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Equivalence of restricted Boltzmann machines and tensor network states
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The restricted Boltzmann machine (RBM) is one of the fundamental building blocks of deep learning. RBM
finds wide applications in dimensional reduction, feature extraction, and recommender systems via modeling the
probability distributions of a variety of input data including natural images, speech signals, and customer ratings,
etc. We build a bridge between RBM and tensor network states (TNS) widely used in quantum many-body
physics research. We devise efficient algorithms to translate an RBM into the commonly used TNS. Conversely,
we give sufficient and necessary conditions to determine whether a TNS can be transformed into an RBM of given
architectures. Revealing these general and constructive connections can cross fertilize both deep learning and
quantum many-body physics. Notably, by exploiting the entanglement entropy bound of TNS, we can rigorously
quantify the expressive power of RBM on complex data sets. Insights into TNS and its entanglement capacity
can guide the design of more powerful deep learning architectures. On the other hand, RBM can represent
quantum many-body states with fewer parameters compared to TNS, which may allow more efficient classical
simulations.
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I. INTRODUCTION

Deep learning is transforming the world with its far-
reaching applications in computer vision, speech recognition,
natural language processing, recommender systems, etc. [1,2].
At the core of many of these applications are the artificial neural
networks which recognize or even discover interesting patterns
in the input data [3–5]. In a nutshell, the neural nets act as
trainable functional mappings of multiple variables. To design
even more powerful and intelligent machines requires one to
quantify and extend the expressive power of the neural nets.
However, there is a gap between the mathematical foundation
and the real-world applications which are largely driven by the
engineering practices [2], because it has long been a difficult
endeavor to rigorously quantify the expressive power of neural
nets over complicated data sets.

Insights into the physical rules governing the neural net-
works and typical data sets may offer an answer to the
great success of deep learning and guide its more fruitful
development in the future. For example, statistical physics
has a long-standing impact on machine learning [4,6] because
both fields concern about collective behavior emerged from a
large amount of microscopic degree of freedoms. Moreover,
as suggested by Mehta and Schwab [7], there is a connection
between the deep learning and the renormalization group. Lin
et al. [8] also argued that the “unreasonable success” of deep
learning can be traced back to the law of physics, which often
imposes symmetry, locality, compositionality, polynomial log-
probability, and other properties on the input data.
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The restricted Boltzmann machine (RBM) is a vivid ex-
ample of the intrinsic connection between statistical physics
and machine learning. An RBM is a special type of neural
network which can be better understood as an energy-based
model. As illustrated in Fig. 1(a), it consists of a set of
interconnected visible and hidden binary variables. These
variables are assumed to satisfy the Boltzmann distribution
whose energy functional is defined by

E(v,h) = −
∑

i

aivi −
∑

j

bjhj −
∑
i,j

viWijhj , (1)

where v = {vi} and h = {hj } are the visible and hidden binary
variables. We denote their number as nv and nh, respectively.
Parametersai,bj are the biases applied to the visible and hidden
units, respectively. Wij is the coupling matrix between these
two units.

By integrating out the hidden units, the RBM represents
the marginal distribution of the visible variables (omitting an
irrelevant normalization factor)

�RBM(v) =
∑

h

e−E(v,h)

=
∏

i

eaivi

∏
j

(1 + ebj +
∑

i viWij ). (2)

In the RBM there is no direct connection between the visible
units. However, the hidden units generate effective connections
or interactions among them. By increasing the number of
hidden units and connections, the RBM can in principle
parametrize more complex functions of the visible units
[9–11].
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FIG. 1. (a) Graphical representation of the RBM defined by
Eq. (2). The blue dots represent visible units v and the magenta dots
represent the hidden unitsh. They are coupled through the connections
indicated by the solid lines. (b) MPS defined by Eq. (3). Each red dot
denotes a three-index tensor A(i). Throughout this paper, we use dots
to represent units of RBM, and ball to represent tensors. Lines in the
RBM denote connection weights while lines in the tensor network
denote tensor indices. (c) RBM and TNS are two ways to parametrize
multivariable functions. With unlimited resources (number of hidden
units or bond dimensions) both of them can represent any function
to arbitrary accuracy. However, with limited resources they represent
two independent sets with overlapping region. Detailed discussions
on their relationship are given in Secs. II and III.

One can train an RBM by specifying its parameters such that
the probability distribution of the visible units reproduces that
of the input data [12,13]. The hidden units of a trained RBM
may also reveal correlations in the data with appealing physical
meanings. For example, in an RBM trained with a data set of
images containing handwritten digits, the connection weight
contains the information about the pen stokes [14]. These
learning features can be used either for discriminative tasks,
such as pattern recognition, or for generative tasks, such as
generating more samples according to the learned distribution.
RBM has played an important role in the recent renaissance of
deep learning [15,16] because of its versatile abilities in feature
extraction and dimensionality reduction of complex data sets.

Recently, RBM has attracted great attention in the field of
quantum many-body physics. Carleo and Troyer [17] proposed
an RBM inspired variational wave function to study quan-
tum many-body systems at or away from equilibrium. Deng
et al. [18] constructed exact RBM representations for several
interesting topological states. Torlai and Melko [19] trained an
RBM to reproduce the thermodynamics of a statistical physics
model. Huang and Wang [20] used RBM as a recommender
system to accelerate Monte Carlo simulation of quantum
many-body systems. Liu et al. [21] reported similar ideas using
classical spin models instead of the RBM.

These developments raise several critical questions about
the expressive power of neural nets in the physics contexts. Is
RBM more expressive than the standard variational wave func-
tions of quantum states [17]? Can RBM efficiently describe
the probability distribution of physical models at criticality
[19,20]? Unfortunately, the existing universal approximation
theorem [9–11] and its further developments [22–24] are
not particularly instructive for practical purpose because they
involve exponentially large resources, and it cannot be used
as a guiding principle to solve practical physical or industrial
problems.

In fact, the quest for more expressive wave function is cen-
tral to quantum many-body physics. An ideal parametrization
of wave function should accurately describe a quantum state
with exponentially large degree of freedoms with polynomial
resources. Tensor network states (TNS) [25] are promising
candidates to meet this demand. Figure 1(b) shows one of
the simplest TNS, the matrix product state (MPS) [26], as an
example. The MPS parametrizes a wave function of nv physical
variables as

�MPS(v) = Tr
∏

i

A(i)[vi], (3)

where A(i) is a three-index tensor represented by a red dot in
Fig. 1(b). For a given value of vi , which is represented by a
dangling vertical bond, A(i)[vi] is a matrix. The dimension of
this matrix is commonly called the virtual bond dimension of
the MPS, indicated by the thickness of the horizontal bonds
in Fig. 1(b). Connecting these horizontal bonds is to take
tensor contraction over all the virtual degree of freedoms.
By increasing the bond dimension, MPS can represent with
increasing accuracy any complex multivariable functions [26].

MPS representation is equivalent to the tensor train decom-
positions in the applied math community [27]. Similarly, one
can connect higher-order tensors to represent a physical state
in a two-dimensional network. This kind of TNS is named
projected entangled pair state (PEPS) [28]. A generalization
of PEPS to include the entanglement of all particles in a
larger unit cell is call projected entangled simplex state (PESS)
[29]. In the past decades, solid theoretical understanding and
efficient numerical techniques for TNS have been established.
See [25,30] for pedagogical reviews on TNS. Moreover, the
application of TNS to classical systems also has a long history
(see [31–33] for example).

The physics community also has an answer to the “unrea-
sonable effectiveness” of TNS. It relies on the entanglement
area law [34], which states that the entanglement entropy
scales just linearly with the boundary size separating any two
subsystems. The entanglement entropy [35] is a measure of
the information content between these two subsystems. Many
physical states of practical interests fulfill this area law [34].
It indicates that the degrees of freedom needed to describe
a quantum state of physical interest is generally much less
than the total degrees of freedom of the whole system. TNS
are designed to efficiently represent these quantum states
with relatively low entanglement entropy and have achieved
remarkable successes in the past decades [36].

