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Orbital wave in the Raman scattering cross section of LaMnO3
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We calculated the polarization-dependent Raman scattering cross-section spectra of LaMnO3 below the A-type
magnetic ordering temperature. Two strong peaks appear around the MnO6 octahedra stretching phonon frequency.
One mode shows Ag symmetry, while the other mode shows Bg symmetry. We found that the Ag symmetry peak
is a Jahn-Teller phonon coupled to the orbital wave and the Bg symmetry peak is an orbital wave mode coupled
to a Q2 phonon mode via the Jahn-Teller electron-phonon coupling.

DOI: 10.1103/PhysRevB.97.085101

Raman scattering has provided important information on
the quasiparticle excitations in many materials [1]. In strongly
correlated electron systems like Mott insulators, identifying
the signatures of the nonphonon quasiparticles in the Raman
scattering spectra has been attracting long-lasting attentions
[1,2]. In a Mott insulator with a single band, the magnetic waves
are the renowned nonphonon quasiparticle excitations in the
Raman spectra [2]. However, in Mott insulators with multiple
active orbitals and the orbital-ordering like LaMnO3, there can
be quasiparticles involving the change of orbital state and not
involving the spin excitations. Theoretical studies predicted
that the orbital wave can appear in such an environment
[3–5] and that it may be detected by the Raman scattering
measurement [5].

Study of the Raman scattering spectrum of LaMnO3 has
revived since the observation of the weak excitations around
150 meV [6]. The peaks were claimed to be due to the orbital
wave modes. However, other researchers suspected that the
weak signal is due to the first overtones of fundamental phonon
modes [7]. Until recently, the 150-meV signals remained
controversial despite the accumulation of precise spectroscopic
studies for high-quality crystals of LaMnO3 and its relatives
[8–11]. The frequency of the orbital wave is linked with the
parameters such as the exchange energy and the Jahn-Teller
coupling constant, which cannot be directly determined from
experiments. The analysis based only on the spectral peak
positions in a short frequency range can result in the ambiguous
assignments. Careful theoretical analysis based on various
experimental facts including the polarization dependence of
scattering cross section is necessary for the identification of
the scattering peaks and the accurate assignments. Thus far,
such work has been rarely performed.

In this paper, we present the simulation results of
Raman scattering cross-section spectra for an ideal LaMnO3

in the A-type ferromagnetic ground state. We calculated the
polarization dependence of the fundamental modes and the
first overtone modes and we compared the calculated Raman
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spectra with previous experiments. From the comparison, we
tried to identify the origins of the peaks. In particular, we focus
on the origin of the peak around 611 cm−1.

We adopted Brink’s Hamiltonian to calculate the energy
dispersion curve and the Raman scattering spectra [12]:

H = Horb + He−ph + Hph. (1)

We assumed that the spin degree of freedom is frozen. The
first term describes the superexchange interaction between the
orbitals:

Horb = J
∑

〈ij〉�
T �

i T �
j , (2)

where the sum is over neighboring sites 〈ij 〉 along the � = a,b

crystal axis and J is exchange coupling. The orbital operators
T �

i can be expressed in terms of the pseudo-spin-operator (τ ):
T

a/b
i = (τ z

i ± √
3τ x

i )/2, and the plus (minus) sign corresponds
to the a (b) axis. The second term of Eq. (1) represents the
Jahn-Teller electron-phonon coupling:

He−ph = g
∑

i

(
τ z
i Q3i + τ x

i Q2i

)
, (3)

where g is the electron-phonon coupling constant and
Q2/3,i(= a2/3,i

† + a2/3,i) are phonon operators of Jahn-Teller
modes with eg symmetry. The third term of Eq. (1) is the
phonon contribution:

Hph = ω0

∑

i

(a2i
†a2i + a3i

†a3i) + ω1

∑

〈ij〉�
Q�

i Q�
j , (4)

where ω0 is the local Jahn-Teller phonon frequency for the Q2

and Q3 modes. Here, ω1 is the nearest-neighbor coupling be-
tween the phonons. The Q

a/b
i [= (Q3i ± √

3Q2i)/2] represents
the coupled Jahn-Teller mode along a crystal axis, a or b.

