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We introduce the concept of plasmonic parametric resonance (PPR) as a novel way to amplify high angular
momentum plasmonic modes of nanoparticles by means of a simple uniform optical pump. In analogy with
parametric resonance in dynamical systems, PPR originates from the temporal modulation of one of the parameters
governing the evolution of the state of the system. As opposed to conventional localized surface plasmon
resonances (LSPR), we show that in principle any plasmonic mode of arbitrarily high order is accessible by
PPR with a spatially uniform optical pump. Moreover, in contradistinction with other mechanisms of plasmonic
amplification, the coherent nature of PPR lends itself to a more straightforward experimental detection approach.
The threshold conditions for PPR are analytically derived. Schemes of experimental realization and detection are
also discussed.
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Localized surface plasmons (LSPs) are nonpropagating
coherent oscillations of free carriers confined in plasmonic
particles [1]. These modes can be externally excited by
photonic or electronic scattering [2], leading to strongly lo-
calized electric fields in proximity of the particle’s surfaces.
An enhanced optical response is obtained when LSPs are
resonantly excited by an incident field at the characteristic
frequency of the dipolar eigenmode. In addition to their dipolar
response plasmonic particles, in general, they support an infi-
nite discrete set of plasmonic resonances [3,4] associated with
high electromagnetic angular momentum states. In the simple
case of a plasmonic nanosphere with frequency dispersive
permittivity ε1(ω) embedded in a background medium with
constant permittivity ε2, for a resonance of order n � 1 there
are 2n + 1 degenerate angular momentum states with complex
frequency ωn satisfying the condition ε1(ωn) = −(1 + n)ε2/n.
For n � 1 the eigenmodes tend to occur for ε1(ωn�1) ∼ −ε2.
The increased modal density for ε1 ∼ −ε2 is not exclusive
to spherical particles but is rather a general feature of all
plasmonic structures [5]. Accessing such a spectrally dense
set of tightly bound resonant modes would lead to enhanced
nonlinear light-matter interactions on the nanoscale with ap-
plications ranging from sensing [6,7] and Raman spectroscopy
[8,9] to near-field nonlinear optics [10,11], imaging [12],
nanomanipulation [13,14], as well as for the realization of
optical metamaterials [15].

The efficiency with which such resonances can be excited by
an external incident field depends upon the spatial and spectral
overlaps between the excitation field and the specific plasmonic
mode, or in other words, on how closely the conditions of en-
ergy and angular momentum conservation are met. For deeply
subwavelength plasmonic particles only the lowest-order mode
of electric dipolar nature is efficiently coupled to, and excited
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by, radiation states. The higher-order eigenmodes tend to be
subradiant, and by reciprocity they are nearly decoupled from
free-space propagating fields. Therefore, exciting such higher-
order modes requires either sophisticated near-field scattering
techniques [16] or the use of active media to promote surface-
plasmon amplification by stimulated emission of radiation
(SPASER) [17]. Just as challenging is the optical detection
of such modes due to their nearly nonradiating nature.

The aforementioned limitations of LSP are largely depen-
dent upon the optical excitation mechanism. To overcome
these limitations we present an alternative approach to deliver
energy to the free carriers of a plasmonic nanoparticle by
introducing a different form of LSP resonance: the plasmonic
parametric resonance (PPR). PPR originates from the temporal
modulation of one of the parameters governing the evolution
of the state of the system. In this Rapid Communication we
outline the theory of PPR in comparison with conventional
LSP resonance. In particular, we show that in principle any
plasmonic mode is accessible by PPR using a pump field
that is spatially uniform thereby overcoming the difficulty of
matching the spatial profile of high-angular momentum modes.
An example of a possible experimental realization is discussed
and analyzed both theoretically and numerically, showing that
PPR can be achieved and observed in a realistic system.

For the purpose of illustration of PPR we consider a system
which is amenable to a closed-form solution: a subwavelength
plasmonic sphere in a homogeneous dielectric background
medium. More complex configurations would display qualita-
tively similar phenomenology. We consider a sphere of radius
R and relative permittivity ε1 (medium 1), embedded in a
uniform dielectric medium ε2 (medium 2). The radius R is
assumed to be much smaller than the free-space wavelength as-
sociated with any of the plasmonic eigenmodes of interest such
that a quasistatic approach is applicable for determining the
spatial distribution of the electromagnetic field. The dispersion
of ε2 is neglected. Medium 1 is assumed to follow a Drude-like
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frequency-domain dispersion ε1(ω) = ε∞ − ω2
pl/(ω2 + i ω γ )

with plasma frequency ωpl , collision frequency γ , and a
nondispersive term accounting for high-frequency spectral
features ε∞. The dispersive term in the ε1(ω) expression is
associated with the equation of motion for the free-carrier
polarization density P1(r,t) within medium 1,

∂2
t P1 + γtot ∂tP1 = ω2

plε0E1. (1)

In Eq. (1) the damping rate γtot is corrected to include
radiation effects in addition to the collision frequency γ , i.e.,
γtot = γ + γrad. E1 is the electric field in the region occupied
by medium 1.

