symmetry
enriched topological (SET) phase, which is outside the scope
of this review.

A clear manifestation of topological order in the Chern-
Simons description of topological phases is that the degeneracy
of ground states depends on the topological properties of the
manifold the system lives on. Specifically, it is possible to show
that while there are no topologically degenerate ground states if
the system (36) is defined on a sphere, on a torus the GSD is m

(see Appendix C 2 for details). More generally, it can be shown
that the ground state degeneracy of the K-matrix theory (34)
on an arbitrary Riemann surface of genus g is |det(K)|g [60].

Another characteristic feature of FQH states is the existence
of chiral gapless edge excitations, which cannot be gapped by
any local perturbations. Placing the system described by (36)
on a semi-infinite plane, it is possible to derive the effective
action governing these boundary modes (see Appendix C 3 for
details). The resultant theory,

Sedge = m

4π

∫
d2x(∂tϕ∂xϕ − v∂xϕ∂xϕ), (38)

is a conformal field theory (CFT), also known as a chiral
Luttinger liquid or level m Kac-Moody theory, which describes
a chiral boson moving at a velocity v. Importantly, these one-
dimensional boundary CFTs allow us to directly calculate the
wave function of the two-dimensional bulk, as was established
in a landmark paper by Moore and Read [61]. For instance,
from the conformal blocks of the chiral CFT (38) it is possible
to derive the Laughlin wave function for the ν = 1/m FQH
state.

B. Generalized Chern-Simons theories

We now turn our attention towards two-dimensional higher
rank generalizations of Chern-Simons theories, which host
excitations with restricted mobility, including fractons. Here,
we will focus on a specific chiral phase described by a rank
2 symmetric tensor gauge field—the “scalar charge theory” in
the taxonomy of Ref. [38]—to demonstrate the general phe-
nomenology of such phases, with generalizations to different
higher rank theories left for future work.

We first consider a phase described by a rank 2 spatial
symmetric tensor Aij , with its canonically conjugate variable

Eij playing the role of an electric field tensor. This theory,
similar to the 3D rank 2 theory reviewed in Sec. II, is uniquely
specified by a generalized Gauss’s law which takes the form

∂i∂jE
ij = ρ, (39)

for a scalar charge density ρ. The excitations carrying this
charge obey two constraints,∫

ρ = const.,
∫

�xρ = const., (40)

corresponding to the conservation of charge and of dipole
moment, respectively. The fundamental charges of this theory
are hence fractons, unable to move in any direction due to
the dipole moment conservation law. Importantly, however,
the dipolar bound states of this theory are completely mobile,
possessing both longitudinal and transverse motion [18]. The
constraint in the low-energy sector, ∂i∂jE

ij = 0, leads to
invariance under the gauge transformation

Aij → Aij + ∂i∂jα (41)

for gauge parameter α(�x,t) with arbitrary space-time depen-
dence. The long-distance Hamiltonian consistent with this
gauge structure is

H = 1
2EijEij + 1

2BiBi, (42)

where the magnetic field is a vector quantity,

Bj = εib∂iA
j

b , (43)

and the constraint ∂i∂jE
ij = 0 is implicitly assumed. The

Hamiltonian (42) leads to a linearly dispersing gapless gauge
mode with two polarizations. We also note that the magnetic
flux vector Bi in this case satisfies the constraint∫

xiB
i = const., (44)

which implies that the magnetic fluxes are one-dimensional,
with only transverse mobility.

Following the discussion presented in Ref. [38], we can also
formulate this theory in terms of a Lagrangian by introducing
a Lagrange multiplier field φ which imposes the Gauss’s law
constraint. The Lagrangian of this two-dimensional theory is

L0(Aij ,φ) = 1
2 (Ȧij − ∂i∂jφ)2 − 1

2BiBi, (45)

which is gauge-invariant under the transformations

Aij → Aij + ∂i∂jα,

φ → φ + α̇, (46)

where α(�x,t) has arbitrary space-time dependence.

1. Feeding the gauge field

Having established the properties of the tensor gauge field
with a Maxwell action, we now consider the effects of a Chern-
Simons term, which we expect will gap the theory and perform
some type of flux attachment. As we discuss in the next section,
a tensor Chern-Simons term attaches magnetic flux to dipoles.
First however, we verify that the Chern-Simons term fully gaps
the gauge field, giving a gapped chiral phase of matter with
fracton excitations.
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We introduce a Chern-Simons term for the tensor gauge
field Aij as

S[Aij ,φ] = S0[Aij ,φ] + SgCS[Aij ,φ], (47)

where we have added to the Lagrangian (45) a generalized
Chern-Simons action

SgCS[Aij ,φ] = − θ

4π2

∫
d3x φεbi∂i∂jA

j

b

+ θ

8π2

∫
d3x εbiȦijA

j

b , (48)

parametrized by θ . We note that this Chern-Simons action
can be derived as the boundary theory of a 3D higher rank
tensor gauge field with a generalized “E · B” term parametrized
by a coefficient θ [38]. Here, we study the action (48) in
strictly two-spatial dimensions, observing that, unlike the
vector Chern-Simons theory (30), the generalized action (48)
does not describe a topological quantum field theory, as there
does not appear to be any metric-independent formulation of
this theory [38].

In order to understand the consequences of the Chern-
Simons action for the gapless gauge modes, we decouple the
symmetric gauge field Aij into its trace γ and a symmetric
traceless tensor Ãij ,

Aij = Ãij + γ δij . (49)

Substituting this into the action (47), we obtain

S[Ãij ,γ,φ] = 1

2

∫
d3x

[
˙̃Aij −

(
∂i∂j − 1

2
δij ∂

2

)
φ

]2

−1

2

∫
d3x(∂iγ + εij εab∂aÃbj )2

+
∫

d3x

(
γ̇ − 1

2
∂2φ

)2

+ SgCS[Ãij ,φ]. (50)

Let us unpack this expression. First, we note that in terms of
the separated fields Ãij and γ , the action is invariant, up to a
boundary term, under the gauge transformation

Ãij → Ãij + (
∂i∂j − 1

2δij ∂
2
)
α,

γ → γ + 1
2∂2α,

φ → φ + α̇, (51)

where α(�x,t) has arbitrary space-time dependence. Remark-
ably, we see that the trace component does not appear in the
Chern-Simons action, which ostensibly gives a mass only to
the traceless component of the gauge mode while leaving the
trace component massless.

