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Rectifying full-counting statistics in a spin Seebeck engine
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In terms of the nonequilibrium Green’s function framework, we formulate the full-counting statistics of con-
jugate thermal spin transport in a spin Seebeck engine, which is made by a metal-ferromagnet insulator interface
driven by a temperature bias. We obtain general expressions of scaled cumulant generating functions of both heat
and spin currents that hold special fluctuation symmetry relations, and demonstrate intriguing properties, such as
rectification and negative differential effects of high-order fluctuations of thermal excited spin current, maximum
output spin power, and efficiency. The transport and noise depend on the strongly fluctuating electron density of
states at the interface. The results are relevant for designing an efficient spin Seebeck engine and can broaden our
view in nonequilibrium thermodynamics and the nonlinear phenomenon in quantum transport systems.
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Introduction. Spin caloritronics has emerged as a new field
to utilize the excess heat generated in nanodevices to drive
spin currents [1]. Of particular interest is the spin Seebeck
effect (SSE) in magnetic insulators, which generates pure spin
transfer out of the thermal gradient without conducting electron
currents, which opens a new direction to harvest heat in the
absence of Joule heating [2-9].

The pure spin is carried by magnons (quantized spin waves)
that can transfer energy and spin angular momentum. Besides,
magnons have a long lifetime so that they can propagate over
long distances in a ballistic way without being dissipated in
some materials due to low damping [10-12].

Many proposals have been made in exploiting the appli-
cation of magnons, such as energy harvesters [13], diodes
[8,14], transistors [15], and logic devices [16]. In particular,
a two-terminal hybrid system involving both metallic and
magnonic reservoirs has been proposed [7,17]. In such sys-
tems, the propagation of spin waves can be converted to a
spin current in the metallic part and vice versa across the
junction under a temperature bias. It has been pointed out that
a strongly fluctuating electron density of states (DOS) in the
metallic materials is helpful to obtain nontrivial rectification
and negative differential effects [7,8], which suggests that the
quantum dot (QD) structure is a good candidate in achieving
these effects. The reduced dimension of QD can also help to
increase the figure of merit (FOM) and harvest from the waste
heat more efficiently compared to bulk systems when working
as a heat engine [18,19].

So far, rectification and negative differential effects have
only been studied in the context of the mean values of heat
and spin currents. For a nanoscale device, fluctuations and
even higher-order cumulants of currents can be significant and
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play important roles, which could be well described within
the framework of full-counting statistics (FCS) [20-27].
FCS of a physical quantity is encoded in its cumulant
generating function (CGF), which reveals the higher-order
Onsager reciprocity relations [22,28] and the thermodynamic
fluctuation symmetry [21,22,29] as well. It would help us in
better understanding the nonequilibrium thermodynamics and
designing efficient heat harvesters to study the rectification of
higher-order cumulants, fluctuation symmetry, and heat engine
performances for a two-terminal hybrid system involving
both electronic and bosonic reservoirs. An experimental
measurement of the full-counting statistics in a mesoscopic
conductor has been carried recently [30].

In this Rapid Communication, we investigate the rectifica-
tion and negative differential effects of FCS in a spin Seebeck
engine sandwiched between two reservoirs, one electronic and
the other magnonic. We have formulated a framework to obtain
the scaled cumulant generating function (SCGF) of both spin
and heat currents using the nonequilibrium Green’s function
(NEGF), which does not require weak couplings to both reser-
voirs, and treats the interfacial electron-magnon interaction to
second order. The fluctuation symmetry is obtained and the
conditions for realizing rectification and negative differential
effects are discussed. The rectification and negative differential
effects of cumulants and heat engine performances with respect
to temperature reversal are studied in detail.

