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We predict that the interplay between the spin-orbit coupling, stemming from the transverse electric–transverse
magnetic energy splitting, and the Zeeman effect in semiconductor microcavities supporting exciton-polariton
quasiparticles, results in the appearance of unidirectional linear topological edge states when the top microcavity
mirror is patterned to form a truncated dislocated Lieb lattice of cylindrical pillars. Periodic nonlinear edge states
are found to emerge from the linear ones. They are strongly localized across the interface and they are remarkably
robust in comparison to their counterparts in honeycomb lattices. Such robustness makes possible the existence
of nested unidirectional dark solitons that move steadily along the lattice edge.
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Topological insulation is a recently discovered fundamental
phenomenon that spans across several areas of physics, such
as condensed matter, ultracold gases, and photonics [1,2]. In
contrast to conventional insulators, topological ones admit
conductance at the interfaces between materials with different
topologies. This conductance is a consequence of the exis-
tence of the in-gap discrete energy states spatially localized
at the boundaries and exhibiting unidirectional propagation.
The latter is topologically protected and hence stays immune
to the backward scattering and energy leakage to the bulk
insulator modes even when encountered with strong lattice
defects and disorder [1,2]. First experiments about topological
insulators were performed in electronic systems where one
of the mechanisms of topological protection relies on the spin-
orbit interaction of electrons in a magnetic field [1,2]. More re-
cently, studies on topological edge effects have been extended
to electromagnetic and to mixed optoelectronic systems [3].
Topological edge states have been proposed and observed in
gyromagnetic photonic crystals [4,5], semiconductor quantum
wells [6], arrays of coupled resonators [7,8], metamaterial
superlattices [9], helical photonic waveguide arrays [10,11],
systems with driving fields containing vortex lattices [12], and
in polariton microcavities, where strong photon-exciton cou-
pling leads to the formation of half-light half-matter polariton
quasiparticles [13–17].

Matter-wave and polaritonic systems are especially attrac-
tive in the context of topological photonics because they are
strongly nonlinear [18–26] and therefore potentially applicable
in classical and quantum information processing schemes.

*Corresponding author: fangweiye@sjtu.edu.cn

Examples of recently reported nonlinear topological effects
include solitons in the bulk [27] and at the edges [28–30]
of topological insulators made from the honeycomb lattices
of helical photonic waveguides. We also mention here prior
reports of nontopological nonlinear edge states in photonic
lattices [31,32]. Microcavity exciton polaritons represent a
viable alternative to photons as a nonlinear platform for
topological effects [13,33–35]. Polaritonic systems are planar
and rely on the interplay between the spin-orbit coupling
(SOC) with the Zeeman energy splitting of the polariton energy
levels induced by a magnetic field. They have been shown to
support long-living topological solitons in honeycomb [36] and
kagome lattice potentials [37].

Recently, Lieb lattice potentials have attracted significant
attention due to their flat energy bands [38–42] associated
with infinite mass bosons. This implies that the dispersion and
kinetic energy are suppressed [40] and therefore the system
dynamics is dominated by a multiparticle interaction, i.e.,
by nonlinear effects. Bosonic condensation, fractional Hall
effects, and the topological insulator regimes in the flat bands
and more generally in the Lieb lattices can be qualitatively
different from those known for quasiparticles with a well-
defined effective mass [38,39,41,43,44].

In this Rapid Communication, we show that robust non-
linear topological edge states exist in the polariton excitations
embedded in dislocated Lieb lattice potentials (a variant of a
Lieb lattice obtained by vertical displacement of its adjacent
unit cells by a half period [45,46] that admits substantially
larger topological gaps than the usual Lieb lattice), in the
presence of SOC and Zeeman splitting. We show that the
nonlinear properties of Lieb polariton topological insulators
are dominated by the existence of robust, topological dark edge
solitons.
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FIG. 1. Dislocated Lieb lattice(first row) and examples of liner
edge states associated with green (second to fourth rows), red (fifth
row), and blue (sixth row) branches in the eigenvalue spectrum
depicted in Fig. 2(b). Only the dominating |ψ−| spinor component
is shown. In all cases, β = 0.3, � = 0.5.

We model the evolution of the spinor polariton wave
function � = (ψ+,ψ−)T in a lattice of microcavity pillars by
the system of two coupled Gross-Pitaevskii equations [13],

i
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(
∂2

∂x2
+ ∂2

∂y2

)
ψ± + β

(
∂

∂x
∓ i

∂

∂y

)2

ψ∓
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(1)

Here, ψ± are the spin-positive and spin-negative wave-function
components in the circular polarization basis. They are related
to the wave functions corresponding to the transverse electric
(TE) (subscript y) and transverse magnetic (TM) (subscript
x) polarizations as ψ± = (ψx ∓ iψy)/21/2. The spin-orbit
coupling term ∼β originates in the TE-TM energy splitting
of the cavity resonances in the lattice-free environment [47].
� is the Zeeman splitting in the external magnetic field.
Polaritons with the same spins repel and with the opposite ones
attract. The latter implies that the parameter σ of the cross-spin
interaction is negative. We fix σ = −0.05 [22]. The potential
landscape R(x,y) = −p

∑
km e−[(x−xk )2+(y−ym)2]/d2

is created
by the microcavity pillars (the contribution from each pillar
is described by a Gaussian function of width d and depth p)
arranged into the dislocated Lieb lattice. An example of such a
lattice with three y periods is shown in Fig. 1(a). The lattice is
infinite along the y axis and is truncated along x (we consider
truncation creating an interface that can be named bearded by
analogy with the honeycomb lattice [10]).