To decipher the fate of the traceless component, we focus
on the terms in the action (50) containing γ ,

S[Ãij ,γ,φ] =
∫

d3x

(
γ̇ − 1

2
∂2φ

)2

− 1

2

∫
d3x(∂iγ + εij εab∂aÃbj )2 + S2[Ãij ,φ],

(52)

where S2 contains the remaining terms in the action.
Reparametrizing Ãij in terms of an effective gauge field

�i = εij εab∂aÃbj , (53)

we can rewrite Eq. (50) as

S[Ãij ,γ,φ] =
∫

d3x

[(
γ̇ − 1

2
∂2φ

)2

− 1

2
(∂iγ + �i)

2

]

+ S2[Ãij ,φ]. (54)

Once written in this form, it is clear that the trace mode γ

couples to the effective gauge field �i in a manner redolent
of the coupling between a superfluid phase ϕ and an ordinary
vector potential Aμ: (∂μϕ − Aμ)2. By analogy with the case
of a superfluid, where the vector potential “eats” the gapless
Goldstone mode, we thus expect that the gapless trace mode
will get eaten by the effective gauge field �. This can be seen
explicitly by making a gauge transformation

Ãij → Ãij + (
∂i∂j − 1

2δij ∂
2)α, φ → φ + α̇, (55)

with α(�x,t) such that

1
2∂2α = γ. (56)

While S2[Ãij ,φ] is invariant under such a transformation, the
magnetic flux vector and effective gauge field transform as

Bj → B̃j = εib∂iÃ
j

b ,

�i → �i − 1
2∂i∂

2α = �i − ∂iγ, (57)

thereby completely eliminating the trace mode γ from the
theory. Surprisingly, we have found that the gauge field eats
its own trace component, leading us to christen this higher
rank tensor gauge field an “ouroboros” gauge field. We note
that similar behavior may be displayed by non-Abelian vector
gauge theories in the context of SU(2) spin liquids [13].

Since γ is a compact field, we should, in principle, account
for the presence of vortices as is often done when studying
ordinary superfluids. Specifically, on splitting γ into a regular
part γr and a singular part γs , only the regular part would get
absorbed into the effective gauge field �i , with γs describing
gapped vortices with short-range interactions. We can then also
imagine integrating out the gapped gauge mode, leading to
an effective action for these vortices, which would take the
form of a conventional vector Chern-Simons theory. We leave
a detailed discussion of these vortices for future work.

The preceding discussion establishes that the higher rank
Chern-Simons term leads to a completely gapped phase, with
the low-energy physics of this phase described by a traceless
symmetric rank 2 field Ãij .5 The effective action describing
the long-distance physics of this gapped phase is hence the

5Since the trace mode disappears from the theory, it is natural to
ask whether we could simply start from the theory of a traceless
symmetric rank 2 tensor. However, the particle structure for such
a theory would differ from the one studied here and must thus be
considered separately.
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generalized Chern-Simons term

SgCS[Ãij ,φ] = − θ

4π2

∫
d3x φεbi∂i∂j Ã

j

b

+ θ

8π2

∫
d3x εbi ˙̃Aij Ã

j

b , (58)

since it has one fewer derivative than the Maxwell-like term
in the action. As mentioned earlier, in principle we should
also include the gapped vortices of the trace mode γ , but we
will focus here on the physics captured by the higher rank
Chern-Simons term (58), which is gauge-invariant (on a closed
manifold) under

Ãij → Ãij + (
∂i∂j − 1

2δij ∂
2
)
α, φ → φ + α̇, (59)

for arbitrary α(�x,t).
Similarly to the quantization of the level k of a vector

Chern-Simons theory, the coefficient θ of the action (58) is also
quantized in units of 2π (see Appendix D 1 for a derivation),

θ = 2πk, k ∈ Z. (60)

We will henceforth refer to k as the level of the higher rank
tensor Chern-Simons theory, which we will now demonstrate
describes an emergent integer quantum Hall state of mobile
dipoles at the filling fraction ν = k. We note that, similarly
to the CS theory describing the quantum Hall effect, we will
see that when k ∈ Z, the generalized CS term (58) describes an
IQH state of dipoles while for fractional values, it is describing
an FQH state.

2. Integer quantum Hall state of dipoles

So far, we have established that the addition of the higher
rank Chern-Simons term leads to a fully gapped phase, where
the trace mode of the symmetric tensor Aij has been eaten by
the traceless mode Ãij . With the gauge sector of the theory
fixed, we now examine the particle content of the low-energy
theory (58).

The Lagrange multiplier field φ constrains the low-energy
sector of this theory,

− k

2π
εbi∂i∂j Ã

j

b = k

2π
∂j B̃

j = 0, (61)

where B̃j is the magnetic flux vector. More generally, allowing
for the appropriate gauge charges coupled to the Chern-Simons
field,

ρ = − k

2π
εbi∂i∂j Ã

j

b . (62)

It can readily be checked that the excitations carrying this
charge obey the constraints∫

ρ = const.,
∫

�xρ = const.,
∫

x2ρ = const., (63)

corresponding to the conservation of charge, dipole moment,
and a specific component of the quadrupole moment. The
fundamental charges are thus fractons, while the dipolar bound
states are only mobile in the direction transverse to their dipole
moment.

While it seems surprising that the dipoles, which were
fully mobile in the absence of the Chern-Simons term, now

FIG. 6. Fully mobile dipoles, indicated by the pair of connected
spheres, in the presence of an emergent finite background magnetic
field perform cyclotron motion. In the presence of a boundary, these
skipping orbits result in chiral dipolar edge currents.

have restricted mobility, this restriction arises naturally as a
consequence of flux attachment (62),

ρ = k

2π
∂j B̃

j , (64)

which indicates that the Chern-Simons term binds a flux 2π/k

to each dipole. Since the magnetic flux vector in this theory
is one-dimensional, it follows that dipole excitations in the
gapped deconfined phase inherit the restricted mobility of the
fluxes.

The physics of this gapped phase can be understood through
a simple semiclassical picture, where fully mobile dipoles at
some finite density move in the presence of an emergent finite
background magnetic field. In analogy with electrons in a
perpendicular magnetic field, these dipoles move in quantized
circular orbits and perform cyclotron motion, as depicted in
Fig. 6. In this context, the integer k has a natural interpretation
as the number of filled Landau levels ν occupied by the mobile
dipoles, and this phase hence corresponds to an emergent
integer quantum Hall phase of dipoles. Since we are attaching
an integer amount of flux to the dipoles, which are originally
mobile, there is no fractionalization of charge or statistics of
the deconfined quasiparticles. Instead, a striking new feature
of the generalized Chern-Simons theory considered here is the
fractionalization of mobility of the underlying dipoles forming
the state, resulting in deconfined dipolar excitations with only
one-dimensional motion allowed.