RBM and TNS share some similarities in their mathematical
structures, especially expressed using the graphical language
in Figs. 1(a) and 1(b). As for machine learning, Refs. [2,8]
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also suggest that only a tiny fraction of the input data are of
practical interests among infinite number of possible inputs.
This motivates us to search for a guiding principle from the
perspective of quantum information to quantify the expressive
power of neural nets used for deep learning [1,2] as well as for
quantum and statistical physics problems [17–20].

In this paper, we present a general and constructive connec-
tion between RBM and TNS. With this correspondence, many
concepts and techniques from deep learning and quantum
physics can be exchanged. By transforming an RBM to a
TNS and exploiting its entanglement entropy bound, we can
quantify the expressibility of RBM for quantum states, for
statistical physics models, and for industrial data sets. We also
find the necessary and sufficient conditions for transforming a
TNS into an RBM with a given structure, and show that RBM
can serve as an efficient representation of quantum states.

This paper is arranged as follows. In Sec. II, we present
the algorithms to transform an RBM into an MPS or other
kind of TNS and discuss their consequences. In Sec. III, we
present the sufficient and necessary conditions for a TNS to
have an RBM representation with a given architecture. In
Sec. IV, we illustrate the intimate connection between RBM
and TNS by constructing the fourfold-degenerate ground-state
wave functions for the toric code model in both the RBM and
TNS representations. In Sec. V, we discuss several applications
of the established connection between RBM and TNS for
physical and machine learning problems. In Sec. VI, we discuss
further implications of our results in a broader context of inter-
disciplinary research. In Appendix A, we present a sufficient
condition to find the RBM representations for some specific
TNS and illustrate with statistical Ising model and simple quan-
tum states. Finally, in Appendix B, we discuss the equivalence
between more general Boltzmann machines [37,38] and TNS.

II. TNS REPRESENTATION OF RBM

In this section, we discuss the relationship between RBM
and TNS via a constructive approach. An important application
of the TNS representation for RBM is to provide an upper
bound of the entanglement entropy it can capture. To estimate
the bound, one only needs structural information but not the
detailed parametrization of the RBMs. We first present a
simple and intuitive approach, then discuss more sophisticated
approaches that can provide tighter or optimal bounds on the
tensor bond dimensions. We provide code implementations of
the mapping in [39].

Before proceeding, we first clarify a few notations about
RBM. First, in the standard machine learning applications and
in Refs. [19,20], parameters {Wij ,ai,bj } are assumed to be
real and the corresponding RBM represents the probability
distributions of input data. However, in Refs. [17,18], Eq. (2)
is interpreted as the amplitude of quantum mechanical wave
function, and {Wij ,ai,bj } are generalized to the complex
domain. In this paper, we adopt the convention of Refs. [17,18],
and assume these parameters to be complex.1 Second, con-

1References [17,18] used RBM units with ±1 instead of binary
values. This amounts to a simple rescaling and offset of the weights
and biases.

ventionally one views the RBM as an energy-based model.
While for our discussion about the expressibility of Eq. (2),
it is sufficient to view it as a function approximator such
as a feed-forward neural net [20,40]. Third, although the
standard RBM may have dense all-to-all connections between
the visible and hidden units, for clarity we will illustrate the
transformation using the RBM with sparse connections. Our
result nevertheless holds generally and can be applied to RBMs
with arbitrarily dense connections.

A. Direct mapping of the RBM to MPS

To start with, let us consider a simple way to map an RBM
to an MPS. We summarize the procedure in Algorithm 1. As a
concrete example, we consider the RBM defined in Fig. 1(a).
The first step is to convert this RBM into a TNS by representing
the visible and hidden units as the physical and virtual variables
while keeping the network structure unchanged. To do this, we
decouple the Boltzmann weights into the terms defined on the
vertices and bonds separately by introducing a diagonal tensor,
�(i)

v or �
(j )
h , at each visible or hidden site, and a 2 × 2 matrix

M (ij ) on each bond linking vi and hj :

�(i)
v = diag(1,eai ), (4)

�
(j )
h = diag(1,ebj ), (5)

M (ij ) =
(

1 1
1 eWij

)
. (6)

This leads to the TNS representation of the RBM shown in
Fig. 2(a).

The next step is to map the TNS in Fig. 2(a) to an MPS. We
first cut the graphics into nv pieces, each containing a visible
unit [Fig. 2(b)]. The assignment of the hidden units into these
pieces can be arbitrary. Contracting all the internal variables
within each piece is then equivalent to summing over the hidden
units. The MPS, as shown in Fig. 2(c), is obtained by merging
all the external connections between different pieces into the
virtual bonds. The bond dimension of the MPS is indicated by
the thickness of the virtual bonds, which is determined by the
number of connections merged.

Here, we should pay more attention to the “long-range”
connections that cross two or more vertical cuts. For the RBM
shown in Fig. 2(a), the bond that connects v4 and h1 is the only
long-range connection. In order to map it into the virtual bonds
of MPS, we decouple the matrix defined on this connection
M (41) into a product of two arbitrary 2 × 2 matrices, P and Q,
subject to the constraint M (41) = P · Q (Fig. 3). This separates
effectively the long-range connection into two short ones,
whose matrices are defined by P and Q, respectively. These
two matrices are then absorbed into the local tensors at v2 and
v3, i.e., A(2) and A(3), respectively. This long-range connection
crosses the vertical bond at v3, and consequently doubles the
bond dimension of A(3). In general, a long-range connection
will double the bond dimensions of all tensors it passes by. The
dimension of MPS at a particular bond D is determined by the
number of connections n one has to cut in order to bipartite the
system at that bond, i.e., D = 2n.
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FIG. 2. Steps to map an RBM to an MPS. (a) A TNS represen-
tation of the RBM shown in Fig. 1(a). The blue dots represent the
diagonal tensors�(i)

v at the visible units and the magenta dots represent
�

(j )
h at the hidden units, defined by Eqs. (4) and (5), respectively. The

green squares represent matrix M (ij ), defined in Eq. (6). (b) The RBM
is cut into nv (here nv = 6) pieces. Associated with each long-range
connection, an identity tensor (red oval) is introduced to break M (ij )

into two matrices (see Fig. 3). (c) An MPS representation of the RBM
obtained by contracting all hidden units and connection bonds in (b).
The bond dimension of the MPS is determined by the number of bonds
cut by the corresponding dashed vertical line.

It should also be noted that the MPS obtained from the
above mapping process is not unique because the geometrical
structure of the hidden units with respect to the visible units
can be arbitrarily arranged. No matter how the hidden units are
arranged, these different MPS are equivalent. The local tensors
obtained with the above approach generally also contain redun-

Λ(1)
h

Λ(3)
v Λ(4)

v

Λ(2)
hΛ(2)

h

M (41)

M (32)

Q
P

M (32)=
MMMMM

Λ(1)
h

Λ(3)
v Λ(4)

v

FIG. 3. Matrix M (41), represented by the green square, is decou-
pled into a product of two matrices, P and Q, denoted by the two
cyan squares. The red oval represents direct product of two identity
matrices along two crossing directions.

dant degrees of freedom. They can be gauged into a unique
canonical form [41,42] by taking canonical transformations
for all local tensors. See Sec. V A for more discussions on the
redundancy of TNS and RBM representations.

Algorithm 1 Direct mapping an RBM into an MPS.

Input: The connection weight matrix Wij and biases ai,bj .
The matrix specifies the structure of the RBM.