In Eq. (1) we assume that all the distances are scaled to
x0 = 1 μm, all the energy parameters to ε0 = h̄2/2mx2

0 , and
the time to t0 = h̄ε−1

0 . By selecting the polariton mass pa-
rameter m = 10−31 g, one gets the characteristic energy ε0 ≈
0.35 meV and time t0 ≈ 1.9 ps. The depth of the potential
p = 8 corresponds to ∼2.8 meV and the width d = 0.5 of each
potential well corresponds to 0.5 μm. If taken in isolation,
such pillars support only the ground-state mode. We set the

FIG. 2. Energy-momentum diagrams ε(k) for a truncated dislo-
cated Lieb lattice for (a) β = 0, (b) β = 0.3, and � = 0.5. Red, green,
blue, and magenta lines correspond to unidirectional topological edge
states, while black lines correspond to bulk modes.

spacing between micropillars to be a = 1.4, corresponding
to 1.4 μm. Since the existence of the topological edge states
is not connected with the presence of losses, here we focus
on the quasiconservative limit, which has been previously
studied both experimentally [19,23,24,34] and theoretically
[13,14,47].

First, we consider the spectrum of the linear Bloch modes
ψ±(x,y,t) = u±(x,y)eiky−iεt that are periodic along the y

axis [u±(x,y) = u±(x,y + 2a)] and localized along the x axis
[u±(x → ±∞,y) = 0]. Here, k is the Bloch momentum and
ε is the energy shift relative to the bottom of the polariton
energy-momentum characteristic. A unit cell used for the
calculation of the Bloch modes contains 21 periods along
x and 1 along the y direction [Fig. 1(a)]. Typical spectra
ε(k) are shown in Fig. 2 for k ∈ [0,K], where K = π/a is
the Brillouin zone width. Due to the spinor nature of our
problem, the spectrum consists of two families of bands, which
are degenerate if SOC and Zeeman splitting are disregarded,
� = 0, β = 0. Accounting for the Zeeman splitting � = 0.5
leads to a relative shift of the two families by δε = 2�, as
shown in Fig. 2(a). When β = 0, the system does not admit
topological edge states [Fig. 2(a)]. Inclusion of SOC into the
system (β �= 0) at � �= 0 breaks the time-reversal symmetry
of Eq. (1). Following Ref. [4], this should lead to the opening
of topological gaps around special points in the Lieb lattice
spectrum, and, if the lattice is truncated, to the appearance of
topological in-gap edge states branching off the boundaries
of the bulk bands. Topological gaps open wider with the
increase of SOC. Topological edge states found for β = 0.3
are shown as red, green, blue, and magenta curves in Fig. 2(b),
while the black curves correspond to the bulk modes. The
states with the same energy ε, but with different momenta
k < K/2 and k > K/2, reside on the opposite edges of the
lattice (cf. the second and fifth rows in Fig. 1) and have opposite
group velocities ε′ = ∂ε/∂k.This is a direct manifestation of
unidirectional edge transport in the Lieb polariton topological
insulator. Thus, states from blue and green branches reside on
the left edge, while states from red and magenta branches reside
on the right edge (see examples in Fig. 1). Edge localization
is most pronounced when the topological gap state has energy
close to the center of the gap and decreases when it approaches
the band. All the edge states in Fig. 2 feature dominating ψ−
and weak ψ+ components—a consequence of the selected sign
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FIG. 3. Properties of the linear and nonlinear edge states. (a) First-
order ε′ and second-order ε′′ derivatives of the energy of the linear
edge state vs momentum k. (b) Peak amplitudes of ψ± components
and norm per y period at k = 0.20 K vs μ for the nonlinear edge
states. The dashed line indicates the border of the topological gap. In
all cases, β = 0.3, � = 0.5.

of the magnetic field. First-order ε′ = ∂ε/∂k and second-order
ε′′ = ∂2ε/∂k2 dispersion coefficients associated with the blue
and magenta topological branches are shown in Fig. 3(a).
While ε′ can change its sign upon a variation of k, the ε′′
coefficient remains positive for selected branches.