In the quasistatic limit the potential of an electric multipole
eigenmode of order (n,m) can be expressed in terms of even and
odd spherical harmonics Y

(e/o)
n,m (φ,θ ). Under these assumptions

the polarization density profile P1(r,t) can be expressed as
a superposition of spherical harmonics with time-varying
coefficients P

(e/o)
n,m (t),

P1(r,t) =
∞∑

n=0

n∑
m=0

∑
j=e,o

P (j )
n,m(t)∇

[
rn

Rn−1
Y (j )

n,m(θ,φ)

]
. (2)

Exploiting the orthogonality of spherical harmonics, the
application of the electromagnetic boundary conditions at
r = R yields separate equations of motion for the polarization
density amplitudes P

(e/o)
n,m (t) of each angular momentum state,

d2P
(e/o)
n,m (t)

dt2
+ γn,m

dP
(e/o)
n,m (t)

dt
+ �2

nP
(e/o)
n,m (t) = 0, (3)

where �2
n = {ω2

pln /[ε2 + n(ε2 + ε∞)]} is the modal fre-
quency of the plasmonic eigenmode of order (m,n) in the
absence of damping and γn,m = γ + γ rad

n,m is the damping rate
including material absorption effects γ and modal radiation
effects γ rad

n,m. For n � 1 the radiation damping becomes negli-
gible and γn�1,m → γ .

The energy in the system at any point in time is partitioned
and exchanged between potential-energy Un,m(t) and kinetic-
energy Kn,m(t) which can be simply expressed in terms of the
initial phase-space coordinates [Pn,m(0),Ṗn,m(0) = (∂tPn)t=0].
Of particular interest are the following two complementary
initial conditions Ṗn,m(0) = 0 or Pn,m(0) = 0:

⎧⎪⎪⎨
⎪⎪⎩

Ṗn,m(0) = 0,

Un,m(0) = nR3�2
n

4ε0ω
2
pl

[Pn,m(0)]2,

Kn,m(0) = 0,

(4)

⎧⎪⎪⎨
⎪⎪⎩

Pn,m(0) = 0,

Kn,m(0) = nR3

4ε0ω
2
pl

[Ṗn,m(0)]2,

Un,m(0) = 0.

(5)

In the situation described by Eq. (4) the total energy is
potential energy, and it depends explicitly on the modal fre-
quency �n, which can be expressed in terms of the background
permittivity ε2. In particular the potential energy in expression
(4) coincides with the energy of the surface polarization charge
of the (n,m) component of the polarization density (2), sitting

in the corresponding eigenmode electric potential V
(e/o)
n,m (r,t),

V (e/o)
n,m (r = R,θ,φ,t) = P

(e/o)
n,m (t)R

ε0ε2 + nε0(ε2 + ε∞)
Y (e/o)

n,m (θ,φ).

(6)

As evident from Eq. (6) a decrease (increase) in the back-
ground permittivity ε2 would lead to an increase (decrease) in
the potential energy in the system. Assuming for the moment
that ε2 could be instantaneously reduced to ε2 − dε2 (more
realistic modulation conditions will be considered later), the
characteristic modal frequency would change from �n to
�n + d�n. Corresponding to such an increase in the modal
frequency, the energy of the system increases by an amount,

dUn,m ∼ 2
Un,m

�n

d�n =
(

1 + 1

n

)
�2

nUn,m

ω2
pl

dε2. (7)

Equation (7) indicates that the energy increment produced
by the parametric modulation is proportional to the potential
energy Un,m stored in the plasmonic mode. In the situation
described in Eq. (5) on the other hand the system’s energy
is purely kinetic, and it does not depend explicitly on the
modal frequency �n (or on ε2). Under such conditions, an
instantaneous modification of the system’s parameters having
the sole effect of modifying the characteristic modal frequency
would not affect the system’s energy. From these observations,
a periodic modulation scheme of the system’s parameters can
be identified which efficiently delivers energy to the plasmonic
mode without resorting to direct application of external electric
fields on the charge carriers.