Output: An MPS with each tensor A(i), i = 1,2, . . . ,nv .
1: The RBM is cut into nv pieces Pi, i = 1, . . . ,nv . Each

Pi includes a visible unit vi and several hidden units.
2: for i = 1, . . . ,nv do
3: Set Ti = ∅. � Contains the tensors in Pi

4: Construct �(i)
v according to Eq. (4).

5: Add �(i)
v to Ti .

6: for hj ∈ Pi do
7: Construct �

(j )
h according to Eq. (5).

8: Add �
(j )
h to Ti .

9: end for
10: end for
11: for all {(vi,hj )|Wij �= 0} do � All the connections
12: Construct M (ij ) according to Eq. (6).
13: Split M (ij ) into products of matrices and add each

matrix into the corresponding piece (see Fig. 3).
14: end for
15: for i = 1, . . . ,nv do
16: Contract all the internal indices of the tensors within

Ti , the result is A(i).
17: end for

B. Optimal mapping of an RBM to an MPS

The direct mapping method given in the last subsection
although intuitive, is not optimal. Here, we present a method
to give the MPS representation with optimal bond dimension.
RBM is an undirected probabilistic graphical model. For a
graph model, we divide all variables into two sets X and Y

which are conditionally independent if another set of variables
Z are given. This is written as

X ⊥ Y |Z. (7)

For the bipartition, we can identify the smallest set Z such that
Eq. (7) is satisfied. The degrees of freedom in Z can be treated
as virtual bond of an MPS after the translation. The size of Z,
denoted by |Z|, determines the bond dimension between the
variables X and Y :

D = 2|Z|. (8)

Algorithm II lists the steps to translate an RBM to an MPS
with optimal bond dimensions by employing such conditional
independence property. We start from left and construct each
tensor on the fly all along to the right side with the smallest
virtual bond dimension. The virtual bonds of the resulting MPS
represent the degrees of freedom of the visible or hidden units
of the RBM.
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Algorithm 2 Transforming an RBM into an MPS with optimal
bond dimensions (see Fig. 4).

Input: The connection weight matrix Wij and biases ai,bj . The
matrix specifies the structure of the RBM.

Output: An MPS with each tensor A(i), i = 1,2, . . . ,nv .
1: Gs = {(i,j )|Wij �= 0} � Graph formed by connected units
2: Hs = {j |(i,j ) ∈ Gs} � All hidden units
3: Z′ = ∅ � The degrees of freedom of the left virtual bond
4: for i = 1, . . . ,nv do
5: Gt = ∅ � Connections to be counted in tensor A(i)

6: Ht = ∅ � Hidden units to be traced in tensor A(i)

7: X = Z′ ∪ {vi}
8: Y = {vi+1,vi+2, . . . ,vnv

} � The remaining physical
degrees of freedom

9: Find a minimal set Z such that X ⊥ Y |Z on the graph Gs .
10: for j ∈ Hs do
11: if hj is not connected to (Y \ Z) then
12: Move j from Hs to Ht . � Variable hj will be

traced out in tensor A(i).
13: end if
14: end for
15: for (k,j ) ∈ Gs do
16: if vk and hj belongs to X ∪ Z ∪ Ht then
17: Move (k,j ) from Gs to Gt � The (vk,hj )

interaction will be included in tensor A(i).
18: end if
19: end for
20: A

(i)
Z′,Z[vi] = ∑

{hj∈Ht } e
aivi+

∑
(k,j )∈Gt

vkWkj hj +∑
j∈Ht

bj hj

21: Z′ ← Z

22: end for

To illustrate the mapping algorithm, we take the RBM in
Fig. 1(a) as an example. We start in Fig. 4(a) by considering
X = {v1} and Y = {v2,v3, . . . ,v6}. It is straightforward to see
that Z can either be {v1} or {h1} to satisfy the conditional
independence X ⊥ Y |Z. Suppose we take Z = {v1}, Gt =
Ht = ∅, the first tensor A(1) can therefore be chosen as an
identity tensor which copies the visible variables {v(1)} to the
right virtual bond of the matrix A(1).

In Fig. 4(b), we select X = {v1,v2} and Y = {v3, . . . ,v6}.
We can find that the smallest Z can be any of {v1,v2}, {v2,h1},
{v3,v4}, or {h1,h2}. We choose Z = {h1,h2} for example. Note
that the set Z can contain both visible and hidden units. The Gt

in Algorithm II, denoted by the dashed lines in Fig. 4, contains
all the connections considered by the tensor A(2). Ht = ∅. The
left bond of A(2) is the same as the right bond of A(1). And the
right bond of A(2) consists of Z = {h1,h2}.

And we go on to Fig. 4(c), where we denote all the
interactions which have been taken account as gray lines. In
this step, the set X = {h1,h2} ∪ {v3}, line 7 of Algorithm II.
There are several choices of Z to reach the minimum size
|Z| = 2. Here, we choose Z = {v3,v4}. Therefore, Gt consists
of all the connections between {h1,h2} and {v3,v4}. The corre-
sponding interactions are considered by A(3), whose right bond
consists of Z = {v3,v4}. Ht = ∅, no hidden units needs to be
traced out.

v2 v3 v5v4 v6

h1 h2 h4

(a)

h3

v1 v2 v3 v5v4 v6

h1 h2 h4

(b)

h3

v1 v2 v3 v5v4 v6

h1 h2 h4

(c)

h3

v1 v2 v3 v5v4 v6

h1 h2 h4

(d)

h3

v1 v2 v3 v5v4 v6

h1 h2 h4

(e)

h3

v1

v1 h1h2 v3v4 v5h4 v6

(a) (b) (c) (d) (e)

(f) v1 v2 v3 v5v4 v6

FIG. 4. The optimal mapping from the RBM to the MPS. (a)–(e)
Shows each step of the construction. The set X is denoted by pink
ellipse and Y in purple ellipse. Z is the minimal set satisfying X ⊥
Y |Z, denoted in light green ellipse. When the variables in Z are given,
the RBM function factorizes into product of functions of variables in
X and Y . The degrees of freedom in Z are represented by the virtual
bond of the MPS. The connection lines in gray represent interactions
counted by previous tensors. The dotted line indicates those under
consideration at the current step, denoted by Gt in Algorithm II. The
constructed tensors in (a)–(e) are given in (f).

Finally, as we come to Fig. 4(d), Z includes v5 and h4. We
find Gt = {h3} has no interaction with the variables in the set
Y when Z is given. So, h3 is traced out when constructing A(4).
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Each connection line of the original RBM is considered
only once during the construction of the MPS. In this way, we
can obtain all the six tensors. We label the bond degrees of
freedom in Fig. 4(f). Note that even if one is not running the
algorithm numerically, one can still obtain the optimal bond
dimension of the corresponding MPS. Moreover, this method
can be used in the general undirected graphical model.

C. Implication of the RBM to MPS mapping

The connection between TNS and RBM suggests that
we can use the knowledge of TNS, especially entanglement
entropy, to quantify the expressibility of RBM. Let us divide the
visible units into two parts, denoted as X and Y , respectively.
The entanglement entropy of a function � (which can either
be an RBM or an MPS) between these two subsystems is then
given by [35]

S = −Tr(ρ ln ρ), (9)

where ρ is the reduced density matrix defined by

ρ =
∑
vY

�∗(v′
X,vY �(vX,vY ). (10)

The matrix is spanned by the visible degrees of freedom in X,
while vY contains all the visible units in Y . The entanglement
entropy characterizes the information content of �, and can be
viewed as a proxy of correlations between X and Y . In case X

and Y are completely disentangled, the entanglement entropy
(9) is zero. While if there are only short-range correlations, the
entanglement entropy should depend only on the size of the
interface separating X and Y , which is small in comparison
with the full volume of the system [43]. The entanglement
entropy of MPS can be readily calculated. The maximal
entanglement entropy is bounded by the logarithm of the bond
dimension, i.e., ln D [44].