Pushing on the semiclassical picture further, we expect that
the circular orbits will reduce to skipping orbits in the presence
of a boundary, leading to a chiral dipolar current propagating
along the edge. Indeed, as we will show later (see Sec. V B 4),
the presence of these boundary modes can be established
directly by placing the tensor Chern-Simons theory (58) on
an open manifold.

Besides these boundary modes, we can also characterize this
phase through its generalized “Hall” response, which follows
from varying the action (58) with respect to Ãij ,

〈J ij 〉 = k

4π

(
εib ˙̃A j

b + εjb ˙̃A i
b

) = k

4π

(
εibE

j

b + εjbE i
b

)
.

(65)
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We can thus define a “Hall” conductivity which is given by

σ ijkl = k

4π
(εikδjl + εjkδil). (66)

The only nontrivial components of this tensor are

σxyyy = σyxyy = −σyxxx = −σxyxx = k

4π
(67)

and

σxxyx = −σyyxy = k

2π
. (68)

Unlike the Hall response in an integer quantum Hall state of
electrons, which represents the response of the system to an
externally varying electric field, here the conductivity tensor
σ ijkl encodes the response to the internal emergent tensor
field Eij .

3. Fractional quantum Hall analogs

Thus far, we have focused on the case where k is restricted
to take integer values, which is reflected in the lack of frac-
tional charges in the system and corresponds to a generalized
Hall response which is an integer multiple of a fundamental
constant. In analogy with the fractional quantum Hall effect,
we can also consider fractional values of the level k, which
will lead to deconfined fractons with fractional charges and a
fractional generalized Hall response.

In order to study the fractional generalizations of the
tensor Chern-Simons theory, we introduce a rank 2 symmetric
traceless gauge field aij . In analogy with the Chern-Simons
description of FQH states (see Sec. V A), the higher rank
Chern-Simons theory of this compact U(1) statistical gauge
field will capture the long-distance physics of a fracton phase
with fractionalized charges. The effective low-energy theory
for an emergent fractional quantum Hall state of dipoles at
filling fraction ν = k = 1/m (m ∈ Z) is described by

S[Ãij ,φ; aij ,χ ] = SgCS[aij ,χ ] + Sc[Ãij ,φ; aij ,χ ]

+ SMax[Ãij ,φ]. (69)

The first term in the action is the generalized Chern-Simons
term at level m for the statistical gauge field aij and a Lagrange
multiplier field χ , which enforces a low-energy constraint on
the theory, leading to fractionalized excitations with restricted
mobility. The last term is the bare Maxwell action of the
original tensor gauge field of the emergent fractons.

The middle term,

Sc = 1

2π

∫
d3x φ εbi∂i∂j a

j

b + 1

2π

∫
d3x χ εbi∂i∂j Ã

j

b

− 1

2π

∫
d3x εbi ˙̃Aija

j

b , (70)

describes the coupling between the emergent electromagnetic
field Ãij and aij ; this is the analog of the mixed Chern-Simons
term (37) in the vector Chern-Simons theory, which couples
the statistical gauge field to the physical gauge potential. This
coupling term will be our primary focus from hereon. Though
the field Ãij is technically dynamical, we will now treat it
as an effective static background source. This is completely
analogous to the normal treatment of quantum Hall states,

where the dynamical electromagnetic field is treated as an
effective background.

That the action (69) is indeed the correct low-energy
description of an emergent FQH state can be verified directly
by integrating the massive gauge field aij out of the theory; a
few lines of algebra will lead to the action (58) with coefficient
θ = −2π/m, where 2πm flux is attached to each dipole. Note
that while we could have added a generalized Chern-Simons
term for Ãij to (69), this merely shifts the generalized Hall
response by an integer. Thus, setting the coefficient of this term
to zero corresponds to working in the lowest Landau level.

Alternatively, we could have started from the effective
theory for Ãij and introduced a finite density of dipoles ρ in
addition to a current Jij , by including source terms

Lsource = −φρ − Ãij J
ij (71)

to the action (58). As discussed in Sec. II, these satisfy the
generalized continuity equation

ρ̇ + ∂i∂jJ
ij = 0, (72)

which is solved by taking

ρ = 1

2π
εib∂i∂j a

j

b , J ij = εbi

2π

(
ȧ

j

b + ∂b∂
jχ

)
, (73)

for arbitrary χ . Inserting these into Lsource and adding a
generalized Chern-Simons term for the aij ,χ fields leads
precisely to the action (69) for an emergent FQH fracton phase.
Note that similar arguments are used to arrive at a Chern-
Simons effective description for conventional FQH states of
electrons [13].

The fieldχ plays the role of a Lagrange multiplier and places
a low-energy constraint on the gauge charges of the statistical
gauge field aij . Specifically, these charges are fractons, while
their dipolar bound states are one-dimensional, with mobility
only in the direction transverse to their dipole moment. We
can also explicitly see that the quasiparticle excitations carry
fractionalized charge by introducing an excitation that carries
gauge charge q under aij . This is achieved by adding a term

δL = qχ δ(�x − �x0) (74)

to the action (69). Varying the action with respect to χ leads
to the equation of motion

ρ = 1

2πm
∂jB

j + q

m
δ(�x − �x0), (75)

which explicitly demonstrates that the filling fraction of the
underlying dipoles forming the state is ν = 1/m and that the
one-dimensional dipolar excitations carry fractional charge
q/m. Following the arguments for electronic FQH states [13],
it is now easy to show that the excitations in this theory have
fractional statistics.6 In particular, we can define a “braiding”
process along intersecting lines for a q1 dipole with a q2 dipole
which has dipole moment orthogonal to that of the q1 dipolar

6While the dipolar excitations are one-dimensional, there still exists
a well-defined notion of statistics for subdimensional particles. This
is discussed in detail in the context of discrete fracton models [28].
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quasiparticle. Such a process will induce a phase

θ12 = 2π

m
q1q2. (76)