In what follows we analyze one full modulation period
and determine the parametric resonance threshold for the
plasmonic eigenmode of order (n,m), corresponding to the
regime of parametric regeneration. Let us consider a system
that starts at time t = 0 with total energy Wn,m(0) in the form
of potential energy of a plasmonic eigenmode of order (n,m).
This initial state is identified by the phase-space coordinates,

Pn,m(0) =
[

4ε0ω
2
p

nR3�2
n

Wn,m(0)

]1/2

,

Ṗn,m(0) = 0.

After a time T1 = [π − tan−1(2ωn/γ )]/ωn with ω2
n =

�2
n − γ 2/4 the freely oscillating system evolves to a

state of pure kinetic-energy Kn,m(T1) = Wn,m(0) e−γ T1

with phase-space coordinates Pn,m(T1) = 0 and Ṗn,m(T1) =
−Pn,m(0) �ne

−γ T1/2. If at this point the system’s parameters are
instantaneously modulated so as to modify the eigenfrequency
from �n to 
n = �n − d�n, by virtue of Eq. (7), no energy is
delivered to or taken from the system as the potential-energy
Un,m is zero at the moment. From this point on the plasmonic
eigenmode oscillates at the modified eigenfrequency 
n. The
system reverts to a state of pure potential energy after a
time T2 = (1/θn)tan−1(2θn/γ ) with θ2

n = 
2
n − γ 2/4 so that

at time t = T1 + T2 = T the energy of the plasmonic mode
is again purely potential with Un,m(T ) = Wn,m(0)e−γ T . At
time T + = T + dt (for dt → 0), if the system’s parameters
are instantaneously modulated to restore the eigenfrequency
to the initial value of �n, the energy of the plasmonic mode
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(a)

(b)

FIG. 1. (a) Phase-space trajectories in terms of polarization am-
plitude and polarization current and (b) temporal evolution of the
energy content of a plasmonic mode under different parametric
modulation conditions. When the PPR threshold represented by the
green curve is exceeded, the plasmonic mode experiences a net gain
resulting in increasing polarization oscillations.

increases to a value of

Wn,m(T +) = Wn,m(0)
(
�2

n/
2
n

)
e−γ T . (8)

By equatingWn,m(T +) = Wn,m(0), Eq. (8) yields the thresh-
old condition for parametric resonance. In the small loss
γ � �n case the threshold value of the modulation depth
d�n can be expressed in terms of the quality factor Qn of
the plasmonic mode,

d�n

�n

= π

2

γ

�n

= π

2Qn

. (9)

The phase-space trajectory of the state of the parametrically
driven plasmonic system in terms of polarization amplitude
Pn and current Ṗn for the plasmonic sphere is illustrated in
Fig. 1(a) for various modulation conditions. At the parametric
regeneration threshold the phase-space trajectory is the closed
orbit (i.e., the “separatrix”) shown in green in Fig. 1(a),
separating the inward and outward spiraling trajectories that
occur below and above threshold, respectively. The total energy
of the plasmonic mode corresponding to the phase-space
trajectories of Fig. 1(a) is shown in Fig. 1(b). The discontinuous
sections correspond to the parametric energy transfer described

by Eq. (7) occurring when the polarization density amplitude
Pn,m is at a maximum and the polarization current density is
zero. Consistent with Eq. (7) each parametric energy transfer is
proportional to the potential energy of the polarization charges,
leading to an increase in the mode energy with an exponential
envelope.

The stepwise parametric modulation discussed so far is
an idealization devised to determine a lower bound for the
plasmonic parametric regeneration threshold. In order to give
a realistic description of an actual physical system one must
consider the specific temporal profile of the modulated modal
frequency �n(t), which in turn depends on the physical
mechanism exploited to alter the background permittivity ε2.
For plasmonic resonances at infrared or optical frequency,
realistically, only optical nonlinearities of electronic origin
would be fast enough to enable efficient PPR. As an example
we analyze the practically relevant example of the harmonic
modulation of the permittivity ε2 mediated by its second-
order nonlinear optical susceptibility χ (2) in the presence of
a spatially uniform pump field. The inherently anisotropic
character of second-order nonlinear interactions [18] must be
taken into account as it introduces specific selection rules on
the modes that can interact with a given pump field.