To better assess the expressive power of an RBM one needs
to find an equivalent MPS representation with the smallest
possible bond dimensions. However, the simple and intuitive
approach illustrated in Fig. 2 just provides an upper bound
of the bond dimension which is generally higher than what
is needed. For example, the bond dimension of the second
bond, D = 8, in Fig. 2(c) is more than enough to capture
the entanglement since there are only two visible units on its
left, whose total degrees of freedom just equal four. Below,
we present more sophisticated approaches to obtain a tighter
bound on the bond dimensions. This improved approach is
independent on the assignment of the hidden units.

Figure 5(a) shows an RBM after tracing out all the hidden
units. The arcs indicate the interactions between the visible
units mediated by the hidden units. If we separate the visible
units into two parts, X and Y (= Y1 ∪ Y2), where the interface
region Y1 contains all the visible units that directly link to X,
and Y2 the rest units, the RBM function [Eq. (2)] can then be
expressed as

�RBM(v) = ψ(vX,vY1 )φ(vY1 ,vY2 ). (11)

Once the visible units in Y1 are fixed, this RBM becomes a
direct product of the visible units in X and Y2. The rank of
this function [45,46], or the entanglement entropy between X

and Y , is therefore determined by the total number of visible

v2

(a)

v1 v3 v5v4 v6

X

Y1 Y2

Y

v2

(b)

v1 v3 v5v4 v6

X

X2

Y

X1

D=4

A(1) A(3)A(2) A(4) A(5) A(6)

(c)

FIG. 5. (a) RBM with all hidden units traced out. The arcs
represent the connections between the visible units mediated by the
hidden units. The system is divided into two subsystems X and Y . Y

is then further divided into two parts, Y = Y1 ∪ Y2, where Y1 contains
all the units that directly connect to the units in X. (b) Alternatively,
X is divided into two parts X = X2 ∪ X1, where X1 contains units
that connect directly to the units in Y . (c) The resulting MPS with
smaller bond dimensions in comparison with that shown in Fig. 2(c).

units in the interface region Y1, denoted by |Y1|. Hence, the
bond dimension of the MPS on the bond separating X and Y

is simply given by D = 2|Y1|.
Alternatively, one can also divide X into two parts X =

X2 ∪ X1 by including all the units that have direct connections
with Y in X1 and the rest units in X2 [Fig. 5(b)]. Following the
argument given above, it can be shown that the entanglement
entropy between X and Y is also bounded by the number of
units in X1. Thus, the entanglement entropy between X and Y

is bounded by Smax = min(|X1|,|Y1|) ln 2.2

Figure 5(c) shows the MPS obtained with this approach.
The bond dimensions from left to right are D = 2,4,4,4,2,
respectively. They are tighter bounds on the bond dimensions
of MPS compared to Fig. 2(c). More generally, an even tighter
bound on bond dimension can be obtained by fixing a minimal
number of units, no matter they are visible or hidden, such that
the RBM separates into a bipartite product state. To directly
construct the MPS with the optimal smallest bond dimensions,
we represent the degrees of freedom in the interface region
using the virtual bonds of the MPS. Programming codes to
implement these RBM to MPS mapping algorithms are given
in [39].

The bond dimensions of the resulting MPS control the
maximal entanglement entropies between the visible units.
Therefore, the entanglement entropy provides a rigorous quan-
tification on the expressive power of an RBM solely based on its
architecture. Estimating these bounds can be done efficiently

2Similarly, when modeling the probability using probabilistic graph-
ical models, the upper bound of classical mutual information is given
by the size of the interface [43].
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with the provided codes [39]. Moreover, canonizing the MPS
may further reduce the bond dimensions by removing all
unnecessary degrees of freedom and give precise value of the
entanglement entropies.

Similarly, one can map an RBM into a PEPS [28] by ar-
ranging the visible units on a two-dimensional array. A similar
procedure was used in [47] to map a multiscale entanglement
renormalization ansatz [48] into a PEPS. This is particularly
useful if the original data set represented by the RBM, for
example the pixels of image, is defined on a two-dimensional
grid.

In general, if the number of units along any direction of the
interface region is bounded by m, then the upper bound of the
entanglement entropy should scale as

Smax ∼ mV (d−1)/d , (12)

where d is the spatial dimension on which the TNS is defined,
and V is the volume of the system. Thus, the maximum
entanglement of a sparsely connected RBM [18] satisfies the
area law. However, for a densely connected RBM, the interface
region extends to the whole system and m ∼ V 1/d , therefore,
Smax ∼ V scales linearly with the subsystem volume. This sug-
gests that the dense RBM can provide a compact representation
for a highly entangled quantum state that does not satisfy the
entanglement area law. The number of parameters in this dense
RBM just scales polynomially with the system size. However,
to describe this state using an MPS or a PEPS, the number of
parameters needed scales exponentially with the system size
[48,49]. This provides an entanglement entropy justification
for the variational calculation of quantum systems using RBM
functions [17]. Section V B presents a detailed analysis of the
tensor representation of the state used in Ref. [17].

The mapping from RBM to TNS is valid more generally
and can be extended to Boltzmann machines without the
bipartite graph restriction. In Appendix B, we discuss the
general equivalence between Boltzmann machines [37] and
TNS.

III. RBM REPRESENTATION OF TNS: SUFFICIENT
AND NECESSARY CONDITIONS

We now address the reverse question about how to transform
a TNS into an RBM with a given architecture. Here, only a
given architecture of RBM is considered because otherwise one
can reproduce any function using an RBM with exponentially
large resources [9–11]. Again, we present a constructive
approach to determine the RBM parameters for a TNS. In
Appendix A, a sufficient condition for mapping a TNS to an
RBM is discussed and demonstrated with the statistical Ising
model and the cluster state [50].

Let us take the six-site MPS shown in Fig. 1(b) as an
example to show how to parametrize it into an RBM with
the architecture shown in Fig. 6(a). The hidden layer contains
nh = 4 units, which factorize the MPS into a product of four
tensors, one 2 × 2 × 2 × 2 tensor T (1), defined at h1, and
three 2 × 2 × 2 tensors T (2,3,4), defined at the remaining three
hidden units. Requiring this product to equal the MPS, we have

Tr
∏

i

A(i)[vi] = T (1)
v1v2v3v4

T (2)
v2v3v4

T (3)
v3v4v5

T (4)
v4v5v6

. (13)

A(1) A(2) A(3) A(4) A(5) A(6)

=

(b)

T (1)

(a)

T(2) T(3) T (4)

=
W 4
2

W32W
22

b2

a22 a32 a42

I3

P R

Q
=

T(2)

FIG. 6. Graphical representation of (a) Eq. (13) and (b) Eqs. (14)
and (15).

Taking the logarithm of this equation, we obtain 2nv = 64
linear equations for the 24 + 23 + 23 + 23 = 40 tensor ele-
ments. These equations are overdetermined since the number
of parameters is less than the number of equations. In order to
map a TNS to an MPS, these equations must have a unique
solution. If these equations have no solution, then one has
to change the architecture of RBM. One can, for example,
increase the number of parameters by increasing the number
of hidden units and/or the number of connections of the RBM.
This set of linear equations may become underdetermined if
the number of parameters in the RBM becomes larger than the
number of equations.

If Eq. (13) has a unique solution, we then need to decompose
each tensor into an RBM with just one hidden unit. For
example, for the tensor shown in Fig. 6(b), i.e., T (2), we should
decouple it as

T (2)
v2v3v4

=
∑

h2∈{0,1}
eh2b2+

∑
i∈{2,3,4} vi (Wi2h2+ai2), (14)

where aij is a partial bias of the ith visible unit contributed by
the j th hidden unit. The bias of the ith visible unit is given
by the sum of all partial biases contributed by the hidden units
connecting this visible unit, ai = ∑

j aij . For this three-index
tensor, seven parameters need to be determined from 23 = 8
equations [Fig. 6(b)]. The number of parameters grows linearly
with the order of T , but the number of equations grows
exponentially instead. In general, Eq. (14) is overdetermined,
and it has solution only in special cases.