Model and theoretical formalism. The system is schemati-
cally illustrated in Fig. 1 wherein the left electronic compart-
ment interacts with the right magnonic reservoir. The spin
current can be generated out of a temperature bias AT =
Tr — Tg. The whole system Hamiltonian has contributions
from the electrons, magnons, and the interaction between
them, H = I:Iel + ﬁmag + ﬁem, The electron Hamiltonian Hy
is expressed as

I:Iel = Z Gkaa;gako- (1)
ko
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FIG. 1. Schematic illustration of the spin Seebeck engine made
by an electron-magnon interface. Heat flowing across the system can
induce spin currents due to interfacial electron-magnon coupling.

q
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H,, can incorporate the noninteracting scattering region at the
interface as well. The electronic spin-o chemical potential
is s and their difference is defined as the spin bias with
the form Apy = ) — wy which could be measured by the
inverse spin Hall effect [4]. The Fermi distribution for the
spino 18 frs(€xo) = {explBL(€rs — o)l + 1}_1, with inverse
temperature 8, = 1/(kpTy).

The right insulating magnetic compartment can be de-
scribed by a Heisenberg lattice,

N 1 1
Hpoy = —J Z ESHij + ESFSH + SizSiz |
(i,J)
where §;4 is the localized raising (lowering) spin oper-
ator at site j, S;; is the spin operator in the z direc-

tion, and J denotes the exchange coupling strength. Us-
ing the Holstein-Primakoff transformation [31,32], §;; =

280 = blbjb,. S;— = bl /28 — blb;, ;. = So — blb; with
localized spin length Sy, the spin operators are mapped into
bosonic magnons. At large spin limit [7,13,19], i.e., 25y >
(b];b j)» we have the approximation S; «/2_S0bj and S ~
V/280b . The right magnetic insulator can be approximated by
the free magnon gas [7,8],

Hipag ~ Z fiwgb) b, + const, )
q

after a Fourier transform into the momentum space, where
the dispersion of w, depends on the material details. The
magnonic reservoir obeys the Bose-Einstein distribution
Ng(w) = 1/(ePr® — 1), where the chemical potential of the
magnons is set to zero due to the ferromagnetic insulator
phase considered here [33]. The interfacial electron-magnon
interaction Hamiltonian bears the form [7,32]

Aem ==Y gel¥isviesalyan bl + Helde, —y =0, (3)
kk'q

with the delta function d¢,, ¢, =, ensuring energy and spin
angular momentum conservation. The interaction describes a
magnon-assisted spin flip by absorbing or emitting magnons
with frequency w,. The effect from the electronic DOS is
incorporated in y;,. The electron-magnon interaction strength
g, 1s assumed to be weak and will be treated perturbatively
in getting SCGF. For simplicity, one can assume g, is energy
independent with g, = g.

Spin (s) and heat (k) current operators are defined as the
change rate of the electronic spin in the left compartment
and heat in the right reservoir, respectively, with the forms

Is(t) = —d, Ny, I, (t) = —d, Hg, and d, being the total differ-
ential with respect to time in the Heisenberg picture. Here,
Ns = %Zk (aliﬂki — aliﬂkT) is the operator of the number
of spins in the left compartment and Hy = 2 hwqb;bq.
Using the random phase approximation (RPA), that is, treating
the interaction strength g between the electrons and magnon
modes perturbatively to the second order [23], we could obtain
SCGEF for spin and heat current (with counting fields A, and
M) expressed as (see Supplemental Material [34] for details
of the derivation)

G(As,hp) = —/d—wln{l—/d—EA(E_,E+)
21 21
X [(eFH O — 1) fi 4 (Eq ED)[NR(@) + 1]
+ (e7 TRk 1>fT9¢<E_,E+)NR(w>]}, 4)

with
Jr(w)Jp 4 (E_)JL (EL)
[Zh(@) + Fr(@)]|”

A(E_.E;) = &)

This is our first main result. Here, we have
defined  fi (E_,Ey) = fie(EO)l — fr (E4)] and
S1or(BEx  E2) = [ (EDIL — fra(E-)] with Ey =
Exw/2. J,(E)=2ng) , |y1«,|28(E — €iy) 1S the spin-o
electronic spectral density. The retarded magnonic self-energy
due to the dissipation is expressed as X, = —iJg(w)/2. The
expression of the retarded electron-hole propagator is

dwy F~ — F<
27 w—w; +i0t

, (6)

with

dE
F (w) = —i / E[J¢(E—)J¢(E+)f¢—>¢(E+7E—)],

dE
F () = —i / TN EDIU(E) fro (B E).

