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We describe a mechanism by which fermions in topologically trivial bands can form correlated states exhibiting
a fractional quantum Hall (FQH) effect upon introduction of strong repulsive interactions. These states are solid-
liquid composites, in which a FQH liquid is induced by the formation of charge order (CO), following a recently
proposed paradigm of symmetry-breaking topological (SBT) order [Phys. Rev. Lett. 113, 216404 (2014)]. We
devise a spinless fermion model on a triangular lattice, featuring a topologically trivial phase when interactions are
omitted. Adding strong short-range repulsion, we first establish a repulsion-driven CO phase at density ρCO = 2/3
particles per site, then dope the model to higher densities ρ = ρCO + ν/6. At ν = 1/3,2/5 (ρ = 13/18,11/15) we
observe definitive signatures of both CO and the FQH effect—a sharply peaked static structure factor, gapped and
degenerate energy spectrum, and fractionally quantized Hall conductivity σH = 1/3,2/5 in units of e2/h—over a
range of all model parameters. We thus obtain direct evidence for fermionic SBT order of FQH type in topologically
trivial bands.

DOI: 10.1103/PhysRevB.97.085108

I. INTRODUCTION

The discovery of the fractional quantum Hall (FQH) effect
[1] and its interpretation in terms of topological order and
fractionally charged quasiparticles with anyonic statistics [2,3]
have led to a large body of research on the theoretical
underpinnings of FQH states, as well as their potential to
power functionality that goes far beyond conventional electron-
ics [4]. The identification of the quantized Hall conductivity
as a topological invariant, known as the Chern number, in
the presence of an underlying periodic lattice, disorder, and
interactions [5–7] and in the absence of a net magnetic field [8],
ushered in the era of topological materials and multiplied the
number of candidate hosts for FQH phases.

FQH-type topological order is a result of correlations, and
as such it is anticipated to be intricately related to interaction-
driven symmetry breaking. This is particularly pertinent in
lattice systems, where geometric effects of interactions are
pronounced. In this context, symmetry breaking can be in-
fluential on many levels. First, lattice models that harbor FQH
states [9], called fractional Chern insulators (FCI) [10–12],
require that time reversal (TR) symmetry is broken, as this is a
prerequisite for bands with nonzero Chern number, or simply
Chern bands. These arise in a variety of physical settings, such
as optical lattices with artificial gauge fields [13–15], layered
materials and heterostructures [16–19], and itinerant magnets
in frustrated lattices [20–22]. Within Chern bands, correlated
states that either compete or coexist with topological order can
emerge with further breaking of symmetries [23–27]. On the
other hand, TR-symmetric versions of FCI states may arise in
topologically nontrivial bands characterized by a nonzero Z2

invariant instead of a Chern number [23,28,29].
A tantalizing prospect for FCI topological order is to forgo

topologically nontrivial bands altogether: topological order
could emerge spontaneously, driven solely by the interactions
between itinerant particles. This idea inspired the search for

a topological Mott insulator [30]. Unfortunately, thorough
investigations beyond the mean-field level showed that, in the
originally proposed context, the topological Mott insulating
phase is unstable against charge ordering [31]. On the other
hand, compelling evidence for interaction-driven spontaneous
TR symmetry breaking [32], fermionic integer [32,33], and
bosonic fractional quantum Hall effect [34,35] on frustrated
lattices have rekindled interest in this prospect.

On the other hand, fermionic FCI states that arise sponta-
neously in topologically trivial bands have been elusive. Off-
diagonal interactions [36–38], which appear in periodically
driven cold atoms as a secondary effect, can favor fermionic
FCIs without a nonzero single-particle Berry curvature [37],
but a physically relevant setting where such interactions are
dominant is lacking. A more natural platform is that of
multiorbital models of strongly correlated electrons on frus-
trated lattices [39–41]. Here interactions induce noncoplanar
spin ordering that breaks translation and TR symmetries and
generates a Chern band for part of the electron density, much
like in a frustrated Kondo lattice model [20–22], even though
without interactions the system is topologically trivial. When
doped to a FCI filling fraction, such an emergent Chern band
can host FCI states. Although physically viable, this scenario
is challenging to address entirely on the same footing, due to
the multitude of interacting degrees of freedom. Due to this,
the analysis is typically split into (a) showing that a Chern
band arises spontaneously, and (b) writing an effective model
for this Chern band and showing that it yields FCI states upon
introduction of repulsion when fractionally filled.