Additionally, we can infer from the equation of motion (75)
that a quasiparticle carrying m units of aij charge corresponds
to a dipole excitation forming the FQH liquid. We can identify
the excitations carrying m units of the a charge with the bosonic
(fermionic) dipoles forming the underlying FQH state when m

is even (odd).
As discussed above, for cases where k = 1/m, the exci-

tations exhibit fractionalized charge and statistics, and our
experience with FQH states of electrons would lead us expect a
constant ground state degeneracy on a torus. There is, however,
a crucial difference between electrons and the dipolar bound
states: the dipoles have mobility only transverse to their dipole
moment. Imagine placing the system on an Rx × Ry periodic
lattice with lattice spacing a = 1. Now consider the Wilson-
line operator that creates a pair of dipoles at spatial position
(x,y) = (0,0), wraps one of the dipoles along a noncontractible
cycle in the y direction, and annihilates it with its partner to
return the system to the vacuum state. If the dipoles were
fully mobile, this operator could be locally deformed into
one which initially creates the pair at (x,y) = (1,0). Due to
the one-dimensional nature of the dipoles, it appears that
these operators may no longer be continuously deformed into
one another. While this may lead one to expect a ground
state degeneracy which grows exponentially with system size,
there in fact exist a subextensive number of relations between
certain products of the Wilson string operators which reduce
the degeneracy to a constant.7 Indeed, a detailed derivation
(see Appendix D 2) shows that the ground state degeneracy
for the generalized Chern-Simons theory SgCS[aij ,χ ] for the
statistical field aij at level m (where k = 1/m is the filling
fraction) is a constant,

GSD = 2m, (77)

where the factor of m arises as a consequence of the fractional
statistics (the factor of two stems from having two species of
dipoles).

Having established this formalism, it is now tempting to
generalize this construction to dipolar analogs of hierarchical
quantum Hall states, described by a K matrix and a multiplet
of tensor gauge fields a I

ij , or of non-Abelian quantum Hall
states, such as the Moore-Read Pfaffian state [58,61]. While
such generalizations appear fairly straightforward to construct,
we will leave this for future work and focus instead on the novel
boundary theories of these generalized Chern-Simons theories.

4. Chiral edge modes

From the semiclassical picture for the emergent quantum
Hall state of dipoles, where a finite density of dipoles responds
to a finite background magnetic field, we expect that the system

7A similar situation arises in discrete fracton models such as the
X-cube model, where certain relations between products of Wilson
string operators reduce the ground state degeneracy from ∼2L2

down
to ∼2L [39].

will host chiral modes localized at spatial boundaries. This is
illustrated schematically in Fig. 6 for the quantum Hall state
of dipoles, described by the higher rank Chern-Simons theory
with level m ∈ Z.

Here, we will show the existence of chiral edge modes
explicitly, working with the generalized Chern-Simons the-
ories for dipolar FQH states at filling fraction 1/m. Indeed, in
analogy with vector Chern-Simons theories describing FQH
states of electrons, we expect that the chiral higher rank
Chern-Simons theories also exhibit a chiral anomaly, a direct
manifestation of which are gapless chiral edge modes. Note
that the case m = 1 describes dipoles in a completely filled
lowest Landau level, i.e., an IQH state of dipoles.

Consider the higher rank Chern-Simons term describing
dipoles at filling fraction ν = k = 1/m,

S[aij ,χ ] = − m

2π

∫
d3x χεbi∂i∂j a

j

b + m

4π

∫
d3x εbi ȧij a

j

b ,

(78)

where aij is a compact U(1) symmetric traceless tensor of rank
2. Under a gauge transformation

aij → aij + (
∂i∂j − 1

2δij δ
2
)
α,

χ → χ + α̇, (79)

this action is invariant only up to a boundary term,

S[aij ,χ ] → S[aij ,χ ] + m

4π

∫
d3x ∂i(ε

bi∂j α̇ ∂b∂
jα). (80)

To derive the action for the boundary degrees of freedom, we
fix the gauge χ = 0 in the bulk such that the constraint imposed
by the gauge-fixing condition remains

εbi∂i∂j a
j

b = 0. (81)

This constraint can be solved in terms of the field ϕ

a
j

b = εij ∂i∂bϕ. (82)

Note that unlike the edge theory of a vector CS theory (see
Appendix C 3), which is described in terms of compact scalar
field, here ϕ has dimensions of length ([ϕ] = L1) and it is
instead ∂ϕ which is a compact dimensionless field. In addition,
since aij is a symmetric tensor, ϕ must be a solution of the
two-dimensional Laplace equation

∂2ϕ = 0. (83)

Tracelessness of aij is automatically satisfied by (82).
For concreteness, we consider the semi-infinite geometry

depicted in Fig. 7, which has a spatial boundary at y = 0
between the dipolar FQH state and vacuum. Inserting the
solution (82) into the action (78), we obtain the edge action

SgCS = m

4π

∫
y=0

dxdt(∂t∂xϕ ∂x∂xϕ)

+ m

4π

∫
y=0

dxdt(∂t∂yϕ ∂x∂yϕ). (84)

Since ϕ and ∂yϕ can be varied independently on the boundary,
we have thus found two modes propagating along the boundary.

Physically, it is natural to expect two distinct boundary
modes corresponding to the two linearly independent dipole
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FIG. 7. Semi-infinite geometry for studying the edge physics
of the higher rank Chern-Simons theory. The boundary at y = 0
separates the dipolar FQH state from the vacuum. The boundary
hosts two independent copropagating gapless chiral modes, which
correspond to the motion of dipolar bound states in two distinct
orientations, a and b, along the edge.

orientations. This is depicted schematically in Fig. 7. In
particular, this figure illustrates the distinct nature of these
two boundary modes. Consider first dipoles with their dipole
moment oriented perpendicular to the boundary and propa-
gating transversely to their dipole moment. Labeled by a in
Fig. 7, the motion of these dipoles along the boundary looks
identical to that of a usual charged particle. The boundary
action for this mode should hence be identical to that of a
chiral Luttinger liquid of electrons. Indeed, when rephrased
in terms of a new compact scalar field ξ ≡ ∂yϕ, the boundary
action for ξ becomes

Sedge[ξ ] = m

4π

∫
y=0

dxdt(∂t ξ ∂xξ ), (85)

which is precisely the chiral CFT describing the boundary of a
conventional FQH state (see Sec. V A). We can thus introduce a
velocity for this field by adding a term −v∂xξ ∂xξ to the action.
Given the extensive literature on edge theories of quantum Hall
states (see, e.g., [13]), we will not investigate this mode further.