The physical picture of SCGF is clear. The first contribution
of Eq. (4) describes that the spin-down electrons with energy
E + hw/2 flip to the spin-up states with energy E — hiw/2
by emitting a magnon with energy /iw into the magnonic
reservoir. The second one describes a reverse process where the
spin-up electrons with energy E — fiw/2 flip to the spin-down
states with energy E + fiw/2 via absorbing a magnon carrying
energy fiw.

Applying the identity fy_ ((E_,Ey) = ePr@=am)f
(EL,E_) in Eq. (4), we can obtain the following fluctuation
symmetry relation,

Ghg,hp) = G(=Ag —ifrApsg,—ry +i(Br — Br)). (1)

The fluctuation relation is generalized in the fermion-boson
hybrid junction. This is our second main result. The spin
current in the electronic reservoir and heat current in the
magnonic reservoir could be derived by taking the first-order
derivative of G({A}) with respect to A, and X,, respectively,
at Ay =X, =0, that is, I, = dG{A})/0(iAs/q)ln,=r,=0-
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Then,
d dE
Lo = / e / () AGE - ED sy (B4 E-)
< (Ne@) + 1) — fro((ELEDNe@]), ()

where v = 0 for spin current Iy, and v = 1 for heat current 7j,.

If Jio(E) were flat near the Fermi energy, A(E_,E.)
inside the integral in Eq. (4) would be treated as a con-
stant. By applying the equality [ 4£ f|  \(E; E_) = (hw —
Aps)Np(howo — Apg) and assuming Apy — 0, SCGF would
be the same by reversing the signs of counting fields and
exchanging the temperatures of two reservoirs, G(As,A;) =
G(—Ag,—Ap; Ty <> Tg). This implies that the cumulants of
the currents would be symmetric by reversing the temperature
gradient AT for the system with a constant electron DOS.
This is usually satisfied in the pure fermionic system or
bosonic system, but is broken when DOS J;,(FE) is strongly
fluctuating [see Eq. (10) for small I, ] in the electron-magnon
hybrid system discussed here. Therefore, a strongly fluctuating
electron DOS is essential to have asymmetric behavior with
respect to reversing the temperature gradient and rectifying
FCS and the heat engine performances of the spin Seebeck
engine. This is our third main result.

Numerical results. In order to get a fluctuating electron
DOS, one can, for example, insert a QD between the electronic
and magnonic reservoir. The Hamiltonian of the electronic part
is then expressed as

I:Iel = Zead;do + Z[Ekac]tgcka + (tkacjt(,da + H~C-)],
o ko

with the first term describing QD, the second term the elec-
tronic reservoir, and the rest for their coupling. €, are the two
energy levels inside QD. We consider a large quantum dot so
that the Coulomb interaction effect can be neglected. €;, and
1 are the energy level of state ko in the electronic reservoir
and its coupling strength with the spin o in QD. The electron
Hamiltonian H,; with QD can be diagonalized and rewritten
in the form of Eq. (1) through the linear transformation [7,35]

da = Z YkoQkos Cko = Z Nkk'c Ak'o 5 (9)

k ¥
where the dimensionless coefficients are

. ko = S — tko Vi'o
Yio = —Gka e % Nik'sc = Okk —Eka ~ern 000
with the self-energy function Ty, =Y 17, /(ex — €x +
i0"). The electronic spectral densities in the left compartment
(electronic reservoir plus QD) are Lorentzian shaped with the
form [35]

Jio(E) =gl [[(E — €,)* + T2 /4], (10)

where the electronic  coupling strength Iy, =
2r Yy, |txo|>6(E — €15) is assumed energy independent.
Without loss of generality, the magnonic reservoir spectral
function is considered to be Ohmic and is expressed as
Jr(@) = mawe™®/*, where o describes the strength of
dissipation into the magnonic reservoir and w, is the cutoff
frequency [34,36].