In practice, Eq. (14) can be considered as the tensor rank
decomposition (CP decomposition) [45,46] of T (2):

T (2)
v2v3v4

=
∑

h2∈{0,1}
Pv2h2Qv3h2Rv4h2 . (15)

The rank ofT (2) is 2 because the hidden unit (h2 here) is a binary
variable. P,Q,R are all 2 × 2 matrices because the visible
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units are all binary numbers.3 For a 2 × 2 × 2 tensor, a rank-
2 decomposition always exists in complex field and a rank-
4 decomposition in real field [51]. However, for an arbitrary
tensor, it is difficult to determine its rank [45]. The high-order
singular value decomposition [52] gives the lower bound of
the tensor rank as the dimension of the core tensor. If it is
larger than 2, the binary condition of the hidden unit cannot be
satisfied.

After the decomposition (15), we can further decouple each
matrix into a product of three matrices according to Eqs. (4)–
(6). For example, we can express matrix P as

P =
(

p q

r s

)
= p

(
1

r
p

)(
1 1
1 ps

qr

)(
1

q

p

)
.

(16)

Comparing to Eqs. (4)–(6), we obtain

W22 = ln
ps

qr
, (17)

a22 = ln
r

p
, (18)

b22 = ln
q

p
. (19)

Similar to aij , bij is a partial bias to the j th hidden unit
imposed by the ith visible unit. The bias of the j th hidden unit
is given by bj = ∑

i bij . In this way, each tensor of Eq. (13) is
written in the RBM form, for example.

Thus, the necessary and sufficient condition for mapping an
MPS to an RBM is that both Eqs. (13) and (14) have unique
solutions. In the case of nh = 1, Eq. (13) merely rephrases the
MPS as the wave function itself. The rank-2 decomposition
of the tensor, similar to Eq. (14), is generally more difficult
to satisfy. By increasing the number of hidden units and
connections, one can increase the number of parameters of
RBM to ensure both Eqs. (13) and (14) to have solutions. This
agrees with the mathematical results stating that RBM can
represent any function by employing an exponentially large
number of hidden units and connections [9–11].

In practice, a convenient way to quickly check whether a
state has a particular RBM representation is to consider the
factorization property defined by Eq. (11), namely, to examine
whether a TNS can be factorized into a product state by fixing
a sequential of visible units.

Using this simple approach, we can actually show that the
spin-1 Affleck-Kennedy-Lieb-Tasaki (AKLT) state [53] cannot
be represented as an RBM (with ternary visible units) with only
short-range connections because of the existence of hidden
string order. Expressed in the (Sz)⊗nv basis, each component
of the wave function looks like “+ 0 0 − 0 + − 0 0 0 +”
where (+ , 0 ,−) represent the eigenstates withSz = (1,0,−1).
There is a hidden antiferromagnetic order with arbitrary
number of 0’s inserted. Even if we fix a sequence of visible
units in the middle to be 0, the state is still combination of
“+ 0 0 0 . . . 0 −” and “− 0 0 0 . . . 0 +” which cannot be
simply expressed as a product state, or an RBM with just

3If the rank of tensor is higher than 2, then one has to enlarge the
basis dimension of hidden units from 2 to a larger number.

local connections. On the other hand, the AKLT state can be
written as a D = 2 MPS [25,53]. This example shows that the
entanglement entropy is not the only variable that quantifies
the expressive power of RBM.

IV. EXAMPLE: RBM REPRESENTATION
OF THE TORIC CODE GROUND STATES

As a concrete example of the TNS-RBM transformation
introduced in the preceding section, we construct the RBM
representation of the toric code ground states from the corre-
sponding PEPS wave functions [54]. More examples, including
the Ising model and the cluster state [50], are given in the
Appendix A.

The toric code [54] is one of the simplest models whose
ground states are topological ordered [55] and holds the
promise for quantum computation [56]. It is defined by the
Hamiltonian

H = −
∑
+

A+ −
∑
�

B�, (20)

A+ =
∏
i∈+

σ z
i , B� =

∏
i∈�

σx
i , (21)

where σx
i and σ z

i are Pauli matrices defined on the horizontal
and vertical links of the square lattice. A+ consists of the
product of four σ z

i operators connecting to each vertex denoted
by +, and B� consists of the product of four σx

i operators on
each minimal square plaquette�. All theA+ andB� operators
commute with each other.

The toric code on a torus has four topologically degenerate
ground states. Deng et al. [18] have already found an RBM
representation for one of them. We now present the RBM
representations for all the four ground states using the approach
introduced in the preceding section based on their PEPS
representations [25,57].

We start from the PEPS representation for one of the ground
states of the toric code model [25,57] shown in Fig. 7. The
PEPS consists of three kinds of local tensors of dimension
2: a four-index identity tensor I4 defined at each vertex, a
three-index identity tensor I3 defined at the center of each link
where physical operators reside, and a U matrix linking any
two neighboring I3 and I4:

U = 1√
2

(
1 1
1 −1

)
. (22)

To find its RBM representation, we identify the bond-centered
I3 tensors as the visible units and the vertex-centered tensors
I4 as the hidden units, and decompose U as

U = 1√
2

(
1

e0

)(
1 1
1 eiπ

)(
1

e0

)
. (23)

Using Eq. (16), we then find the connection weights and biases
of visible and hidden units to be

W = iπ, (24)

a = 0, (25)

b = 0. (26)
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D1

D2

U
a=0
b=0

a=iπ

W=iπI3
I4

(a)

(b) (c)

(d) (e)

C1

C2

D1 D1

D2

D2

FIG. 7. (a) TNS and (b) its corresponding RBM representations
of the toric code ground state at the (+,+)-topological sector on
the square lattice. The dashed red and orange lines are the paths
of Wilson loops used in Eqs. (28) and (29), respectively. (c)–(e)
RBM representations of the toric code ground states in the other three
topological sectors. The cyan dots denote the visible units with bias
a = iπ .

The resulting wave function is depicted in Fig. 7(b). It is a RBM
with only nearest-neighboring connections between visible
and hidden units. Each hidden unit couples to four visible units.
Tracing out all the hidden units, the RBM becomes

�TC(v) =
∏
+

(1 + eiπ
∑

i∈+ vi ). (27)

It represents a quantum state with equal weight superposi-
tions of closed loops where the sum of the visible variables is
even on each vertex [54]. The RBM representation Eq. (27)
is simpler than that introduced in Ref. [18] where the hidden
units are defined on both the vertices and the plaquette centers.

The four ground states of the toric code model belong to four
different topological sectors. To differentiate these degenerate
states, we first define two Wilson loop operators

X1 =
∏
i∈C1

σx
i , X2 =

∏
i∈C2

σx
i , (28)

E

(a) (b)

D'
1

FIG. 8. Demonstration of the gauge invariance of RBM. (a) The
wave function obtained by applying four A+ operators [Eq. (21)]
within the region enclosed by the orange path E to the RBM shown
in Fig. 7(b). The visible biases are changed from 0 to iπ on the path,
but the two RBM wave functions before and after the transformation
are gauge equivalent. (b) The RBM wave function is gauge equivalent
to the that shown in Fig. 7(d) by moving the Wilson path from D1 to
D′

1. Please refer to Fig. 7 for the definition of symbols.

where C1 and C2 denote the paths along the horizontal and
vertical directions of the lattice, indicated by the red lines in
Fig. 7(a), respectively. X1 and X2 are mutually commuting.
They also commute with the Hamiltonian. Thus, we can use
their eigenvalues to label the eigenstates.