In addition to the conventional mode described by ξ , the
boundary of a rank 2 Chern-Simons theory hosts an additional
chiral edge mode, with the low-energy behavior governed by

SgET [ϕ] = m

4π

∫
dxdt(∂t∂xϕ ∂x∂xϕ), (86)

where “gET” denotes a “generalized edge theory,” and it is
implicit that this theory lives on the boundary y = 0. As
depicted in Fig. 7, this mode (b) corresponds to the motion
of dipoles with their dipole moment oriented parallel to the
boundary, with longitudinal motion along the boundary. Since
dipole moment is conserved, these excitations are constrained
to move in dipolar bound pairs even along the boundary. As a
consequence of this, we expect the low-energy theory describ-
ing these edge modes to obey an additional constraint besides
charge conservation. We will now explicitly demonstrate this
by working directly with the action (86).

As noted earlier, the field ϕ has dimensions of length and
so under scale transformations of the coordinates

σa → λσa (87)

transforms as

ϕ(σ ) → ϕ(λ−1σ ), (88)

leaving the action (86) invariant under scale transformations.
Indeed, due to the unconventional scaling of the field ϕ, the
action (86) is a conformally invariant field theory despite initial
appearances.

In addition to the term (86), we can also add nonuniversal
energetic terms to the action. Following standard procedure,
we identify ∂x∂x∂xϕ as the field canonically conjugate to ϕ,
from which we can derive the commutation relations

[∂xϕ(x),∂xϕ(x ′)] = − iπ

m
sgn(x − x ′), (89)

establishing both ϕ and ∂xϕ as nonlocal fields. Thus, adding the
lowest order spatial derivative term, consistent with locality, we
find the low-energy theory for the field ϕ

SgET [ϕ] = m

4π

∫
dxdt(∂t∂xϕ ∂x∂xϕ − v∂x∂xϕ ∂x∂xϕ),

(90)

which describes a chiral gapless mode with dispersion ω =
vk, where v is some nonuniversal velocity determined by the
microscopic details of the edge. Note that the velocity of this
mode will generically be distinct from that of the ξ edge mode,
although the two modes will copropagate, resulting in a thermal
Hall coefficient which is twice that of conventional FQH states.

Given the novelty of the generalized edge theory, we
leave a thorough discussion of its properties to future work.
Instead, we focus on a remarkable new property of this theory,
absent in boundary theories of vector Chern-Simons theories.
Specifically, we observe that the density of dipoles at the
boundary is defined by

ρ = 1

2π
∂x∂xϕ, (91)

as evinced by the commutation relations

[ρ(x),∂xϕ(x ′)] = − i

m
δ(x − x ′),

[ρ(x),ρ(x ′)] = i

2πm
∂xδ(x − x ′). (92)

Due to the additional spatial derivative present in ρ, the dipolar
density at the boundary satisfies the constraints∫

ρ = const.,
∫

xρ = const., (93)

corresponding to conservation of charge and of center of mass,
the latter of which we anticipated in our earlier discussion. We
have thus found that the boundary theory of the generalized
Chern-Simons theory hosts gapless excitations with center of
mass conservation; i.e., there exist gapless fracton excitations
at the edge of a higher rank Chern-Simons theory in addition
to fully mobile one-dimensional dipolar bound states. Since
chirality guarantees the absence of back-scattering terms,
regardless of the interactions present at the boundary, we expect
that both of these edge modes will be robust against arbitrary
weak perturbations. However, given the unusual nature of the
generalized edge theory, we leave a careful analysis of stability
to future work.
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Although we have focused on a semi-infinite planar geome-
try here, in principle we could consider other finite samples as
well. Interestingly, we expect that on a square geometry (or any
sample with sharp corners) there will exist finite-energy local-
ized modes at the corners, owing to the one-dimensional nature
of the dipolar excitations. While this behavior is distinct from
the zero-energy protected corner modes recently discovered
in higher-order topological insulators [62–68], the existence
of such corner-localized modes opens up the possibility of
finding protected zero-energy corner modes or hinge states in
fracton models. We leave a detailed study of the generalized
edge theory and its localized modes on general finite samples
for the future.

As a final remark, we note that the generalized edge theory
(86) provides us with another window into the emergent FQH
state present in the bulk. Specifically, since the edge theory
is Gaussian, the correlation function for the ∂xϕ fields can be
calculated exactly and takes the suggestive form

〈∂xϕ(x)∂xϕ(0)〉 = − 1

m
log(x − vt), (94)

where m is the inverse filling fraction ν of the dipolar bound
states. Since the boundary theory is conformal, we conjecture
that the bulk-boundary correspondence for vector Chern-
Simons theories holds also for the higher rank chiral theory
studied here. Hence, from the correlator of the vertex operators
eim∂xϕ (which correspond to creation operators of elementary
dipoles at the boundary),

〈: eim∂xϕ(x) : : eim∂xϕ(0) :〉 ∼ 1

(x − vt)m
, (95)

we should be able to construct the bulk wave function for the
emergent dipolar degrees of freedom, which in this case will
take the form of a Laughlin state at filling fraction ν = 1/m. We
stress that while this is consistent with the picture developed
here, the real object of interest would be the wave function of
the underlying degrees freedom from which the higher rank
tensor gauge field emerges.

Nonetheless, we have discovered an intriguing connection
between “fracton” phases and quantum Hall physics, in that
chiral higher rank tensor gauge fields with a finite density
of mobile dipoles form an emergent fractional quantum Hall
phase, albeit with novel ground state degeneracies and edge
physics. We have identified chiral gapless edge theories which
transport dipoles along the edge of the system. As emphasized
throughout, these dipoles do not carry physical electric charge,
so there is no Hall response of the electric current. Neverthe-
less, the dipoles carry energy, and in the spin liquid context,
will carry spin. A spin liquid supporting a dipolar quantum
Hall phase will therefore be characterized by robust thermal
and spin Hall responses, which will be useful for identifying
these phases experimentally.

While we have focused only on a specific higher rank tensor
gauge theory (the “scalar charge” theory) in this work, a larger
class of chiral two-dimensional phases hosting subdimensional
fractons has been recently uncovered [38]. It would certainly
be of interest to generalize our analysis here to these other
cases, with the aim of developing a more general framework for
understanding these higher rank chiral phases. For instances,
in the “traceless scalar charge” theory [18], flux is attached

directly to the fractons and not their dipolar bound states,
which are mobile only in the direction transverse to their dipole
moment even prior to flux attachment. The physics of a finite
density of fractons in a background emergent magnetic field
remains to be understood, with simple analogies to quantum
Hall states ruled out due to immobility of fractons. We leave
such questions to future work.