This work presents a mechanism by which a strongly cor-
related FCI state can be induced by adding strong short-range
repulsion in topologically trivial bands of spinless fermions.
We draw inspiration from supersolidity in the triangular lat-
tice [42–46], as well as its fermionic counterpart [47–51],
where the particle density spontaneously splits to solid and
liquid components due to strong repulsive interactions. This
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mechanism was previously shown to give rise to exotic topo-
logical order in a model of nontrivial Chern bands [24]. Here we
use it as a tool to inform the design of a lattice model, whose
noninteracting part breaks time reversal symmetry explicitly
and exhibits both topologically nontrivial phases with Chern
numbers C± �= 0 and a trivial phase with C± = 0. By introduc-
ing strong short-range repulsion deep inside the trivial phase,
we show that the system forms a solid-FCI composite, thus
realizing symmetry-breaking topological (SBT) order. This is
the first proof-of-principle example of FQH-like topological
order arising upon inclusion of short-range repulsion in a
minimal model of two topologically trivial bands.

We detail the minimal triangular-lattice spinless-fermion
model and its phase diagram, which contains a topologically
trivial C± = 0 phase, in Sec. II. We then introduce strong short-
range repulsion in the trivial phase and study the fate of the
many-body system with exact diagonalization. In Sec. III we
present the signatures of robust charge order at density ρ = 2/3
in the strong nearest-neighbor repulsion limit, on which we
focus. In Sec. IV we present compelling evidence for FQH-type
SBT order at densities ρ = 13/18,11/15 upon inclusion of
second- and third-neighbor repulsion. In Sec. V we investigate
in detail the effects of interactions and observe the stability of
an extended SBT phase against phase separation. We conclude
in Sec. VI with a short outlook.

II. MODEL

Consider a two-dimensional system of N spinless fermions
on a lattice of L = L1 × L2 unit cells, with primitive transla-
tion vectors a1 = (1,0)T and a2 = (0,

√
3)T and sublattices A

and B. The Hamiltonian is

Ĥ = Ĥkin + Ĥint. (1a)

The kinetic term Ĥkin is written in reciprocal space as

Ĥkin =
∑
k∈BZ

�̂
†
k Hk �̂k, (1b)

where �̂
†
k ≡ (̂c†k,A ,̂c

†
k,B) is the spinor of creation operators for

a fermion with wave vector k in the first Brillouin zone (BZ)
and sublattice index A and B. The 2 × 2 matrix Hk is

Hk = (d0,k + μ) τ0 + dk · τ , (1c)

where τ0 and τ = (τ1,τ2,τ3) are the 2 × 2 unit and Pauli
matrices in sublattice space, respectively, and

d0,k = 2t cos k · δ2, (1d)

d1,k = 2t[cos(k · δ1 + φ) + cos k · δ3] + 2t2 sin k · ζ 2, (1e)

d2,k = − 2t2 cos k · ζ 3, (1f)

d3,k = − 2t2 sin k · ζ 1, (1g)

where t and t2 are the amplitudes for hopping between nearest-
neighbor (NN) and next-NN pairs, μ is a chemical potential,
δ1 = (1/2, − √

3/2)T, δ2 = (−1,0)T, δ3 = −(δ1 + δ2), ζ 1 =
δ3 − δ1, ζ 2 = δ3 − δ2, and ζ 3 = δ1 − δ2. The energy bands
are εk± = d0,k ± dk, where dk = |dk|. The kinetic terms of the

(a) δ3

a2
δ1

δ2

a1 A
B

(c)

(b)

FIG. 1. (a) Schematic of the lattice and hopping terms of Eq. (1).
Black (gray) lines denote (next-)NN hoppings. Hopping in the
direction of an arrow adds φ (π/2) to the electron wave function.
Not all second NN hoppings are shown. (b) Phase diagram of the
noninteracting part of model Eq. (1). The color scale represents
the minimum of the energy gap 
k = εk+ − εk− . (c) Illustration
of ρ = 2/3 CO and residual triangular lattice. Occupied sites and
blocked NN bonds are drawn as full gray circles and thick gray lines,
respectively, and the dotted line denotes the unit cell of the effective
model of dopants discussed in Sec. IV. The results presented below
are for the parameter choice marked by “×”.