Both X1 and X2 have two eigenvalues, +1 and −1. The
fourfold-degenerate ground states correspond to the four eigen-
states of (X1,X2). They can be classified into four topological
sectors, labeled by the eigenvalues of (X1,X2) as (±,±). The
wave function illustrated in Fig. 7(b) belongs to the (+,+)
sector, namely, 〈v|�(+,+)〉 = �TC(v).

Now, let us introduce the following two operators along
the paths D1 and D2 indicated by the dashed orange lines in
Fig. 7(a):

Z1 =
∏
i∈D1

σ z
i , Z2 =

∏
i∈D2

σ z
i . (29)

These two operators do not commute with X1 and X2. They
transform the states between different topological sectors [58].
For example, |�(−,+)〉 = Z2|�(+,+)〉, |�(+,−)〉 = Z1|�(+,+)〉,
and |�(−,−)〉 = Z1Z2|�(+,+)〉. In the PEPS representation,
Z1,2 is to change all the identity tensors I3 shown in Fig. 7(a)
along the D1,2 path into diagonal tensors diag(1, − 1). In the
corresponding RBM representation, this is to change the bias
of the visible variables in Eq. (25) from a = 0 to a = ln (−1) =
iπ along the D1 and D2 paths [Figs. 7(c)–7(e)].

Note that the Wilson loops D1 and D2 are not necessary to
be straight lines. But, they must wind around the torus (Fig. 8).
The RBM that is obtained by continuously distorting D1 or D2

is gauge equivalent to the original one. In other words, to apply
the operator X1 defined on a closed path without winding the
torus to any of the ground state will not alter its topological
sector. For example, the RBM shown in Fig. 8(a) is gauge
equivalent to that shown in Fig. 7(b). They are related by a
loop of σ z

i operators along the path E in Fig. 8(a), which
is equal to the product of all A+ operators enclosed by E.
This product of A+ operators changes the visible biases along
the closed loop E from a = 0 to iπ . But, the wave function
remains in the same topological sector since A+ at each vertex
is conserving. Similarly, the state in Fig. 8(b) is identical to
that in Fig. 7(c). More detailed discussion on the redundancy
of the RBM parametrization is given in Sec. V A.
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V. IMPLICATIONS OF THE RBM-TNS
CORRESPONDENCE

A. Optimizing RBM using tensor network methods

Similar to TNS, it is known that RBM or other neural
network function contains redundant degrees of freedom [3].
Two RBMs with different connection weights and biases may
represent equivalent functions. An RBM can be simplified or
optimized by removing redundant degrees of freedom using
the well-established tensor network methods.

In one dimension, for example, one can use the canoni-
calization approach of MPS to optimize an RBM. To do this,
we first transform an RBM into an MPS using the algorithm
introduced in Sec. II. The MPS is then canonicalized to
minimize the bond dimensions for all the local tensors by
discarding zero singular vectors [41,42]. This can also partially
fix the gauge of the MPS. Finally, we map this optimized MPS
back to an RBM using the approach introduced in Sec. III. The
RBM such obtained is equivalent to the original one, but is
optimized.

To understand this optimization scheme, let us consider
the RBM wave function of the 1D cluster state presented in
Ref. [18]. This RBM contains equal number of visible and
hidden units with each hidden unit connecting to three visible
units. It can be mapped onto a D = 4 MPS using the simple
approach introduced in Sec. II because each bipartition cuts
two connections. By taking the canonical transformation, the
bond dimension of this MPS is reduced to 2. Mapping this
simplified MPS back, we obtain an optimized RBM with each
hidden unit just connecting two neighboring visible units. See
Appendix A for detailed parametrizations of the simplified
RBM.

An RBM defined in higher dimensions can be also simpli-
fied by mapping it onto a PEPS or other higher-dimensional
TNS. The bond degrees of freedom of the PEPS can be reduced
or at least partially reduced (if there are redundancies), by
taking higher-order singular value decompositions (or more
generally Tucker decompositions) for all the local tensors [59],
or just singular value decompositions for all neighboring pairs
of local tensors similar to that used in the determination of the
ground-state wave function by the simple update method [60].

The redundancy of RBM can be exemplified using the toric
code model Eq. (20). The ground-state wave function can be
obtained by applying the projection operator

P =
∏
+

1 + A+
2

∏
�

1 + B�
2

(30)

to an arbitrary product state over the spins |ψ0〉 =∏
i (cos θ |↑〉 + sin θ |↓〉)i . Apparently, the PEPS and its cor-

responding RBM such obtained is not unique. The state shown
in Fig. 7(a) corresponds to the choice θ = π/4. Figure 9(a)
shows another choice with θ = 0 which has four index tensors
in the plaquette center. It is the eigenstate of Z1,2 in Eq. (29),
which is the superposition of the states [Figs. 7(b)–7(e)]. While
Fig. 9(b) shows the state obtained with a general θ which
has four index tensors defined both in the plaquette center
and on the vertices. The corresponding RBM corresponds to
[18] and contains more connections than the other two cases.
Although these are all ground states of the toric code model, it

I4

(b)

I4

U

I3

I4

(a)

A

B

FIG. 9. Two equivalent TNS representations of the toric code
ground states obtained by applying the projection operator P to an
initial wave function |ψ0〉 defined in the texts. (a) θ = 0. The local
identity tensor I4 is defined at the center of each plaquette, and U is
the matrix defined by Eq. (23). (b) θ is arbitrarily chosen. The local
tensors are defined on both the original original and dual lattice sites.
A and B are two θ -dependent five-index tensors.

is impossible to find a local gauge transformation in the internal
bonds to connect the local tensors because the ground state is
a noninjective Z2 spin liquid state [61–63]. Exploiting the rich
math structures of noninjective PEPS [64], one may further
transform or simplify various RBM functions.

In practice, the TNS used in the simplification of an RBM
may have a huge bond dimension which is difficult to handle.
There are two approaches that can be used to resolve this
problem. The first is to dynamically truncate the TNS bond
dimensions during the translation from the RBM to TNS. This
can avoid the storage of huge TNS tensors. The other is to
divide the system into several overlapped pieces, and perform
the simplification for each piece separately. In either case, one
can simplify the original RBM using the TNS canonicalization
technique.

B. TNS representation of the shift-invariant RBM
and its entanglement capacity

The variational Monte Carlo study presented in [17] em-
ployed a shift-invariant RBM function [65] to enforce the
translational invariance of a physical system. The variational
ansatz is a product of nv RBM functions defined in Eq. (2):

�(v) =
∏
T

�RBM(T v), (31)

where T is the translational operator which shifts the visible
variables around the periodic spatial direction. Figure 10(a)
shows an example of a shift-invariant RBM. Assuming each

FIG. 10. (a) A shift-invariant RBM of nv = 4 and nh = 2, which
is obtained by multiplying nv copies of RBM with shifted connections.
(b) The corresponding MPS can be constructed by connecting nv

copies of the MPS constructed from the corresponding RBM, each
tensor offset by one site. The green dots are identity tensors.
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RBM wave function �RBM contains nh hidden units, the shift-
invariant RBM contains nvnh hidden variables.

This shift-invariant RBM can be also written as an MPS.
To do this, we first express each individual factor �RBM as
an MPS with bond dimension DRBM. For example, one of the
RBMs used in Ref. [17] is a fully connected RBM with four
hidden units before translational shift. When constructing the
MPS, the minimum set C satisfying Eq. (7) contains all the four
hidden units. It corresponds to an MPS with bond dimension
DRBM = 24 = 16. Next, we assemble these MPSs into a tensor
network as illustrated in Fig. 10(b). This tensor network
can be further written as a single MPS. The corresponding
bond dimension is D = (DRBM)nv , which appears to have a
much higher entanglement entropy bound than each factor
�RBM.

