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Generation and control of noncollinear magnetism by supercurrent
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When superconductivity couples with noncollinear spin textures, rich physics arises, for instance, singlet Cooper
pairs can be converted to triplet pairs, and topological superconductors can be realized. For their applications,
the controllability of noncollinear magnetism is a crucial issue. Here, we propose that a supercurrent can induce
and control noncollinear magnetic orders in a correlated metal on top of a singlet superconductor. We show that
the magnetic instability in the correlated metal is enhanced by the proximity effect of supercurrents, which leads
to phase transitions from a paramagnetic state to noncollinear magnetic phases with helical or vortexlike spin
textures. Furthermore, these magnetic orders can be switched by the direction of the supercurrent. We also discuss
the effect of the Rashba spin-orbit coupling and the experimental realization.
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Introduction. The proximity effect of superconductivity,
inducing Cooper pairs in nonsuperconducting materials, has
renewed interest for application ranging from spintronics
devices to topological superconductivity. In spintronics, spin-
triplet Cooper pairs are promising spin carriers for effi-
cient spintronics devices with suppressed Joule heating [1,2].
The interplay between triplet pairs and magnetic moments
shows rich physics, such as a novel type of domain-wall
dynamics [3–6]. Furthermore, an artificially engineered system
with proximity-induced superconductivity is one of the most
promising platforms for realizing topological superconductors
[7–11]. They can host Majorana fermions, whose non-Abelian
statistics might be used for topological quantum computing
[12].

In these applications of superconductivity, noncollinear
magnetic orders play essential roles. Triplet Cooper pairs can
be generated from a singlet superconductor via the coupling to
noncollinear magnetic moments: Noncollinearity of magnetic
moments breaks the spin-rotational symmetry of electrons and
can convert singlet Cooper pairs to triplet pairs [13]. This is
experimentally observed [14–17], e.g., in a multilayer system
of a conical magnet holmium and a singlet superconductor
[16]. Moreover, we can engineer a topological superconductor
by using noncollinear magnetic moments. One-dimensional
p-wave superconductivity can be realized using a helical spin
texture [18–22], and two-dimensional (p + ip)-wave super-
conductivity can be realized using a magnetic skyrmion texture
[23–25]. These schemes do not require the strong relativistic
spin-orbit coupling and hence expand the range of candidate
materials.

Given the interplay between noncollinear spin textures and
superconductivity, the tunability of noncollinear magnetism is
crucial to externally control the resulting physics. For example,
we could turn on or optimize the singlet-triplet conversion, and
it might also be possible to manipulate Majorana zero modes
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by magnetic states. In normal states, several ways are known to
induce or switch magnetic textures, e.g., applying an electric
field [26,27] or optical pulses [28,29]. In a superconducting
state, it was shown that a supercurrent can change the direction
of magnetic domains [30,31]. However, as it is limited to a
coexisting phase of superconductivity and magnetism, it is
highly desired to establish a versatile way not only to control,
but also to generate noncollinear magnetism by a supercurrent.

In this Rapid Communication, we propose a way to in-
duce and control noncollinear magnetic order by utilizing a
supercurrent in a correlated metal in proximity to a singlet
superconductor. We consider a quasi-two-dimensional metallic
layer on top of a singlet superconductor with a supercurrent
flow (Fig. 1). We demonstrate that a supercurrent induces
noncollinear magnetic orders, such as helical (single-Q) and
vortexlike (double-Q) orders in a controlled manner. Fur-
thermore, these states can be switched by the direction of
the supercurrent. Our results open up the possibilities to use
superconducting correlations as a “harness” for spin textures.