We assumed antiferromagnetic-ordered four Mn-ion eg

orbitals forming two sublattices (A and B) for the unit cell as
shown in the inset of Fig. 1(a). To describe the orbital part, we
introduce an operator, τ̃ iλ = (τ̃ z

iλ,τ̃
x
iλ) = (τ z

i cos θλ − τ x
i sinθλ,

τ x
i cos θλ + τ z

i sinθλ), for the λ sublattice. We rewrite the
localized pseudo-spin-operators in terms of Holstein Boson
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FIG. 1. Raman scattering cross-section spectra for different light polarizations. (a) The spectrum for the (xx) polarization. Inset shows the
unit cell lattice, orbital configurations, and the polarization direction with respect to the lattice. (b) The spectrum for the (x ′x ′) polarization.
Left inset shows the polarization dependence of the peak at 1.1ω0 [solid line: (xx), dashed line (x ′x ′), and dotted line (x ′y ′)]. Right inset shows
the polarization dependence of the three peaks near �/ω0 = 2.0. (c) The spectrum for the (x ′y ′) polarization. Left inset shows the polarization
dependence of the peak at 0.9ω0 [solid line: (xx), dashed line (x ′x ′), and dotted line (x ′y ′)]. Right inset compares the energy of the peaks near
�/ω0 = 1.0 with that of the three peaks near �/ω0 = 2.0.

operators (a):

τ̃ x
i = (a1i + a1i

†)/2, τ̃ z
i = (1/2 − a1i

†a1i). (5)

We assumed that the angle on each sublattice is θA/B = ±θ .
After inserting the expansion into the full Hamiltonian, Eq. (1)
becomes

H = ω
∑

i

a1i
†a1i + J/4

∑

〈ij〉
τ̃ x
i τ̃ x

j

+ g
∑

i

τ̃ x
i [cos(θ )Q2i ± sin(θ )Q3i]

+ω0

∑

i

(a2i
†a2i + a3i

†a3i) + ω1

∑

〈ij〉�
Q�

i Q�
j . (6)

The first term in Eq. (6) is the phenomenological term
representing the localized orbiton. Here, ω includes the su-
perexchange interaction and the static Jahn-Teller deforma-
tion energy. We assumed that ω is equal to ω0 (the bare
phonon frequency of Jahn-Teller phonon Q2 mode) under
the influence of the strong Jahn-Teller-type electron-phonon
coupling. Therefore, the local orbital motion should be locked
to the local lattice motion. The plus (minus) sign is for A (B)
sublattice. In Eq. (6) we collected only the quadratic terms
of boson operators for simplicity [13]. The quadratic Hamil-
tonian is diagonalized by the Bogoliubov transformation:

H̃ = ∑
μ k Eμ(k) αμ

†(k)αμ(k). The energy eigenvalues of the
transformed Hamiltonian are shown in Fig. 2.

Next, we determined the Raman scattering cross section
based on the calculation of the superexchange interaction
between neighboring orbital operators by using the Shastry-
Shraiman method [14]:

R(�) =
∑

f

δ(� − (Ef − Eg))

×
∣∣∣∣∣∣

∑

〈ij〉�
ef�ei�〈f |(1/2 − T �

i

)(
1/2 − T �

j

)|g〉
∣∣∣∣∣∣

2

. (7)

Here, � (= ωi − ωf ) is the Raman scattering energy shift.
Eg(f ) represents the energy of the ground (final) state and ef (i)�

is the scattering (incident) photon polarization vector along
the � axis.

We obtained the fundamental mode-scattering cross section
by collecting the first-order terms of Holstein bosons:

R1(�) =
∑

f

δ(� − (Ef − Eg))

×
∣∣∣∣∣
∑

�

ef�ei�〈f |
∑

i

ρ�
i(a1i + a1i

†)|g〉
∣∣∣∣∣

2

, (8)
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FIG. 2. Dispersion curves [(a), (d), and (g)], the Raman scattering spectra near �/ω0 = 1.0, i.e., the fundamental mode spectra [(b), (e),
and (h)], and the Raman scattering spectra near �/ω0 = 2.0, i.e, the first overtone mode spectra [(c), (f), and (i)] for different energy parameters.
The energy parameters are J/ω0 = 0.5, g/ω0 = 0, and ω1/ω0 = 0 for (a), (b), and (c), respectively. J/ω0 = 0.5, g/ω0 = 0.2, and ω1/ω0 = 0
for (d), (e), and (f), respectively. J/ω0 = 0.5, g/ω0 = 0.2, and ω1/ω0 = −0.1 for (g), (h), and (i), respectively.