In order to better estimate the expressive power of the
shift-invariant RBM, we can directly map it into an MPS using
the algorithm introduced in Sec. II B [39]. Using this approach,
one first identifies the minimal interface region and determines
the optimal bond dimension based on the specific structure
of the shift-invariant RBM with enlarged hidden units. For
example, the enlarged shift-invariant RBM corresponds to
an MPS with bond dimension D = 2nv/2 in the center [see
Fig. 10(a)].

The shift-invariant operation plays an important role in
improving the accuracy of the variational wave function [17]
because it drastically increases the entanglement capability of
the wave function without increasing the number of variational
parameters. This construction can be generalized to other
variational wave functions [28]. Moreover, this trick can be
also used to implement other symmetries, such as rotation or
inversion symmetries.

From the equivalence between RBM and TNS, we find that
there are several guiding principles that can be used to design
even more powerful RBM variational ansatz for quantum sys-
tems. First, the connection in RBM should be global because
otherwise the bond dimension of the corresponding MPS will
have finite bond dimensions which do not scale with the system
size. Note that this requirement does not mean the RBM
connections have to be dense. A sparsely connected RBM with
long-range connections can also represent a TNS with large
bond dimensions. In fact, the results of Ref. [17] show that
many of the optimized RBM connection weights are close to
zero. Reference [66] also shows that sparse connected RBM
can have good performance in learning real data sets. Second,
sharing the same parameters for many hidden and visible units
can significantly reduce the number of independent variational
parameters without scarifying the entanglement capacity of the
ansatz. And, finally, one can connect multiple hidden units
to the same set of visible units of RBM to mediate large
entanglement between them.

C. An entanglement perspective to unsupervised learning

A natural consequence of the connection between RBM and
TNS is a quantum entanglement perspective on unsupervised
learning of probabilistic models. The universal approximation
theorem in machine learning [9–11] states that there exists
an RBM to describe a data set to any accuracy, if there is
no limit on the number of hidden units. By introducing the

entanglement entropy of a real data set one can better quantify
the required resource in terms of the number of hidden neurons
and connections of an RBM or, equivalently, the effective bond
dimensions of a TNS.

We first clarify the definition of entanglement entropy
for a real data set. Assuming the instances of a data set
follow a probability distribution P (v), we introduce a prob-
ability amplitude �(v) = √

P (v) in analog to the quantum
mechanical wave function. Using �(v), one can define the
reduced density matrix and entanglement entropy of the data
set following Eqs. (9) and (10). The entanglement entropy
defined in this way is meaningful because it captures the
complexity of a real data set similar to classical information
theoretical measures [4]. Transferring quantum entanglement
perspective to machine learning provides a practically useful
way to quantify the difficulty of unsupervised learning and
guides future progresses with insights in modeling quantum
many-body states. These considerations are relevant to those
generative modeling inspired by quantum physics, where
one uses a wave-function square to model the probability
[67–70].

Consider a data set of natural images: the correlations
between pixels are typically dominated by short-range ones
which suggests that the entanglement entropy of the data set
defined above is relatively small. As a consequence, dense
connections in the RBM are not absolutely necessary. In fact,
the authors of Ref. [71] showed that a dense RBM still performs
well even when 80% of the connections are randomly removed.
Reference [66] also proposed an RBM with sparse connections
with small-world network structure and found that it performs
well compared to a densely connected RBM. Moreover, the
distribution of the entanglement is inhomogeneous in various
locations of the space. With an entanglement quantification,
these features of the data set can be exploited in the neural
network structure design.

Another advantage of introducing quantum entanglement
for a realistic data set is that the RBM-TNS connection
may allow one to adopt the techniques developed in quan-
tum physics directly to machine learning. For example, it is
straightforward to estimate the entanglement entropy upper
bound of an RBM via counting the bond dimension of its
TNS representation. Alternatively, entanglement entropy is a
useful characterization of the difficulty of the learning task
when directly using TNS to model the data set [69].

Interestingly, the entanglement structure of deep learning
was also recently explored by authors in computer science
[72]. Their discussions were mainly on feed-forward neural
networks, but the key tool for achieving their conclusions is
from the techniques developed in tensor networks.

D. Entanglement advantage of deep Boltzmann
machines over the shallow ones

The mapping between RBM and TNS discussed in Sec. II is
applicable general Boltzmann machines without the bipartite
graph restriction. In particular, applying the deep Boltzmann
machines (DBM) [38] explains their advantage over the shal-
low RBMs.

The shallow and deep BM architectures are shown in
Fig. 11. They both have nv visible units, nh = 3nv hidden units,
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(a) (b)

FIG. 11. (a) An RBM and (b) a deep Boltzmann machine with
the same number of nv visible units (blue dots), nh = 3nv hidden
units (magenta dots), and 9nv connections. According to Sec. II,
the corresponding MPS representation of the RBM and DBM had
bond dimension DRBM = 22 and 24, respectively. The dashed lines
enclose a minimal number of units which split the network once their
values are observed. The comparison shows the that DBM has larger
entanglement capacity with the given number of parameters.

and 9nv connections. In contrast to the RBM, the hidden units
of the DBM shown in Fig. 11(b) are organized into multilayer
structures. Following Sec. II B, the C set units are enclosed by
dashed lines, when they are fixed, all the visible units set X

are proportional to all the right visible units set Y . The bond
dimensions are DDBM = 16 and 4, respectively. Therefore,
using the same amount of parameters, the DBM is able to
express more complex functions with larger entanglement
entropy.

As a concrete example of the application of the consid-
erations above, we consider the 4 × 4 bars and stripes data
set [73] used in [70] as an example. The wave function is
the equal superposition of 30 valid configurations. And, the
exact entanglement entropy is ln 15 − 7

15 ln 7 ≈ 1.80, which
is larger than ln 4. This implies that the data set can not
be captured by the RBM in shown in Fig. 11(a). However,
capturing the same distribution using the DBM in Fig. 11(b) is
possible.

In general, the visible units in a deep Boltzmann machine
can have longer-ranged effective connections mediated by the
deep hidden units (cf. Fig. 5), hence, a larger entanglement
capacity compared to the RBM with the same number of hidden
units and connections. Applying the mapping to TNS thus
offers a valuable way to analyze and compare the expressive
power of Boltzmann machines with various architectures.

VI. DISCUSSIONS AND OUTLOOKS

We have discussed the general and constructive connection
between the RBM and TNS. This equivalence sets up a bridge
between the field of deep learning and quantum physics,
allowing us to use the well-established entanglement theory of
TNS to quantify the expressive power of RBM and obtain lower
bound on the required resources compared to previously known
results [9–11]. It puts the discovered similarity between the
renormalization group and deep learning [7] in a more rigorous
manner, and provides a practically useful approach to remove
the redundant degrees of freedom in the RBM functions (Sec.
V A). Moreover, connections to the TNS identify the shift-
invariant construction [65] as a key ingredient in the successful
variational calculation [17] and set up useful guiding principles
to construct more powerful variational ansatz (Sec. V B). Akin

to the success of TNS in quantum physics, our finding suggests
that the success of deep learning is related to the relatively
low entanglement entropy in the data sets represented by the
RBMs, such as natural images and speech signals (Sec. V C).
The entanglement entropy also offers a new perspective for
using deep Boltzmann machines (Sec. V D).

The correspondence between RBM and TNS suggests that
the physical insights and technical methods developed in
quantum many-body physics can be exploited in the field of
machine learning, and vice versa. In fact, the tensor network
methods have already been applied to the pattern recognition
[69]. As we discussed in Sec. II, the RBM can represent
the quantum state more compactly than TNS, this may offer
computational advantages [17]. Deep learning algorithms [2]
and industrial software and hardware [74–76] may also be
beneficial for quantum many-body physics researches through
this connection.