model are sketched in Fig. 1(a). The interactions are defined
as

Ĥint = V1

∑
〈i, j〉

n̂i n̂ j + V2

∑
〈〈i, j〉〉

n̂i n̂ j + V3

∑
〈〈〈i, j〉〉〉

n̂i n̂ j , (1h)

where n̂i = ĉ
†
i ĉi is the fermion counting operator at lattice

position i , and repulsion between first-, second-, and third-
nearest neighboring site pairs—denoted as 〈i, j〉, 〈〈i, j〉〉, and
〈〈〈i, j〉〉〉, respectively—has strength V1, V2, and V3.

Without interactions (V1 = V2 = V3 = 0), the phase dia-
gram as a function of the remaining two free parameters t2
and φ is shown in Fig. 1(b). In the range t/t2 ∈ [0,3] and
φ/π ∈ [0,π/2] there are four phases, labeled by the Chern
number that characterizes the wave function associated with
each of the two bands,

C± = ± 1

2π

∮
BZ

dk
dk

2d3
k

· (∂x dk × ∂y dk), (2)

where ∂x and ∂y are partial derivatives along two orthogonal
directions in the single-particle BZ, and the integral is over
all k ∈ BZ. Here we are only interested in the trivial phase
with C± = 0. Next, we include the interaction terms and use
Lanczos exact diagonalization (ED) to evaluate eigenvalues,
eigenstates, and observables of model (1) on finite clusters
with periodic boundary conditions.

III. REPULSION-DRIVEN CHARGE ORDER

For concreteness, from now on we fix t = 2 and φ = π/3,
but we have verified that all the results that follow are insen-
sitive to the precise choice of kinetic parameters, as long as
one remains in the trivial phase of Ĥkin. We begin with V1 � t

and V2 = V3 = 0. At density ρ = ρCO = 2/3, the repulsion
stabilizes charge order (CO) with the pattern sketched in
Fig. 1(c). This CO configuration and its two translations by a1
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FIG. 2. (a)–(e) Many-body energy spectra obtained with ED, with eigenenergies indexed by ik running over available momenta in the BZ
for each cluster, and (f)–(j) corresponding GS SSF SAA

k . Each of the GS levels in (e) is multiply degenerate. In all panels, t = 2, t2 = 1, φ = π/3.

and 2a1 are the only ground states (GSs) in the classical limit
V � t,t2. We have verified that the system remains ordered for
all ratios t/t2 by observing persistent threefold GS degeneracy
and sharp peaks in the diagonal components of the GS static
structure factor (SSF)

SAA
k =

∣∣∣∣∑
i∈A

eik·i (̂ni − ρ) |0〉
∣∣∣∣
2

, (3)

where |0〉 is a state in the GS manifold. This is illustrated in
Figs. 2(a) and 2(f). The sharp SSF peaks grow with increasing
V and signify CO with ordering vectors ±K = 2π/3. In the
remainder of this paper, we will be working exclusively in the
limit V1 � V2,V3 � t,t2. Also, we will only consider clusters
of sizes L1 × L2 such that the CO is commensurate. This CO
pattern will be the building block of what follows.

IV. SYMMETRY-BREAKING TOPOLOGICAL ORDER

We seek to characterize the ground state that results upon
doping the CO with particles. Note that the 36-site cluster
shown in Fig. 1(c) is the largest one we can access with
conventional ED. To access larger systems, we consider the
limit V1 → ∞, in which a large number of configurations
are severely penalized energetically and therefore do not
participate appreciably in low-energy states. For a system of
Ns = 2L1 × L2 sites, the number of NN bonds in the CO is
simply Ns . In the dilute dopant limit, the number of extra
NN bonds due to the presence of dopants is 6(N − ρNs).
Configurations with a total number of NN bonds greater than
6N − 3Ns incur an infinite energy cost and are projected
out. This projection strategy is customary for the triangular
lattice [52]. We verified by comparison of numerical results for
original vs projected models that this indeed captures all the
essential properties of model (1) for systems of up to 36 sites
with 26 particles: Figs. 2(b) and 2(g) and Figs. 2(c) and 2(h)
show that the energy spectrum and GS SSF are qualitatively the

same. With this projection, we reach systems of up to Ns = 90
and N = 66.