VI. CONCLUSION

In this paper, we have studied systems with a finite density
of fractons or their dipolar bound states, mapping out some of
the interesting phases in which this emergent fractonic matter
can exist. In so doing, we have initiated the study of “condensed
matter” of fractons. We have uncovered a cornucopia of new
phases including ‘fractonic’ microemulsions, Fermi liquids,
and quantum Hall states, as well as new finite temperature
phase transitions. Of course, there remain numerous open
directions. In principle, the mobile dipoles can be placed
into any phase of matter accessible to conventional bosons
or fermions, and we have only studied a small sampling
of possible phases. As an example, it would be interesting
to investigate topologically ordered states of dipoles. There
are also still many generalizations to explore within the
dipolar Fermi liquid and quantum Hall frameworks, as we
have discussed in the main text. Furthermore, it is far from
obvious that such analogs of conventional phases provide
an exhaustive account of dipolar phases of matter. There
may be intrinsically new fractonic phases of matter with no
natural analog in conventional condensed matter, which is an
intriguing possibility. We leave further investigation of the
condensed matter physics of fractonic matter to future work.
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APPENDIX A: SCREENING IN THE DIPOLAR FERMI GAS

We will here treat the different types of screening that occur
in the single-species dipolar Fermi gas, adapting the techniques
of Ref. [35].

1. Dipole-dipole screening

We first investigate the ability of the dipoles to screen
their interactions with each other. We emphasize that the
following is an electrostatic calculation which will not capture,
e.g., dynamical screening properties of the phase, but an
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electrostatic calculation of this form is sufficient for our present
purposes.

Let us consider a system with an equilibrium density of
fermionic dipoles, all with the same orientation pi , forming a
Fermi surface. We then consider adding a static “test dipole”
in the pi direction and seeing how the system responds. In the
presence of a perturbing scalar potential φ, the potential energy
felt by a dipole is pi∂iφ [18]. Correspondingly, the induced
dipole moment density is −pj (gpi∂iφ), where g is the density
of states of the dipoles at the Fermi surface. Using the form of
the potential created by a dipole, φp(r) = (p · r)/8πr , we can
write a self-consistent equation for the potential φ as

φ(r) = φbare(r) −
∫

dr ′[gpi∂iφ(r ′)]
pj (rj − r ′

j )

8π |r − r ′| , (A1)

where φbare(r) = (p · r)/8πr is the bare potential associated
with the test dipole. Integrating by parts, we obtain

φ(r) = (p · r)

8πr

− gpipj

8π

∫
dr ′φ(r ′)

(
δij

|r − r ′| − (ri − r ′
i )(rj − r ′

j )

|r − r ′|3
)

.

(A2)

Taking a Fourier transform, we find

φ(k) = −i
(p · k)

k4
− gφ(k)

(p · k)2

k4
. (A3)

Solving for the potential φ(k), we have

φ(k) = −i
(p · k)

k4 + g(p · k)2
= −i

pkp

k4
⊥ + gp2k2

p

, (A4)

where kp is the component of ki in the pi direction, and k⊥
is the two-dimensional orthogonal projection. (We drop the k4

p

term, since it is irrelevant compared to the k2
p term at small

k.) Converting to the interparticle potential energy for dipoles,
V = pi∂iφ, we have

V (k) = (pkp)2

k4
⊥ + gp2k2

p

. (A5)

We see that, after screening, V (k) remains bounded at k = 0,
indicating that the long-range interaction has been screened
out, leaving only a short-range repulsion between dipoles.

2. Screening of fractons

We now investigate the ability of a Fermi surface of dipoles
to screen a fracton, which has a much stronger electric field
and potential. The potential of a fracton of charge q takes the
form φq = −qr/8π . The dipoles will still have an induced
dipole moment density given by −pj (gpi∂iφ), where φ is the
total potential. Using this information, we can easily modify
the self-consistent equation for φ from the previous section,

φ(r) = − qr

8π

− gpipj

8π

∫
dr ′φ(r ′)

(
δij

|r − r ′| − (ri − r ′
i )(rj − r ′

j )

|r − r ′|3
)

.

(A6)

After a Fourier transform, we obtain

φ(k) = q

k4
− gφ(k)

(pkp)2

k4
. (A7)

Solving for the potential φ(k), we find

φ(k) = q

k4
⊥ + gp2k2

p

, (A8)

where we have once again dropped a k4
p term, which is

irrelevant at small k. We now reverse the Fourier transform
to find the real-space behavior of the potential,

φ(r) =
∫

dkpd2k⊥
(2π )3

q

k4
⊥ + gp2k2

p

ei(kprp+k⊥·r⊥). (A9)

We first set rp = 0, investigating screening transverse to the
dipoles:

φ(r⊥) =
∫

dkpd2k⊥
(2π )3

q

k4
⊥ + gp2k2

p

eik⊥·r⊥

= q

2
√

gp2

∫
d2k⊥
(2π )2

1

k2
⊥

eik⊥·r⊥

= q

4π
√

gp2
log r⊥. (A10)

Similarly, if we set r⊥ = 0, studying screening purely along
the direction of the dipoles, we obtain

φ(rp) =
∫

dkpd2k⊥
(2π )3

q

k4
⊥ + gp2k2

p

eikprp

= q

8
√

gp2

∫
dkp

2π

eikprp

kp

= q

16
√

gp2
log rp. (A11)

Directions between r⊥ and rp will behave similarly, with
coefficient interpolating between Eqs. (A10) and (A11). In
either case, we see that the bare linear potential between
fractons has been screened down to a logarithmic interaction
(with an anisotropic coefficient). The presence of a dipolar
Fermi surface is therefore able to eliminate the issues of
“electrostatic confinement” and allow the fractons to be
separated much more easily.

APPENDIX B: FERMI STATISTICS OF DIPOLES

In the main text, we have often considered the mobile
dipoles of fractons to have fermionic statistics. This is in
contrast to some of the simplest lattice models forU (1) fractons
[16,17], in which the dipoles are bosons. However, there is in
principle nothing to prevent the dipoles from being fermions.
Indeed, some of the previously studied discrete fracton theories
featured bound states with fermionic statistics [25].

One can present field theoretic arguments which indicate
that fermionic dipoles should be realizable. Furthermore,
these arguments will teach us how to go about constructing
appropriate lattice models. The primary argument arises from
the recently studied “θ terms” which can appear in the action
for U (1) tensor gauge theories [38]. These terms have no effect
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on the gapless gauge mode, but can alter the particle structure of
the theory. A θ term will attach electric charge to the magnetic
monopoles of the theory. This charge attachment can result
in the transmutation of statistics, since electric and magnetic
charges pick up phases when moved around each other. As an
example of this phenomenon, in Maxwell theory coupled to
bosonic charges, adding an appropriate θ term will leave the
theory almost invariant, with the exception that the magnetic
monopole becomes a fermion [69,70].