with ρa/b
i = ∓cos[π/6 ∓ θλ](1 − sin[π/6 ± θλ]) if i ∈ λ

(λ = A or B) sublattice. After the Bogoliubov transformation,
Eq. (8) becomes

∑

μ

δ(� − Eμ(0))

∣∣∣∣∣
∑

ν

ef�ei�ρ�
ν[Vνμ(0) + Wνμ

∗(0)]

∣∣∣∣∣

2

. (9)

Here, Vνμ(k) and Wνμ(k) are Bogoliubov transformation
coefficients connecting the boson operator for the νth orbiton
in a unit cell to that of the μth eigenmode with the energy
Eμ(k) as

a1ν
†(k) = Vνμ(k)αμ

†(k) + Wνμ(k)αμ(−k). (10)

We obtain the scattering cross section of the overtone mode
by collecting the second-order terms of Holstein bosons:

R2(�) =
∑

f

δ[�−(Ef −Eg)]

∣∣∣∣∣∣

∑

�

ef�ei�〈f |4
∑

i

σ�
ia1i

†a1i + ρ
∑

ij�

(a1i + a1i
†)(a1j + a1j

†)|g〉
∣∣∣∣∣∣

2

, (11)

with ρ = cos[π
6 − θ ]cos[π

6 + θ ], and σa/b
i = sin[π/6 ∓ θλ](1 − sin[π/6 ± θλ]) if i ∈ λ (λ = A or B) sublattice. By the

Bogoliubov transformation, Eq. (11) becomes

∼
∑

kμμ′
δ[� − Eμ(k) − Eμ′(−k)]

∣∣∣∣∣∣

∑

〈νν ′〉�
ef�ei�ρ[Vνμ(k) + Wνμ

∗(k)][Vν ′μ′(−k) + Wν ′μ′ ∗(−k)][1 + cos(k�)]

+ 4
∑

ν

ef�ei�σ�
νVνμ(k)Wνμ′ ∗(−k)

∣∣∣∣∣

2

. (12)

We chose 20×20 lattice cells for the numerical calculations. Figure 1 shows the calculation results for Raman scat-
tering cross sections at the � point for the fundamental mode. Figures 1(a)–1(c) show the cases where the polarization
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of incident light and scattered light is (x ′x ′), (x ′y ′), and (xx),
respectively. As shown in the inset in Fig. 1(a), x and y are the
two orthogonal bonding directions of Mn–O–Mn, and x ′ and
y ′ are diagonal directions, i.e., x + y = x ′(x − y = y ′). In the
(xy) polarization, no modes are active.

Before looking at the calculation results, we reviewed some
of the points observed in previous experiments: (1) when the
polarization of the incident light is the same as the polarization
of the scattered light and the direction of the electric field is
parallel to the crystal axis [for example, (xx) polarization],
Raman experiments using incident light with a wavelength of
632 nm show two strong peaks at 496 and 611 cm−1. The peak
at 611 cm−1 is more intense than the peak at 496 cm−1 [8]. (2)
The peak at 496 cm−1 has Ag polarization symmetry and the
peak at 611 cm−1 has Bg polarization symmetry [8]. (3) The
peak center frequency is slightly different (∼5 cm−1) depend-
ing on the polarizations. For example, at 5 K, the peak center
frequency near 496 cm−1 is 500 cm−1 for the (x′x′) polarization
and 495 cm−1 for (x ′y ′) polarization [11]. (4) There are three
peaks near 1200 cm−1 whose frequencies are approximately
twice as large as 496 and 611 cm−1 [6,8,11]. (5) The intensity
of the three peaks near 1200 cm−1 is approximately 20% of the
intensity of the two peaks near 550 cm−1 [8]. Our calculation
results in Fig. 1 reproduce all of these experimental results.

The energy parameters used to obtain Fig. 1 are ω = ω0,

ω1 = −0.1ω0, J = 0.5ω0, g = 0.2ω0, and θ = π/2. If assum-
ing that ω0 is 557 cm−1, the calculated spectra are consistent
with all the five experimental observations listed in the previous
paragraph. In Fig. 1(a), there are two strong peaks in the
vicinity of �/ω0 = 1 for (xx) polarization, one at 0.9ω0 and
the other at 1.1ω0 (� is the measurement frequency). The
peak intensity at 1.1ω0 is more intense than that at 0.9ω0.
Figures 1(b) and 1(c) show the (x ′x ′) polarization and (x ′y ′)
polarization, respectively. The (x ′x ′) polarization spectrum
shows a 0.9ω0 peak while the (x ′y ′) polarization spectrum
shows a 1.1ω0 peak. The 0.9ω0 peak has Ag symmetry and
the 1.1ω0 peak has Bg symmetry, which agrees well with the
experiment. However, as can be seen from the experimental
results, the symmetry of the two peaks is not perfect.