Model. We consider a quasi-two-dimensional correlated
metal deposited on a bulk singlet superconductor with a
supercurrent flow. A possible experimental setup is shown
in Fig. 1. The situation can be modeled by the Hamiltonian
H = H0 + HU where we define

H0 =
∑
kσ

ξkc
†
kσ ckσ +

∑
ij

(�ije
iκ ·(ri+rj )c

†
i↑c

†
j↓ + H.c.), (1)

HU = U
∑

i

ni↑ni↓. (2)

Here c
†
iσ (ciσ ) is a creation (annihilation) operator of itinerant

electrons at site ri = (xi,yi) with spin σ, c
†
kσ (ckσ ) is the Fourier

transform of c
†
iσ (ciσ ), and ξk is the energy dispersion measured

from the chemical potential. The itinerant electrons have the
repulsive Hubbard interaction with the strength U > 0, and
niσ = c

†
iσ ciσ is the electron-density operator of spin σ . The

proximity effect to the superconductor is taken into account by
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FIG. 1. The proposed setup for an experimental realization. A
metallic layer is deposited on a bulk singlet superconductor (SC)
where a supercurrent is supplied from a current battery.

�ij and κ ; �ij describes a singlet pairing potential between
sites i and j , and κ , a spatial gradient of the superconducting
phase, originates from a supercurrent flow. The supercurrent
is assumed to be a unidirectional flow, and the supercurrent
density jsc is proportional to κ for ξ |κ | � 1, where ξ is the
coherence length of the bulk superconductor. In the following,
we study this model within the mean-field approximation as
H ≈ H0 + H MF

U , where

H MF
U = −4U

3

∑
i

mi · si + 2U

3

∑
i

|mi |2. (3)

Here si = 1
2

∑
σ1,σ2

c
†
iσ1

σ σ1σ2ciσ2 is the spin-density operator at
site i with Pauli matrices σ = (σx,σ y,σ z), and mi = 〈si〉 is
the mean field of the spin density.

Magnetic instability. Let us first demonstrate that a super-
current jsc ∝ κ enhances an instability toward a noncollinear
magnetic order. From now on, we will focus on an s-wave
pairing (�ij = 1

2�δij ) for simplicity, whereas we will discuss
other symmetries later. We calculate the energy functional of
mi , which is obtained by integrating out the electron operators,

E[{mq}] = 2U

3

∑
q

(
1 − 2U

3
χ (q)

)
|mq|2, (4)

where mq is the Fourier transform of mi and we have taken
the lowest order of mq. χ (q) > 0 is the bare spin susceptibility
under a supercurrent (see the Supplemental Material [32]). The
largest peak of χ (q) indicates an instability toward a magnetic
order given by the corresponding mode mq.

Here we show how a supercurrent changes the profile of
χ (q) considering the low-density limit in two dimensions at
low temperatures (kBT � |�|; kB is the Boltzmann constant
and T is the temperature). We define ξk = k2

2m
− εF , where

m is the electron mass, εF � 0 is the Fermi energy, and we
set the reduced Planck constant h̄ = 1. In a normal state
(� = 0), χ (q) is constant and largest for |q| � 2kF with kF =√

2mεF , i.e., all modes of mq with |q| � 2kF energetically
degenerate in Eq. (4). With an s-wave singlet correlation
without a supercurrent (� 
= 0, κ = 0), χ (q) is suppressed
around q = 0 because of the spin gap associated with the
superconductivity [Fig. 2(a)]. This is called the Anderson-Suhl
mechanism [33]. Now, χ (q) is further deformed from the
ring structure by applying a supercurrent, which is given by
jsc = −e nsf

m
κ with the electron charge −e and the superfluid

 0

 0.1

 0.2

 0.3
(a) (b)

FIG. 2. Bare spin susceptibility χ (q) in the low-density limit for
|�|/εF = 0.05 and kBT /|�| = 1/40 � 1 (a) without a supercurrent
(κ = 0) and (b) with the supercurrent κ/kF = (0.022,0).

density nsf . A supercurrent introduces peak structures around
q∗ ∼ ±2kF κ̂ [Fig. 2(b)] with κ̂ = κ/|κ |.