In the following we consider a plasmonic sphere (medium
1) immersed in medium 2 belonging to the m-point symmetry
group [19] with a dominant second-order susceptibility term
χzzz. Such a model well describes, among others, the char-
acteristics of 2-methyl-4-nitroanline (MNA) [20], an organic
material displaying an extremely large second-order suscep-
tibility. A uniform linearly polarized pump field of the form
EP (t) = ẑ EP (t) is incident on the sphere. The interaction of
the pump field with nonlinear susceptibility χzzz of medium 2
produces a nonlinear polarization density PNL

2 = ẑε0χzzz(E2 ·
ẑ)(E2 · ẑ). Due to the continuity of the radial component of
the electric displacement, the dynamics of the polarization
density in medium 1 are modified by the interaction with the
radial component (PNL

2 · r̂)r=R of the nonlinear polarization
in medium 2, which can be expressed as a superposition of
spherical harmonics, with amplitude coefficients S

(e/o)
n,m (t),

(
P(NL)

2 · r̂
)∣∣

R
=

∞∑
n=0

n∑
m=0

∑
j=e,o

S(j )
n,m(t)Y (j )

n,m(θ,φ). (10)

The resulting equations of motion for the n,m component of
the polarization density amplitude within the sphere are given
by

d2P
(e/o)
n,m (t)

dt2
+ γ

dP
(e/o)
n,m (t)

dt
+ �2

nP
(e/o)
n,m (t) = �2

n

S
(e/o)
n,m (t)

n
.

(11)

The amplitude coefficients S
(e/o)
n,m (t) represent the spherical

harmonic component n,m of the nonlinear polarization density,
originating from the mixing of various pairs of angular momen-
tum states of the field in region 2 with selection rules dictated
by the specific symmetry class of the nonlinear susceptibility
under consideration. Assuming that the pump field EP is much
stronger than any of the plasmonic mode fields oscillating in
the system—a condition valid at the onset of PPR—we will
consider only the three-wave mixing processes involving the
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pump. Saturation effects will occur when the electric field of
the PPR mode becomes comparable in magnitude to the pump
field. For the case at hand in which the dominant component
of the nonlinear susceptibility is the χzzz term, the radial
component of the nonlinear polarization couples different
angular momentum states so that a number of three-wave
mixing processes are allowed. In particular for a uniform
ẑ-polarized pump field, corresponding to a multipole of order
npump = 1,mpump = 0, it is tedious but straightforward to show
[21] that the interaction with a mode of order n,m leads to
nonlinear polarization components of order n,m and n ± 2,m.
Considering only the angular momentum-matched process
(which is the dominant one), the leading term of the nonlinear
polarization component of order n,m can be expressed as

S(e/o)
n,m (t) = −(�n/ωpl)

2nun,mχzzzEP (t)P (e/o)
n,m (t),

(12)

un,m = un,m

2(n + 2)[n(n + 1) − 3m2]

n[4n(n + 1) − 3]
.

The expression (12) allows for recasting Eq. (11) in the
following more physically transparent form in which the
external permittivity modulation is represented as a parametric
shift of the resonant frequency of the polarization density
amplitude:

d2P (e/o)
n,m (t)

dt2
+ γ

dP (e/o)
n,m (t)

dt
+ [

�2
n + 2�nd�n,m(t)

]
×P (e/o)

n,m (t) = 0,

d�n,m(t) = �3
n

2ω2
pl

un,mχzzzEP (t). (13)

In the practically relevant case of a time-harmonic
pump of the form EP (t) = AP cos(�P t), defining d�n,m =
�3

nun,mχzzzAP /(2ω2
pl), Eq. (13) reduces to the well-known

and extensively studied Mathieu equation [22,23] with general
solutions expressed in terms of Mathieu’s sine and cosine
functions as follows:

Pn,m(t) = an,mC

(
4�2

n − γ 2

�2
P

, − 4�nd�n

�2
P

,
�P t

2

)
e−(γ t/2)

+ bn,mS

(
4�2

n − γ 2

�2
P

, − 4�nd�n

�2
P

,
�P t

2

)
e−(γ t/2),

(14)

where the constants an,m and bn,m are determined from
the initial conditions. By expressing the Mathieu functions
F (a,q,x) in Eq. (14) in the Floquet form as the product of
a periodic function P (a,q,x) and a complex exponential, i.e.,
F (a,q,x) = P (a,q,x) exp(iμx), where μ is the characteristic
Floquet exponent [24], the PPR threshold condition is obtained

Im

[
μ

(
4�2

n − γ 2

�2
P

, − 4�nd�n

�2
P

)]
= γ

�P

. (15)

The PPR threshold conditions for different collision fre-
quencies γ are shown in Fig. 2 as a function of the normal-
ized frequency modulation depth d�n/�n and of the pump
frequency �P . The lowest modulation threshold is obtained
for �P = 2�n when the pump field’s frequency is twice the

FIG. 2. PPR threshold conditions for various damping rates as a
function of pump frequency and modulation amplitude.

plasmonic mode frequency. For small losses, i.e., γ � ωn and
�P = 2�n, the threshold condition (15) can be expressed in
terms of the Qn factor,

d�n

�n

= 2 γ

�n

= 2

Qn

. (16)

From Fig. 2 it is apparent that the PPR conditions can also be
met, albeit with a higher threshold, when the pump frequency
is detuned from the optimum value, which can be intuitively
understood in terms of intervals of efficient energy transfer
to the plasmonic mode spaced apart by longer intervals of
attenuation.