The (x ′x ′) polarization shows a weak peak at 1.1ω0 and
the (x ′y ′) polarization shows a weak peak at 0.9ω0. The cause
of the incomplete polarization dependence of the experiment
could be an incomplete polarizer or an imperfection of the
sample such as crystal twinning. However, our results suggest
that even in the ideal experimental situation (ideal crystal and
ideal polarizers), the 1.1ω0 peak appears in Ag symmetry and
the 0.9ω0 peak appears in Bg symmetry if the Jahn-Teller
electron-phonon coupling value is larger than 0. The larger the
g value, the greater the intensity of the forbidden symmetry
peak. The left inset of Fig. 1(b) and the left inset of Fig. 1(c)
show the polarization dependence of the 1.1ω0 peak and 0.9ω0

peak, respectively. It can be seen that the center frequency
of the peak is slightly different (∼0.01ω0 corresponding to
5.5 cm−1) for each polarized light, and it is consistent with the
experimental results [11].

The calculation shows three relatively weak peaks at
�/ω0 = 1.8, 2, and 2.2. These are first-overtone modes. The
scattering intensities of the overtone peaks are almost 20%
of the fundamental modes. The polarization dependence of
the overtone modes is different from that of the fundamental

modes. The intensity of (x ′x ′) polarization is slightly weaker
than that of (xx). These results are consistent with the exper-
iments conducted with a 632-nm laser [8,11]. This is because
our calculation assumes the Mott-Hubbard transition at 2 eV
as the intermediate-state excitation. As shown in the right
inset of Fig. 1(c), the calculation shows that the frequencies
of the high-energy Raman band cannot be reproduced by
simple addition or multiplication of the fundamental mode
frequencies. This is also consistent with the experiment [6].

We investigated the dispersion of energy eigenmodes Eμ(k)
for several different energy parameters to understand the origin
of the Raman mode peaks. The important parameters are J ,
g, and ω1. Figure 2 shows how these three parameters play
a role in the scattering cross section. Figures 2(a)–2(c) show
the results when J = 0.5ω0, g = 0, and ω1 = 0. The straight
line at Eμ(k)/ω0 = 1 represents the dispersion of the Jahn-
Teller phonon. The curved lines correspond to the orbital wave
modes. J is responsible for the energy bandwidth of the orbiton
dispersion. We show the fundamental mode scattering (near
�/ω0 = 1.0) and first overtone scattering (near �/ω0 = 2.0)
signals in Figs. 2(b) and 2(c), respectively. Dispersion curve
analysis shows that the peak at �/ω0 = 0.9 in Fig. 2(b) is a
pure orbiton with Ag symmetry, the peak at �/ω0 = 1.1 is
a pure orbiton with Bg symmetry. Both peaks are generated
by the superexchange-type interaction between neighboring
Mn eg orbitals. These peaks correspond to the orbital wave or
orbiton proposed by Saitoh et al. [6]. There is a broad single
peak around �/ω0 = 2.0 and the intensities of those peaks are
slightly different for different polarizations.

Figures 2(d)–2(f) show the results for J =0.5ω0, g=0.2ω0,
and ω1 = 0. Here, g indicates the phonon-orbital coupling by
the Jahn-Teller mechanism. The dispersion curves shown in
Fig. 2(a) are split and the energy difference between the main
curves corresponds to g. The low-energy [Eμ(k) /ω0 < 1]
curves in the dispersion, correspond primarily to the Q2-mode
Jahn-Teller phonon while the straight line at Eμ(k) /ω0 = 1
represents the dispersion of the Q3 mode phonon. The curve
at high energy [Eμ(k) /ω0 > 1] corresponds to the orbital
wave mode. In Fig. 2(e), four scattering peaks appear near
�/ω0 = 1.0. Two more intense peaks are main peaks and
the weaker peaks are the satellites. Phonon and orbiton
characteristics are mixed in the peaks and the intensities are
similar at different polarizations. In Fig. 2(f), three peaks
appear near �/ω0 = 2.0 and the intensities at different
polarizations are similar. Any change in g affects the energy
difference of the two peaks and the intensity ratio between
fundamental and overtone peaks. We chose the g value to meet
the value of 20%—the experimentally observed ratio between
the fundamental modes and the first overtone modes [8].