Such an increase induced by a supercurrent can be analyti-
cally obtained for a small current density. For kBT � |�|, we
can expand χ (q) to the second order of κ as

χ (q) − χκ=0(q) = a2
0 |κ |2
εF

f

(
q

kF

,
|�|
εF

)

+ a2
0(κ · q̂)2

εF

g

(
q

kF

,
|�|
εF

)
, (5)

where χκ=0(q) is the bare spin susceptibility at κ = 0, a0

stands for the inverse of the momentum cutoff, f (x,y) and
g(x,y) are the dimensionless functions, and we define q = |q|
and q̂ = q/q. The directional dependence arises from the
second term on the right-hand side, and g(q/kF ,|�|/εF ) is
proved to be positive and has a peak around q ∼ 2kF . We
also note that, for |�|/εF � 1, we obtain |g(q/kF ,|�|/εF )| 
|f (q/kF ,|�|/εF )| (see the Supplemental Material [32]). As a
result, χ (q) increases around q∗ ∼ ±2kF κ̂ by a supercurrent,
and the magnetic instability with the particular wave-number
q∗ is selected out of the degenerate ring. The enhancement of
the spin susceptibility by a supercurrent depends on the form
of the Fermi surface; it can be larger depending on the systems.

Magnetic phase diagrams. On a lattice with a higher density
of electrons, the bare spin susceptibility χ (q) is no longer
isotropic: It generally has peak structures even without a
supercurrent, reflecting the lattice structure and the energy
dispersion. Therefore, magnetic instabilities arise from the
interplay of the anisotropy of χ (q) and the current direction.

In the following, we investigate magnetic ground-state
phase diagrams for a lattice model numerically. We con-
sider a square-lattice model with the energy dispersion ξk =
−2t[cos(kxa) + cos(kya)] − μ, where t denotes the hopping
amplitude between the nearest-neighbor sites, a is the lattice
constant, and μ is the chemical potential. In the calculations,
we set t = 0.5, μ = −1.48, and � = 0.05. With these pa-
rameters, χκ=0(q) has four equivalent peaks at q = (qx,qy) =
(±Q∗,0),(0,±Q∗) with Q∗ � 2π/3a.

To elucidate the ground-state phase diagram in the presence
of the supercurrent, we perform variational calculations. Refer-
ring to the previous studies [34–36], we assume two variational
ansatz for magnetic configurations: helical (single-Q) and

081107-2



GENERATION AND CONTROL OF NONCOLLINEAR … PHYSICAL REVIEW B 97, 081107(R) (2018)

-2

0

2

4

6

0 0.02 0.04 0.06 

-4

-2

0

0 0.05 0.1 0.15
0

0.03

0.06

8

8.5 

 0  0.1  0.2  0.3  0.4

double Qsingle Q

single-Q
double-Q

para double-Q
para

double-Q

(d)(c)

(a) (b)

FIG. 3. Magnetic ordering induced by a supercurrent given by
κ = κ√

2
(1,1). (a) Schematics of a single-Q state (left) and a double-Q

state (right). (b) Energy of the double-Q state as a function of M0 for
different κ at U = 8.58. (c) Energies of the single-Q and double-Q
states and the magnetization of the double-Q state as functions of
κ at U = 8.58. (d) κa-U phase diagram for the ground state. Phase
boundaries obtained in different system sizes are plotted.

vortexlike (double-Q) states, which are described by

m1Q
i = M0

⎛
⎝cos(Qxi)

sin(Qxi)
0

⎞
⎠, m2Q

i = M0

⎛
⎝cos(Qxi)

cos(Qyi)
0

⎞
⎠, (6)

respectively [Fig. 3(a)]. Here M0 and Q are variational pa-
rameters, where M0 is the amplitude of the magnetization and
Q is the wave number of modulation [37]. We note that the
spin-rotational symmetry exists in the absence of the spin-orbit
coupling, and hence rotations of all the spins do not change the
energy (the effect of the spin-orbit coupling will be discussed
later). The single-Q state is characterized by the single-mode
mq=(±Q,0), whereas the double-Q state consists of the two
modes: mq=(±Q,0) and mq=(0,±Q) [38]. By substituting Eq. (6)
for mi , we numerically diagonalize the mean-field Hamiltonian
H0 + H MF

U for finite-size systems with the open boundary
conditions and optimize the ground-state energy E(M0) with
respect to M0 and Q. The results for 30 × 30 sites are shown in
Figs. 3 and 4, whereas Fig. 3(d) includes the result for 36 × 36
sites. We set the energy unit as 2t = 1.