During the numerical calculation, the coupling strengths for
the spin-up and spin-down electrons between the electronic
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FIG. 2. (a) Spin current I, (b) spin current noise ({(/,)*)),
(c) Fano factor F,, and (d) the renormalized third-order spin current
cumulant F3 = (((I,)*))/(l,) as a function of AT/(2T,) by vary-
ing €;: (i) €, =15 meV, €; = 10 meV; (ii) €, =5 meV, ¢, =0;
(iii) e, =3 meV, ¢4 = —2meV; (iv) e, = —20meV, e, = —25 meV.
The third-order spin current cumulant ({(1,)*)) is plotted as an inset
in (d). ' = 6 meV.

reservoir and QD are assumed to be energy independent and
equal, i.e., I'y =Ty =T'. The energy level of spin down is
set to be larger than that of spin up in the QD, €, > €. The
dimensionless dissipation strength and the cutoff frequency
of the magnonic reservoir are chosen as « = 0.2, and w, =
80 meV, respectively. The temperatures of the reservoirs are
setas Ty g = Typ = AT /2 with Ty = 300 K, so that when the
normalized temperature gradient AT /(2T,) < 0, the left lead
is cooler. We denote the average of spin-up and spin-down
chemical potentials as o = (pt4 + 14y)/2. The spin currents
are displayed in atomic units.

In Fig. 2, we plot the spin current I; [Fig. 2(a)], spin cur-
rent noise (((/;)?)) [Fig. 2(b)], Fano factor F, = (((I,)*))/I
[Fig. 2(c)], and the renormalized third-order spin current
cumulant F3 = (((I,)3))/(I,) [Fig. 2(d)] as a function of the
normalized temperature gradient AT /(27y) by varying €,. The
third-order spin current cumulant {((/;)*)) is plotted as an inset
in Fig. 2(d). The spin-up and spin-down chemical potentials
are both set to zero, i.e., w4 = pu = 0. The rectification effect
where the spin currents are asymmetric with respect to temper-
ature gradient reversal can be clearly identified in Fig. 2. In the
cases where the two levels of QD are either both above or below
the chemical potential [, > €4 > Oincase (i)or0 > €, > €4
in case (iv) in Fig. 2], we could observe the negative differential
SSE that the spin currents decrease or even vanish with
increasing temperature gradient AT . This could be understood
as follows: When the right reservoir is hotter, i.e., AT <0,
the process where the spin-up electron absorbs energy to flip
to the spin-down state dominates. Near the linear response
regime, increasing the magnitude of the temperature gradient
which corresponds to decreasing 77, leads to an increased heat
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FIG. 3. (a) Spin current, and (b) spin current noise as a function
of AT/(2Ty), by varying electronic coupling strength I", with ¢; =
30 meV and €, = 35 meV.

current to assist the spin-flip process. When the two levels are
both above (below) the chemical potential, the electrons on
these levels can be depleted (occupied) by further decreasing
T;. Compared to the increasing Ng(w), fr- | (E_,EL) =
Sir(EO[1 — fr (E4)] is severely suppressed and so is the
flipping process from the spin-up to the spin-down state [7].
Thus, the essential ingredient to get negative differential SSE
is that the two levels are on one side of the chemical potential.
We can also observe from Fig. 2(b) that spin current noise
is asymmetric with respect to the temperature gradient which
signifies rectification as well. If J;,(FE) is flat near ¢,, spin
current noise is an even function of AT, which is not satisfied
in Fig. 2(b). For cases (ii) and (iii), noise is monotonic, while
for cases (i) and (iv), a decrease in noise with increasing the
magnitude of AT [AT/(2Ty) < —0.5] is due to the severely
suppressed number of electrons involved in the spin flip. One
can observe that the Fano factors shown in Fig. 2(c) are
relatively symmetric and almost the same for all cases, except
in the region AT /(2Ty) — —1. The asymmetries of ({(/;)?))
and F3 with respect to the temperature gradient reversal can be
clearly identified. We can even observe the negative differential
effect of (((I,)%)) in cases (ii) and (iii), which is absent for
(Is). Due to the level broadening in the electronic reservoir,
electrons with energy levels above (below) the chemical
potential can be partially depleted (occupied) by decreasing
T.. This demonstrates that the third-order cumulant is more
sensitive than the spin current in the negative differential effect.