For further investigation, it is interesting to explore the
connection between the deep learning architectures, such as
the deep Boltzmann machines [38], and the multi-layer TNS,
such as the tree tensor networks [77–80] and the multiscale
entanglement renormalization ansatz [48]. In passing, we also
note the efforts of understanding the expressive power of the
deep feed-forward neural networks [81,82]. We believe the
insights on quantum entanglement and tensor network states
can deepen our understanding on deep learning and guide better
neural nets design.

Note added. Recently, there appeared related works explor-
ing representational and entanglement properties of Boltzmann
machines [83–89].
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APPENDIX A: A SUFFICIENT CONDITION FOR RBM
REPRESENTATION OF MPS/PEPS AND EXAMPLES

We give a sufficient condition for the MPS or PEPS to
have an RBM representation. Many physically interesting
thermal states and quantum wave function belong to this class.
For example, the toric code model discussed in Sec. IV, the
statistical Ising model with external field, and the 1D/2D
cluster states discussed in this appendix.

A sufficient condition for an MPS to have the RBM
representation is that each tensor has the following form:

Aαβ[v] = LαvRvβ, (A1)

where L and R are two 2 × 2 matrices. As shown in Fig. 12(a),
the product of R and L in orange dashed box can be replaced by
coupling to the hidden unit of the RBM. The bias for the visible
unit (blue dot) is a/2 because it is shared by two neighboring
boxes. According to Eqs. (6) and (5), we can write the RL into
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FIG. 12. (a) The tensor A in the dashed red box has the special
form Eq. (A1). The green squares denote the L and R matrices, while
the blue dots are the three-index identity tensor. We transform the
matrix product in the dashed orange rectangular according to Eq. (A2)
to obtain the RBM parameters. The half blue dot denotes a/2 since
the visible unit is shared by two neighboring dashed orange boxes. (b)
The PEPS of a similar structure is mapped to an RBM. The meaning
of the symbols is the same as (a).

the RBM parameters

RL =
(

1
ea/2

)(
1 1
1 eW

)(
1

eb

)

×
(

1 1
1 eW

)(
1

ea/2

)
. (A2)

The decomposition can be arbitrary. Here, we choose a sym-
metric form for simplicity.

One example of this type is the statistical Ising model with
the partition function

Z =
∑
{si }

exp

⎛
⎝K

∑
〈i,j 〉

sisj + H
∑

i

si

⎞
⎠, (A3)

where K is the coupling constant and H is the external field.
si = ±1 are the Ising spins. To rewrite the partition function
into a summation of the RBM function of the form (2), we
introduce binary variables vi = (si + 1)/2.

In one dimension, the Ising partition function can be
represented as an MPS shown in Fig. 12. The matrix product
on each bond reads as

RL =
(

eK+H e−K

e−K eK−H

)
. (A4)

Combining Eqs. (A2) and (A4), we obtain the RBM parameters
W,a,b summarized in the first line of Table I.

This procedure can be readily generalized to 2D, where
the partition function is represented by a PEPS. The PEPS
tensor follows a condition similar to Eq. (A1), as illustrated in
Fig. 12(b). We introduce one hidden unit for each bond which

couples to the two visible units connected by the lattice bond.
The only difference compared to the 1D case is that the one
replaces H by H/2 in the RL matrix (A4) since each site is
shared by four instead of two bonds. Correspondingly, the a/2
bias in Eq. (A2) is replaced by a/4 because the visible bias
is also shared by four connections [Fig. 12(b)]. The RBM
parameters for 2D Ising model are summarized in the second
line of Table I.

The above results show that a very simple sparse RBM with
nh = nv (or nh = 2nv in 2D) hidden units defined on the bonds
can exactly reproduce the thermal distribution of the Ising
model. It is remarkable that this is independent of the coupling
strength and holds even at the criticality where the cor-
relation between the visible spins are long ranged [19]. Es-
sentially, the effect of the hidden units of the RBM play the
role of a Hubbard-Stratonovich auxiliary field which decouple
the interaction on the bond [90].

Another example of the TNS satisfying Eq. (A1) is the
cluster state [50]. The MPS representation [25,57] has RL =

1√
2
(

1 1
1 −1 ) on every bond. We can obtain the RBM

parameters W,a,b using Eq. (A2) summarized in Table I.
Similar to the Ising model case, the RBM has hidden units
coupled to the physical degree of freedoms on each lattice
bond. This construction is simpler than the one of Ref. [18]
which requires each visible unit to connect to three hidden
units. The simplification is due to that we construct the RBM
representation from the canonical MPS of the cluster state.

APPENDIX B: GENERAL EQUIVALENCE BETWEEN
BOLTZMANN MACHINES AND TNS

The name “restricted” in the RBM means that there are only
connections between the visible and hidden units, not within
them. The RBM-TNS correspondence can also be generalized
to the cases without such restrictions. For example, the deep
Boltzmann machines [38] have multilayers of hidden units with
interconnections, and the Boltzmann machines (BM) [37] have
direct connections within the visible and hidden units.

In general, the BM parametrizes a function in the form

�BM(v) =
∑

h

e−E(v,h), (B1)

with the energy function

E(x = v ∪ h) = −
⎛
⎝∑

i,j

Wij xixj +
∑

k

θkxk

⎞
⎠, (B2)

where Wij is the connection weight between the units i and j ,
and θk is the bias of the unit k. One can either view Eq. (B1) as a
probability distribution or a complex wave-function amplitude.

To write Eq. (B1) into a TNS, we introduce tensor

M (ij ) = (
1 1
1 eWij

) on the edges and diagonal tensors �(k) =
diag(1,eθk ) on the vertices. For the visible units, the diagonal
tensors have an additional dimension corresponding to the
external degree of freedoms. Using these tensors, the BM
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TABLE I. The RBM parameters for the statistical Ising model and the cluster state. Each hidden unit interacts with two visible units
connected by a bond. The parametrizations are not unique and we only list one possible solution. The meaning of the Ising model parameters
is given in Eq. (A3).

Model W b a

1D Ising ln (4e4K − 2) − ln (e4K − 1) − ln 4 −4K − 2H − 2 ln 2
2D Ising ln (4e4K − 2) − ln (e4K − 1) − ln 4 −8K − 2H − 4 ln 2
1D cluster ln 3

2 − ln 2 + iπ 2 ln 2
2D cluster ln 3

2 − ln 2 + iπ 4 ln 2

Eq. (B1) can be written as a tensor network state

�TNS(v) = Tr

⎛
⎝∏

i,j

M (ij )
∏
k

�(k)

⎞
⎠. (B3)

Conversely, one can also attempt to map a TNS back to a
BM. First, we prove that any TNS constructed rank-2 tensors
only can be directly mapped to a binary BM. The CP decompo-
sition or rank decomposition [45] of d1 × d2 × · · · × dn tensor
T (i) reads as

T (i)
α1α2...αn

=
r∑

k=1

P
(i)
α1k

Q
(i)
α2k

R
(i)
α3k

. . . , (B4)

where P (i),Q(i),R(i), . . . are matrices. The equation holds for a
minimal number r , which is the rank of the tensor. For example,
r = 1 if T is a vector and r equals the smaller dimension if T

is a matrix. While for n � 3, r is not necessarily smaller than
any di .

A TNS can be mapped to a BM with binary units if r = 2
and di = 2,∀ i. When contracting the first index of T (i) and
the second index of T (j ), we can perform rank decomposition
and obtain a 2 × 2 matrix on the connection

M (ij ) = (
P (i)

)T
Q(j ) =

(
p q

r s

)
, (B5)

where P (i) (Q(j )) is the matrix obtained from the decomposi-
tion (B4) of T (i) (T (j )), respectively. With the same procedure
in Eqs. (16) and (17), we find that Wij = ln ps

qr
. The two

diagonal matrices in Eq. (16) can be absorbed into the diagonal
tensor, which contributes to θi .

For more general TNS with larger ranks, we can always
perform the CP decomposition following the same procedure
and resulting BM will have hidden units with multistates.
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