Let us now assume that, upon doping, the CO remains
intact, and that dopants reside in the part of the lattice that
remains mainly unoccupied by the CO, i.e., the colored part
of Fig. 1(c). In this scenario, the kinetics of the dopants
is effectively governed by the second-NN terms in Eq. (1).
These terms, when considered alone, constitute the effective
two-band model of Refs. [24,39–41]. This model has C± = ±1
and gives rise to FCI states when NN repulsion is included. At
a density of ρ = ρCO particles per site, these effective Chern
bands are empty. To reach a filling fraction ν of the lower
effective Chern band, one needs to dope with an extra density
of ν particles per effective unit cell, or equivalently ν particles
per six sites of the original triangular lattice [see Fig. 1(c)].
Therefore, at overall densities per site ρ = ρCO + ν/6, we
expect to obtain a Chern band of dopants with C− = −1
at filling ν, even though the actual noninteracting model is
topologically trivial with C± = 0. If ν is a FQH fraction and
dopants also interact via a finite V2, then a FCI state is likely.
Such a composite CO-FCI state is an SBT order that arises
purely from building correlations in a topologically trivial
noninteracting system.

In Fig. 3 we present ED results that verify this scenario,
showing definitive signatures of FQH-type SBT order. For
ν = 1/3 (ρ = 13/18) and V2 = 24, V3 = 25 (this choice is
explained below) we find a 3 × 3-fold quasidegenerate GS,
where the first factor of 3 is due to the CO and the second
is the topological degeneracy of the FCI of dopants [24]. We
insert magnetic fluxes (ϕx,ϕy) ≡ ϕ through the handles of the
toroidal cluster and upon varying them we observe spectral
flow [Fig. 3(a)]: levels exchange place upon insertion of flux
2π , as is typical for FQH states [53,54], although here they
do so in exactly degenerate triplets. We also obtain the Hall
conductivity [5,7]

σH = e2

h

1

D

D∑
n=1

∫ 2π

0

∫ 2π

0

dϕx dϕy

4π2
Fn(ϕ), (4)
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FIG. 3. (a) and (b) Spectral flow at (a) ρ = 13/18 with V2 = 24,
V3 = 25, (b) ρ = 11/15 with V2 = 12, V3 = 14, and (c) many-body
Berry curvature of SBT GS at ρ = 13/18 with V2 = 12 and V3 = 14.
All levels shown in (a) and (b) are triply degenerate. The Berry
curvature in (c) is evaluated over a grid of 144 × 48 points and
integrates to 1/3 to accuracy better than 10−10. In all panels, L =
9 × 5 (90 sites) in the V1 → ∞ limit, with t = 2, t2 = 1, φ = π/3.

where the sum is over the D-fold degenerate GSs and Fn(ϕ)
is the many-body Berry curvature

Fn(ϕ) = 4π Im
∑
n′ �=n

〈n| ∂ϕy
Ĥ |n′〉 〈n′| ∂ϕx

Ĥ |n〉
(En′ − En)2

. (5)

Here |n〉 , |n′〉 are ground and excited eigenstates with energies
En,En′ , respectively. Figure 3(c) shows Fn for one of the
quasidegenerate GSs. Upon integration, we find σH = 1

3
e2

h
with

remarkable accuracy. Finally, Figs. 2(d) and 2(i) demonstrate
that the CO remains intact, despite the doping and additional
interactions. We obtain analogous results at ρ = 11/15 (ν =
2/5): 3 × 5-fold degeneracy, spectral flow [Fig. 3(b)], and
σH = 2

5
e2

h
. The spread between GS levels in Figs. 3(a) and 3(b)

is a finite-size effect and disappears in the thermodynamic
limit [54]. It is pronounced because the residual lattice that
hosts the dopants is still just 3 × 5 unit cells. Note that we
have done no fine tuning of Ĥkin to favor SBT order.