As an example we apply the previous analysis to the specific
case of a silver particle embedded in a MNA host [20]. MNA
belongs to the m-point group with a maximum nonlinear
coefficient χzzz ∼ 500 pm/V. Considering the refractive index
dispersion of MNA [25] and of silver [26], plasmonic reso-
nances of high order occur around a wavelength of 450 nm.
For such a system the calculated threshold pump intensity
is Ip ∼ 1.4 (GW/cm2). This intensity value, which is below
the damage threshold of MNA [27], could be reached, for
instance, with focused pulsed excimer lasers, such as a KrCl
laser operating at the nearly optimum pump wavelength of
222 nm. With a pulse duration of 100 ps it is possible to
achieve ∼ 104 or more PPR amplification cycles. For particles
of size comparable with the electron mean free path higher
pump powers may be required as a consequence of increased
dissipation due to electronic scattering at the particle’s surface
[28]. Qualitatively similar results are expected for other varia-
tions of the configuration described so far, such as, for instance,
a plasmonic shell surrounding a nonlinear core or even larger
particles at the onset of the Mie regime.

We would like to summarize here the salient features of PPR
in comparison with conventional LSP resonance as well as in
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comparison with other schemes of plasmonic amplification,
such as SPASER [17]. A fundamental characteristic of
plasmonic parametric gain that emerges from the analysis
above and in particular from Eqs. (4), (7), and (9) is that a
plasmonic mode of any order (n,m) can undergo PPR and be
amplified by a spatially uniform modulation of the background
permittivity, provided that the temporal modulation profile is
correct and the appropriate threshold is exceeded. This is in
stark contrast with conventional LSP resonance, which for a
mode of order (n,m) requires a driving field with a matching
spatial profile—a condition nearly impossible to achieve in
practice for high-order plasmonic modes of nanoparticles. For
these reasons PPR is uniquely suitable to access plasmonic
resonances of arbitrarily high order in deeply subwavelength
structures.

A further distinction of PPR compared to localized surface-
plasmon resonance (LSPR) must be noted: In order for a mode
of order (n,m) to undergo PPR it is necessary for such a
mode to be already oscillating in the system—however small
its initial amplitude might be. In the linear regime, treating
each mode as an independent and distinguishable harmonic
oscillator in thermodynamic equilibrium with the background,
such initial conditions can be easily determined according to a
Planck distribution [29], implying that, at the very least, zero-
point oscillations must exist and therefore can be amplified
by PPR. It is also worth pointing out that the correct initial
phase relation between the pump and the plasmonic mode of
interest is not a critical parameter, provided that the pump
exceeds the PPR threshold. That is because PPR displays
the important property of “phase locking” that is common to
all parametrically resonant systems [30] and that leads to a

synchronization between the pump and the mode experiencing
parametric gain [30].

Finally, when compared with other schemes of plasmonic
amplification, such as SPASER [17] in which there is no
coherence between plasmon and pump field, the coherent
nature of the energy exchange leading PPR offers interest-
ing advantages from the point of view of the detection of
the occurrence of PPR. Although the amplified modes are
essentially nonradiative and difficult to detect directly, the
instantaneous energy content of the PPR mode affects the
pump field absorption and therefore the PPR amplification
dynamics are expected to leave an imprint on the pump pulse
temporal profile whereby its trailing edge would experience
a larger attenuation—an easily measurable characteristic. For
the same reason we may envision using collections of particles
undergoing PPR for optical limiting applications.

In conclusion, we have introduced the concept and pre-
sented the theory of plasmonic parametric resonance. Unlike
conventional LSPR, all the plasmonic modes of a nanostruc-
ture, including the strongly subradiant ones, can be resonantly
excited by spatially uniform optical pumping, provided that
the corresponding threshold is exceeded. Accessing such a
high density of strongly localized states holds promise for
enhancing nonlinear light-matter interaction on the nanoscale
and for the development of nonlinear optical metamaterials.
Moreover, the coherent nature of the PPR process lends itself
to simpler detection experiments compared with other plasmon
amplification schemes.
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