First, we consider a supercurrent given by κ = (κx,κy) =
κ√
2
(1,1). In this case, the four peaks in χ (q) at q = (±Q∗,0)

and (0,±Q∗) are equally enhanced. In Fig. 3(b), we show
the M0 dependence of the energies of the double-Q state for
several values of κa where the energies are measured from that
with M0 = 0. We note that the energy for the single-Q state
is always higher than that for the double-Q state. For small
κ , the system is in the paramagnetic state (M0 = 0). With κ

increased, the first-order phase transition to the double-Q state
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FIG. 4. Switching of magnetic orders by the supercurrent direc-
tion. (a) Energies of the single-Q and double-Q states as functions
of the angle δθ at U = 8.49. (b) δθ -U phase diagram for the ground
state.

occurs, and the amplitude of the magnetization M0 shows a
jump at the transition. Figure 3(c) shows the κ dependences of
the system energies for the single-Q and double-Q states and
M0 in the double-Q state. For κ larger than the critical value,
the double-Q state has the lower energy than the paramagnetic
state as well as the single-Q state. Therefore, the supercurrent
induces a magnetic order transition from the paramagnetic
state to the double-Q state. The critical κ is summarized in the
ground-state phase diagram in Fig. 3(d). The result shows that a
larger supercurrent induces the magnetic instability at a smaller
interaction strength U . We note that, for κa � 0.15, the jump
of M0 becomes small (not shown), suggesting that the phase
transition can possibly be continuous in the large-κ region. The
features found here are confirmed at different system sizes, and
the phase boundary becomes smoother for the larger system
[Fig. 3(d)].

In a realistic situation with finite thickness, a finite-
temperature phase transition would occur. The critical tem-
perature Tc of the magnetic ordering would be roughly given
by ∼UM0, which is on the order of 0.1t within the mean-field
approximation [see Fig. 3(b)]. Tc will be suppressed by fluc-
tuations, but we expect it could remain at a finite temperature.

Furthermore, the stable magnetic state can be switched by
changing the supercurrent direction as the peaks of χ (q) can be
modulated independently depending on the current direction.
For example, once a current is applied along the x direction, the
instability of mq=(±Q,0) is enhanced compared to mq=(0,±Q).
To demonstrate how the stable magnetic state changes, let us
rotate the current direction from (1,1) to (1,0) by defining
κ = κ(cos(45◦ − δθ ), sin(45◦ − δθ )) [the inset of Fig. 4(a)].
Figure 4(a) shows the energies for the single-Q and double-Q
states as functions of the current angle δθ . While increasing
δθ , the double-Q order switches to a single-Q order, which
remains stable up to δθ = 45◦, i.e., for the current along the
x direction. The resulting phase diagram while changing U is
summarized in Fig. 4(b).

In order to substantiate the effects found here, we need
a superconductor which is robust against the supercurrent.
MgB2 would be a prime candidate as it has a small coherence
length ξ ∼ 10a [39]. At a low temperature, the upper limit
of a supercurrent is ideally given by κ/kF < (ξkF )−1 [40]. In
MgB2, κ/kF may be on the order of 10−1 ∼ 1, which covers
the range in Fig. 3(d). We note that the above upper limit can be
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lowered due to the orbital depairing, which could be suppressed
by the geometry of the superconductor to some extent [40].
Meanwhile, the deposited metal can be a generic correlated
electron system, but one closer to magnetic instability would
be better.