The spin currents and spin current noise versus AT /(27T,) by
varying the electronic coupling strength I' with €4 = 30 meV
and €, = 35meV are showninFigs. 3(a) and 3(b), respectively.
With increasing I', the spin current increases first and then
decreases. When I' is very small, I' & 0.2 meV, the electronic
spectral density is quite small so that the spin flip is limited
by I' and the spin current will increase with increasing I.
However, when I' is large, increasing I" reduces the spin current
because of the level broadening. The negative differential SSE
disappears once I is too large, since the electron DOS becomes
flatter near €, with increasing I'. Spin current noise is getting
symmetric with increasing I' due to electron DOS flattening,
and this holds as well for the case of €, > 0 > €, which is not
shown here.

We now discuss the device working as a thermoelectric
engine with the output spin power P = |I; Ap]|. Since the spin
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FIG. 4. (a) Maximum output spin power Pyp, and (b) efficiency
nmp at maximum power as a function of AT /(27) by varying 1o with
€y =30meV, €, =35meV, and I' =4 meV.

current does not generate heat, the efficiency should be defined
asn = P/|I;]. When AT = T;, — T < 0, heat current flows
from the right reservoir to drive the spin current, and the heat
current calculated from Eq. (8) is negative. One should note
that the spin bias which is defined as Ap; =y — u4 should
be chosen as positive Ap; > 0 under AT < 0, otherwise the
device works as an unphysical dud engine where the output
spin power heats both reservoirs. In the case of AT > 0, i.e.,
T, > Tg, the spin bias Au; < 0.

For a heat engine, maximum output power and maximum
efficiency cannot be satisfied at the same time. One usually
cares about the efficiency nyp when the system has a maximum
power Pyp or an output power under maximum efficiency at
a given AT [37]. In Fig. 4, we plot the maximum output spin
power Pyp, and efficiency nyp at maximum power as a func-
tion of AT /(2Ty) by varying the average chemical potential
to. For the case of o = 32.5 meV, where p is between €4
and €, Pyp would be relatively symmetric due to the different
asymmetries of spin current and spin bias at maximum power
[34]. nmp for all three cases is asymmetric with respect to
the temperature reversal due to the rectification effect of the
heat current, which is the denominator in calculating efficiency.
When g is above or below both levels €, of the QD, we can
observe the negative differential effect of both Pyp and nyp,
which is also due to the severely decreased electron number
near €, with decreasing 7;.

Conclusion. In this Rapid Communication, we have uncov-
ered the rectification and negative differential effects of FCS
and heat engine performances in an electron-magnon diode
under a temperature gradient. The SCGF of spin and heat
flow of the system were obtained in the framework of NEGF.
Spin and heat current expressions were derived and fluctuation
symmetry was verified from the SCGF. We verified that the
strongly fluctuating electron DOS induced by the QD is crucial
to get these intriguing effects. In principle, multiple QDs can
be sandwiched between metallic and magnonic reservoirs to
form multiple transport channels in parallel to enhance trans-
port. The hybrid two-terminal setup involving both electronic
and bosonic reservoirs exhibits a perfect testing ground for
nontrivial phenomena in nonequilibrium thermodynamics.
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