A similar θ term can be added to the scalar charge theory,
which has the effect of attaching dipoles to the magnetic
monopoles of the theory (which are vector charges) [38]. The
dipoles and magnetic monopoles pick up phases when moved
around each other, so this attachment procedure can produce
the same sort of statistical transformations as in conventional
Maxwell theory. By adding an appropriate θ term, one can con-
vert the dipoles into fermions. (In the discussion of Ref. [38], it
was always the monopoles which had their statistics changed.
But the electric charge can also have its statistics changed,
simply by looking at the problem from the dual perspective.)

At the field theory level, one can conclusively formulate
a theory with fermionic dipoles. As mentioned earlier, there
has yet to be a concrete lattice model written down with such
particles, but the field theory perspective gives an important
clue. The θ term in a gauge theory will naturally appear when
the charges enter a symmetry protected topological (SPT)
phase, protected by time reversal [69]. In this specific case, the
statistics of the dipoles will be transmuted by placing the mag-
netic vector charges into a bosonic topological insulator phase.
By tweaking the dynamics of the “plain-vanilla” lattice models
[16,17], one can drive the monopoles into such a topological
insulator state, with the result that the dipoles become fermions.

As an alternative strategy to get fermionic dipoles, one could
also consider adapting the strategy of Ref. [71]. In conventional
Maxwell theory, the ground state wave function is written in
terms of closed string configurations (i.e., a loop gas), and
the charges of the gauge field correspond to the end points
of open strings. In order to modify the statistics of these
charges, one can thicken the strings into ribbons. By giving
the wave function an appropriate sign structure, picking up
negative signs for each twist of a ribbon, one can thereby
change the charges from bosons to fermions [71]. A similar
strategy will likely work for the case of dipoles. By adding extra
internal structure to the models, along with an appropriate sign
structure, one should be able to turn the dipoles into fermions.
Explicitly constructing such a “ribbon”-like wave function is
left as a task for future work.

APPENDIX C: DETAILS ON VECTOR
CHERN-SIMONS THEORIES

For completeness, here we review some of the established
facts regrading Chern-Simons theories of vector gauge fields
before calculating the properties of higher rank Chern-Simons
gauge theories.

1. Level quantization

In order to establish the quantization of the level k of the
Chern-Simons term (30), we consider the thermal partition

function

Z[Aμ] = eiSCS [Aμ], (C1)

by taking time to be Euclidean S1, parametrized by τ ≡ τ + β,
where β is the inverse temperature. As mentioned earlier, the
action (30) is invariant under Aμ → Aμ + ∂μα. Let us consider
a large gauge transformation which winds around the circle,
with α = 2πτ/β, under which the temporal part of the gauge
field gets shifted by a constant,

A0 → A0 + 2π

β
. (C2)

Furthermore, we now imagine placing the system on a sphere
and placing a magnetic monopole inside the sphere (equiv-
alently, threading a background magnetic flux through the
sphere), given by ∫

S2
εij ∂iAj = 2π, (C3)

which is the minimum flux allowed by the Dirac quantization
condition. Evaluating the Chern-Simons action (30) in such a
configuration, and with constant A0 = a, we find that

SCS = k

2π

∫
d3x a(εij ∂iAj ) = kaβ. (C4)

Hence, under a gauge transformation of the form (C2), the
action transforms as

SCS → SCS + 2πk, (C5)

and in order for the partition function Z[Aμ] to remain gauge
invariant, we require that k is quantized to be an integer, k ∈ Z.

2. Ground state degeneracy on a torus

Let us consider the Chern-Simons action for the statistical
gauge field a:

SCS = m

4π

∫
d3x εμνλau∂νaλ. (C6)

The equation of motion for the temporal component a0 (or
Gauss’s law) is

εij ∂iaj = 0. (C7)

We now imagine placing this theory on a torus T2 = S1 × S1,
with the radii of the two circles R1 and R2. On the torus, we
can solve the constraint (C7) by setting

ai = ãi

Ri

+ ∂i�, (C8)

where � is periodic on the torus and ãi is spatially constant.
Inserting these solutions into the action (C6), we find that it
reduces to

SCS = m

4π

∫
dt εij ˙̃ai ãj , (C9)

which identifies ãi as the physical degrees of freedom. The
canonical commutation relations follow directly from this
action,

[ã1,ã2] = 2πi

m
, (C10)
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and since the operators ãi are compact, we need to instead
consider the algebra of the corresponding gauge-invariant
Wilson loop operators,

Wi = exp

(
i

∮
γi

dxj ãj

)
, (C11)

where γi are the two noncontractible loops on the torus. The
commutation relations of ã imply the algebra

W1W2 = e2πi/mW2W1, (C12)

the smallest representation of which has dimension m,

W1 |n〉 = e2πin/m |n〉 , W2 |n〉 = |n + 1〉 . (C13)

Thus, the ground state degeneracy of the Chern-Simons action
(C6) on a torus is m.

3. Edge modes of Chern-Simons theories

Let us consider the Chern-Simons action (36) which de-
scribes the FQHE state at filling fraction ν = 1/m,

SCS = m

4π

∫
d3x εμνλaμ∂νλ. (C14)

In order to study the edge excitations of this system, we imagine
placing it on a semi-infinite plane with a boundary at y = 0
such that the quantum Hall fluid lives at y < 0 with vacuum
at y > 0. Under a gauge transformation aμ → aμ + ∂μα, the
action transforms as

SCS → SCS + m

4π

∫
y=0

dxdt α(∂tax − ∂xat ); (C15)

i.e., it is gauge-invariant only up to a surface term. Thus, we
require additional degrees of freedom living at the edge in order
to have a fully gauge-invariant theory.

In order to deduce these additional degrees of freedom, we
consider the variation of the action (36) in the presence of a
boundary,

δSCS = m

4π

∫
d3x εμνλ[δaμfνλ + ∂μ(aνδaλ)], (C16)

where fμν = ∂μaν − ∂νaμ. Thus, we see that minimizing
the action leads to the required equation of motion fνλ = 0
(equivalently, the zero flux condition) only if we can set the
second term to zero. We can achieve this by setting at = 0 at
the boundary y = 0.