Other gap symmetries. We have discussed an s-wave pair-
ing, which has a nodeless isotropic gap in the momentum space.
Node structures in the superconducting gap render the bare spin
susceptibility anisotropic as a lattice does, and the magnetic
instability is enhanced particularly for q in the directions of
the nodes. For example, a dx2−y2 -wave gap has nodes in the
(±π,±π ) direction, and the magnetic modes mq∼(±Q,±Q) have
the dominant instability in the absence of supercurrents. Thus,
the stable magnetic state is further flexibly controlled by the
pairing symmetry in addition to the current direction, lattice
geometry, and energy dispersion.

Rashba spin-orbit coupling. At the interface between a
metal and a superconductor, the Rashba spin-orbit coupling
may be important due to the broken mirror symmetry along
the z axis, the out-of-plane direction. It can be written as

Hso = α
∑
kσ1σ2

g(k) · (c†kσ1
σ σ1σ2ckσ2

)
, (7)

where α is the magnitude of the Rashba spin-orbit coupling and
g(k) = (kya0,−kxa0,0) in the continuum limit. The spin-orbit
coupling breaks the spin rotational symmetry, and Eq. (4) is
replaced by E[{mq}] = 2U

3

∑
q (1 − 2U

3 χμν(q))mμ
−qm

ν
q. Thus,

the magnetic instability is dictated by the peak wave number
in the anisotropic susceptibility tensor χμν(q).

More importantly, with a supercurrent, the superconducting
analog of the Rashba-Edelstein effect arises [41]. A spin
polarization is induced by the supercurrent flow owing to the
absence of the mirror symmetry. The first-order correction of
κ leads to the additional term in the energy functional as

δE[{mq}] = K
∑

i

(ẑ × κ) · mi , (8)

where K is the odd function of α and ẑ is the unit vector in
the z direction (see the Supplemental Material [32]). This term
acts like an in-plane magnetic field, e.g., a supercurrent in the
x direction gives an effective magnetic field in the y direction.
This results in the modulation of the noncollinear spin textures.

Hence, the Rashba spin-orbit coupling locks the spin-spiral
plane by the spin anisotropy and, moreover, modulates the
spin texture by combining with a supercurrent. Even in this

case, we believe that our mechanism to control stable magnetic
orders remains robust as χμν(q) is modified by a supercurrent
as well as the gap symmetry. It would be interesting to explore
the resulting magnetic phase diagrams, and we leave further
discussion for future work.

Summary and discussion. To summarize, we have proposed
a way to induce and switch noncollinear spin textures by a
supercurrent in the presence of the superconducting proxim-
ity effect. Our results can be useful to realize and control
physics raised by the interplay between superconductivity and
noncollinear magnetism, e.g., the singlet-triplet conversion of
Cooper pairs and engineering topological superconductivity.

The mechanism behind is general as we have shown in the
continuum model. Using different lattice geometries as well as
different pairing symmetries, we can control a broad range of
magnetic states. For example, we might be able to create and
annihilate skyrmions by a supercurrent in a triangular lattice,
noting that skyrmion crystals can be realized in the Kondo
lattice model where conduction electrons couple with localized
magnetic moments [42].

The previous works in the Kondo lattice model [36,42] have
employed unbiased numerical simulations to show multiple-Q
magnetic orders including skyrmion crystals. Since the Kondo
lattice model is related with the mean-field approximation for
the Hubbard model discussed in our work, we deduce that our
conclusion remains robust beyond the variational approach.

We have assumed that the superconducting proximity effect
is robust. In reality, there is a feedback from the magnet to
the superconductor; the interplay should be dealt with a self-
consistent calculation of both superconducting and magnetic
order parameters layer by layer. This costs much computational
cost, and hence, we leave it for future study. Nevertheless, we
believe that our results already capture the essential physics
when the proximity effect from the bulk superconductor is
large and the bulk superconductivity is stable.

We finally note that it would also be interesting to explore
what happens with a supercurrent being switched off. It is
important, especially for the application, to clarify whether
the magnetic order persists as a metastable state and how the
phase of pairing and magnetic order relax.
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