Figures 2(g)–2(i) show the results for J =0.5ω0, g=0.2ω0,
and ω1 = −0.1ω0, as the same as those of Fig. 1. Here, ω1

represents the phonon-phonon interaction between the local
phonons. The shape of the curve is very complicated due to
the nonzero value of ω1. However, the scattering peaks are not
much different from those of Fig. 2(b), which means that the
Ag symmetry peak is from a phonon and the Bg symmetry peak
is from an orbiton. However, because g is finite, the orbiton
character is mixed in the Ag symmetry peak and that of the
phonon is mixed in the Bg symmetry peak. The peak observed
at 611 cm−1 in the experiment is, therefore, the orbiton coupled
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to the phonon through the Jahn-Teller mechanism. Among the
three peaks near �/ω0 = 2.0, the highest-energy peaks are due
to a two-orbiton excitation. Middle energy peaks are due to a
Q3 phonon+orbiton excitation. The lowest-energy peak is due
to a two-Q2-phonon excitation.

The last puzzle is the intensity change of each peak de-
pending on the wavelength of incident light. According to
the experiment of Krüger et al., when (xx) polarized light
with a wavelength of 632 nm is incident, peaks at 496 and
611 cm−1 are clearly observed [8]. However, the incident light
with a wavelength of about 276 nm still results in the sharp
peak at 496 cm−1, but the incident light does not excite the
peak at 611 cm−1 [8]. We cannot explain the light wavelength
dependence, if we assign the peak at 611 cm−1 as a simple
Mn–O bond stretching phonon mode.

The absorption (or the dielectric function) spectrum of
LaMnO3 shows a weak and a broad peak near 2 eV (about
620 nm) and a much stronger absorption above approximately
3 eV (approximately 410 nm) [15,16]. The 2-eV absorption
is mainly due to the Mn 3d → Mn 3d interatomic transition,
whereas the absorption above 3 eV is mainly due to the
O 2p → Mn 3d transition [15]. When the incident photon
energy is larger than 3 eV, the O 2p → Mn 3d charge-transfer
transition is dominant, and the Raman spectra is dominated by
the Franck-Condon process [17]. An incident photon (>3 eV)
excites an electron in the initial state of O 2p orbital [Fig. 3(a)]
and the electron transits to the neighboring Mn 3d orbital
leaving a hole in the O 2p orbital. A hole-doublon state is
formed [Fig. 3(b)] and the hole doublon becomes localized
because the electron cannot move further to the neighboring
Mn eg orbital. Because of the orbital ordering, the most
probable path for the excited electron is the return path to the
initial O 2p orbital and finally a Mn-O phonon is generated
[Fig. 3(c)]. Even after the transition process is complete, the
long-range collective orbital configuration cannot be changed
very much. As a result, the orbiton cannot be excited, while
the Mn-O phonon can be excited. This model explains why
the 611-cm−1 peak is excited by 632-nm light but not by
276-nm light. The 611-cm−1 peak is excited only when the
d-d transition occurs.

FIG. 3. A schematic diagram for the photon absorption and the
Raman mode generation by UV photons of which energy is larger
than approximately 3 eV. (a) Initial state: photon absorption causes the
electron transition from oxygen ions to Mn ion. Because of the orbital
shape, the electron at the specific oxygen can excite at this energy.
(b) Intermediate state: the excited electrons move back to the original
sites. Scattered photons are generated. (c) Final state: generation of
a Raman mode in which energy corresponds to the energy difference
between the absorbed photon and the scattered photon. This phonon
mode is not coupled to the orbital wave.

In conclusion, our calculations show that the peak at
611 cm−1 is an orbiton mode coupled with a phonon. We
found that the three peaks near 1200 cm−1 (approximately
150 meV), which have been assigned as orbitons in previous
studies, do not arise from single orbitons, but are a two-phonon
peak (lowest frequency), a phonon-orbiton synthesized peak
(middle frequency), and a two-orbiton peak (phonon-coupled,
highest frequency).
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