Now, in order to derive the action for the boundary degrees
of freedom, we extend this boundary condition into the bulk;
i.e., we fix the gauge at = 0 in the bulk. Then, the constraint
imposed by the gauge-fixing condition remains

εij ∂iaj = 0, (C17)

which is solved in terms of a compact scalar field ϕ by taking
ai = ∂iϕ. Inserting this into the action SCS , with at = 0, we
obtain the edge action

SCS =
∫

y=0
dxdt ∂tϕ∂xϕ. (C18)

This is, however, not the most general action we could write
down at the edge since we can add energetic terms which
respect the shift symmetry ϕ → ϕ+ constant. A mass term

∼ϕ2 term is prohibited [even in the absence of U(1) symmetry]
since the field ϕ is nonlocal, as evidenced by the commutation
relation

[ϕ(x),ϕ(x ′)] = iπ

m
sgn(x − x ′). (C19)

Including the lowest order spatial derivatives, we find the
general edge action for a chiral Chern-Simons theory

Sedge =
∫

y=0
dxdt(∂tϕ∂xϕ − v∂xϕ∂xϕ), (C20)

where v is a nonuniversal velocity which depends on the
microscopic details of the edge. The equation of motion
satisfied by ϕ is

∂t∂xϕ − v∂x∂xϕ = 0. (C21)

Restated in terms of the field ρ = 1/(2π )∂xϕ,

(∂t − v∂x)ρ = 0, (C22)

we find the equation governing a chiral density wave propa-
gating along the boundary with velocity v. By coupling the
action SCS, one can show that ρ is indeed the charge density
along the edge and that the operator describing electrons at the
boundary is

� =: eimϕ : (C23)

where the colons denote normal ordering. We refer the reader
to the excellent reviews [13,53] for a more comprehensive
discussion of these boundary CFTs.

APPENDIX D: DETAILS ON GENERALIZED
CHERN-SIMONS THEORIES

Here, we derive some of the technical details regarding
higher rank U(1) Chern-Simons theories described by a trace-
less symmetric rank 2 tensor. The action for such a theory is

SgCS[Ãij ,φ] = − θ

4π2

∫
d3x φεbi∂i∂j Ã

j

b

+ θ

8π2

∫
d3x εbi ˙̃Aij Ã

j

b . (D1)

A remark regarding the dimensions of these fields: in units
where h̄ = c = 1, Ãij has the same units as those of a vector
gauge field Ai ,

[Ãij ] = [Ai] = L−1, (D2)

where L denotes length. However, while the temporal com-
ponent of a vector gauge field also has dimensions L−1, the
Lagrange multiplier field φ has dimension

[φ] = L0. (D3)

Since under a gauge transformation φ transforms as φ → φ +
α̇, this implies that the gauge parameter α has dimensions of
length,

[α] = L1, (D4)

consistent with the gauge transformation and dimension of Ãij .
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1. Quantization of θ

Recall that the magnetic flux vector Bj = εib∂iÃ
j

b in the
higher rank theory (58) is one-dimensional, moving only
transversely; i.e., on a square lattice, Bx may only move in
the y direction. If we now place the system on a sphere, we
can imagine threading a flux through this sphere. The minimum
such flux allowed by the Dirac quantization condition is∫

S2
Bj = 2πx̂j , (D5)

where x̂j simply reflects the vector nature of the magnetic flux
in this theory.

Generalizing the discussion of level quantization in
Appendix C 1, we consider the thermal partition function

ZgCS[Ãij ,φ] = eiSgCS [Ãij ,φ] (D6)

by taking time to be Euclidean S1, parametrized by τ ≡ τ + β,
where β is the inverse temperature. As established earlier,
the theory (58) is invariant under the gauge transformation
φ → φ + α̇. Since the field φ acts as a Lagrange multiplier and
has no dynamics of its own, its role in the theory is analogous
to that of A0, the temporal component of a vector gauge field.
However, as mentioned earlier, φ is dimensionless and we
should instead consider a transformation of ∂iφ, which has
the same dimensions as A0: [∂iφ] = L−1. We hence consider
a large gauge transformation

α(�x,t) = 2πτ

β
(x1 + x2), (D7)

under which ∂iφ transforms as

∂iφ → ∂iφ + 2π

β
x̂i . (D8)

Evaluating the generalized Chern-Simons action (58) on a
configuration specified by the flux threading condition (D5)
and with constant ∂iφ = �x̂i , we find

SgCS = − θ

4π2
�x̂j

∫
Bj = − θ

2π
�β. (D9)

Under the large gauge transformation specified by Eq. (D8),
the action shifts by a constant

SgCS → SgCS − θ, (D10)

and hence, in order for the partition function to be gauge-
invariant, the coefficient θ must be quantized in units

of 2π ,

θ = 2πk, k ∈ Z. (D11)

2. Ground state degeneracy

The generalized Chern-Simons action for an emergent FQH
state of dipoles at filling fraction ν = 1/m is

SgCS = − m

2π

∫
d3x χ εbi∂i∂j a

j

b + m

4π

∫
d3x εibȧij a

j

b ,

(D12)

where aij is a traceless symmetric tensor. On a closed manifold,
this theory is gauge-invariant under

aij → aij + (
∂i∂j − 1

2δij δ
2)α,

χ → χ + α̇, (D13)

for arbitrary gauge parameter α(�x,t). The Gauss’s law con-
straint for this theory, enforced by the Lagrange multiplies
field χ , is

− m

2π
εbi∂i∂j a

j

b = 0. (D14)

We note that the two independent components of aij are com-
bined into one canonically conjugate pair, with commutation
relations

[axx(�x),axy(�x ′)] = − iπ

m
δ(�x − �x ′). (D15)

Due to the Gauss’s law constraint on aij , the theory is fully
constrained and there are no local degrees of freedom.

We now imagine placing this system on a torus T2 = S1 ×
S1, with the radii of the two circles R1 and R2. On an R1 × R2

torus, we can satisfy the Gauss’s law constraint (D14) by setting
the two conjugate variables to

axx = −ayy = a(t)

R1R2
+ 1

2

(
∂2
x − ∂2

y

)
�,

axy = ayx = ã(t) + ∂x∂y�, (D16)

where �(�x,t) is an arbitrary continuous, periodic function on
the torus. Note that a and ã only describe the topological
contribution to the action, since we have separated them from
the gauge-redundant part �. Inserting these solutions into the
action (D12), we find

SgCS = m

π

∫
dt ȧ(t)ã(t). (D17)

This theory has a ground state degeneracy [39,72]

GSD = 2m. (D18)
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