V. STABILITY AGAINST PHASE SEPARATION

When interactions are restricted to NN range (V2 = V3 = 0)
and V1 � t , it is expected that model (1) phase separates for
ρ > 2/3 [42–46]: it is favorable for dopants to align themselves
in a straight line, as shown in Fig. 4, allowing for the formation
of domain walls, and “slips” along these walls incur zero
energy cost. This, in turn, allows the dopants to hop across
domain walls and reduce the kinetic energy of the system. As
illustrated in Fig. 4, a finite V2 > 0 will favor domain walls,

V1 V2

V3

(a) (b)

FIG. 4. Energetics of “slips” along domain walls of dopants
aligned in a straight line, in the limit V1 � V2,V3 � t,t2. Sites and
NN bonds blocked by the CO are shown in light gray. Dopants are red
full circles and their NN bonds are dashed red lines. The thin dotted
gray line marks the domain wall. Dotted blue and dash-dotted purple
lines denote second- and third-NN bonds across the domain wall,
respectively. In (b) all particles below the domain wall are translated
by one site to the left with respect to (a). The numbers of first-, second-,
and third-NN bonds per dopant across the domain wall are (a) 4, 2,
and 2, and (b) 4, 1, and 3, respectively.

as now there is also a potential energy gain in their formation:
there is only 1 second-NN bond per dopant in Fig. 4(b) instead
of the 2 second-NN bonds per dopant in Fig. 4(a). In contrast,
a finite V3 > 0 hinders the formation of domain walls: there
are 3 third-NN bonds per dopant in Fig. 4(b) instead of only
2 such bonds per dopant in Fig. 4(a). By this counting, when
V1 � V2,V3 � t,t2, it is seen that slips along domain walls,
which make the formation of domains energetically favorable,
are suppressed when V3 > V2.

Our ED results corroborate this heuristic [see Fig. 5(a)].
First, for densities up to ρ = 3/4, SAA

k shows sharp peaks at
precisely ±K whenever V3 > V2 [see, e.g., Fig. 2(i)]. This
holds irrespective of the value of t2 (longer-range hoppings
further counteract domain wall formation [55]). In contrast,
for V3 � V2 we find an extensive number of GSs and a SSF
that develops broader features, with maxima that are not
anymore at ±K [Figs. 2(e) and 2(j)]. Second, at ρ = 13/18
(ν = 1/3), for clusters of Ns = 72,90 sites, we find a gapped
and nonextensive manifold of nine quasidegenerate SBT GSs
in a wide range of V3 > V2, that is robust against small
variations of all other parameters of the model. TheV2-V3 phase
diagram is presented in Fig. 5(a). Finally, the total energy as
a function of N for the 72-site cluster, shown in Fig. 5(b), is
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FIG. 5. (a) V2-V3 phase diagram at ρ = 13/18. Color scale
represents the minimum gap in ϕ space. (b) E0 vs N is convex with
minimum at ρ = 13/18 for μ = −120. In both panels, L = 9 × 4
(72 sites) in the V1 → ∞ limit, t = 2, t2 = 1, φ = π/3.
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convex with a minimum at ρ = 13/18 for a range of values of
μ, indicating a thermodynamically stable phase.

VI. SUMMARY AND OUTLOOK

We have presented a viable route towards SBT ordered
states, which arise by introducing strong repulsion in topologi-
cally trivial phases of simple noninteracting lattice models that
break TR symmetry. We have demonstrated this by construct-
ing a minimal model of interacting spinless fermions, studying
it with exact diagonalization in the strong NN-repulsion limit,
and discovering compelling evidence for instances of fermionic
FQH-type topological order with fractionally quantized Hall
conductivityσH = 1/3,2/5 in units of e2/h in a minimal model
of two C± = 0 bands. We investigated the effect of second- and
third-NN interactions V2 and V3, and found that SBT order is
robust against phase separation for V2 < V3.

Further numerical and analytical handles for FQH-like SBT
ordered states can be provided by a density-matrix renormal-

ization group [34,35,56,57] and effective theories [58,59], re-
spectively. Theoretical explorations can be guided by physical
systems that fulfill the requirements for the formation of such
correlated states. For example, AgNiO2 [60,61] is a quasi-two-
dimensional compound that incorporates (i) strong interactions
beyond on-site repulsion, (ii) coexistence of charge order
and itinerant carriers, and (iii) noncollinear magnetic order
that could lead to nontrivial TR-breaking flux arrangement
upon application of an external field. Alternatively, spin-orbit
coupled correlated oxides [62] may offer other viable settings
for the emergence of FQH-type SBT order or its plausible
TR-symmetric generalization.
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