To confirm that the above edge states are indeed topological
we calculated the Chern numbers associated with the infinite
lattice using the algorithm described in Ref. [48]. The Chern
number for thenth band is given byCn = (2πi)−1

∫
G

F (k)d2k,
where G denotes the first Brillouin zone and the function
F (k) = ∂xAy(k) − ∂yAx(k) can be determined from the Berry
connection Ax,y(k) = 〈ψ(k)|∂/∂kx,y |ψ(k)〉. Our calculations
confirmed that for � = 0.5 at β = 0, i.e., without SOC, the
Chern numbers for all bands are zero. This is consistent
with the absence of unidirectional topological edge states at
β = 0. However, when β �= 0 at � = 0.5, the calculated Chern
numbers for the first three bands (from the bottom to top) are
−1, 0, and +1, respectively. This means that the gap Chern
numbers for the first three gaps are −1, −1, and 0, a direct
indication of the appearance of one topological edge mode
(per interface) in the first and the second gap, and no edge
modes in the third gap. Note that these results are consistent
with the modal analysis for the truncated dislocated Lieb lattice
discussed above (our lattice is truncated on both sides, so that
the number of edge states in each gap is twice the respective
gap Chern number). Moreover, to show that the inclusion of
SOC transforms nontopological modes into topological ones,
we depict in Fig. 4 the variation of the profile of the mode
from the green branch at k = 0.40 K with the increase of β.
At β = 0 the distribution of |ψ−| is symmetric in x, and the
field is nonzero at both interfaces. Increasing β leads to the
appearance of the topological edge state, whose localization
increases with β.

As a third indication of the topological nature of the linear
edge states we studied their evolution in a lattice where one
pillar at the lattice edge is missing. The propagation of the edge
state with a Gaussian envelope in such a lattice with a defect
is displayed in Fig. 5. The wave packet smoothly bypasses the
defect without noticeable backscattering or radiation into the
bulk. The topological protection for these edge modes is thus
evident.

0.0β=

0.1β=

0.2β=

0.3β=

FIG. 4. Transformation from a nontopological to a topological
edge state (green branch from Fig. 2) with an increase of β, at k =
0.40 K. Only |ψ−| is shown.

Having elucidated the existence of unidirectional edge
states in Lieb polariton insulators, we now focus on nonlin-
ear edge states. They are sought in the form ψ±(x,y,t) =
u±(x,y)eiky−iμt , where μ is the nonlinearity-induced energy
shift (μ becomes ε in the linear limit), and u±(x,y) is periodic
in y with period 2a. The nonlinear edge states are expected to
exist for μ(k) � ε(k). We computed them numerically using
the Newton method in the Fourier domain and characterized
them using the peak amplitudes of the spin-positive a+ =
max |ψ+| and the spin-negative a− = max |ψ−| components,
and the norm per y period,

U =
∫ 2a

0
dy

∫ +∞

−∞
(|ψ+|2 + |ψ−|2)dx. (2)

These parameters are plotted in Fig. 3(b) as functions of μ

for the edge state bifurcating from the blue linear branch of
Fig. 2(b) at k = 0.2 K. The nonlinear edge states appear to be
thresholdless, since a± vanish in the bifurcation point. One has
a− > a+ for the nonlinear states, a property inherited from the
linear limit. The norm and the peak amplitudes monotonically
increase with μ until the edge of the second linear band is
reached for a given k (dashed line). When μ crosses the edge
of the band, the nonlinear mode loses its localization due to
coupling with the bulk modes.

180t=90t=0t=

FIG. 5. Passage of linear edge state with k = 0.30 K and broad
envelope from the blue branch in Fig. 2(b) through a surface defect
without noticeable backscattering at β = 0.3, � = 0.5.
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FIG. 6. Robust evolution of the perturbed nonlinear edge state
from the blue branch corresponding to μ = −3.15, k = 0.20 K, β =
0.3, and � = 0.5 [red dot in Fig. 3(b)]. Top: Lattice profile (40 y

periods) and |ψ−| distributions at different moments of time. Bottom:
Evolution of peak amplitudes of the components.

One of the most important features of the dislocated Lieb
polariton insulator is the robustness of the nonlinear edge states
bifurcating from the linear states corresponding to the blue and
magenta lines in Fig. 2(b). We studied the stability of the non-
linear edge states by perturbing them with the broadband input
noise (up to 5% in amplitude), so that all possible perturbation
modes were excited. We calculated the evolution of these
perturbed states over long times using a split-step fast Fourier
method. We found that for nonlinear modes with a positive
dispersion ε′′ for the associated linear edge state [which is the
case for the entire blue and magenta branches in Fig. 2(b)], the
perturbed nonlinear edge states evolve as metastable objects
in the largest part of their existence domain in μ, so that
no signs of instability development are seen even at t = 103

(which corresponds to 1.9 ns, notably exceeding the typical
lifetime of polariton condensates observed in experiments).
An example of robust evolution is shown in Fig. 6 for the edge
state corresponding to the red dot in Fig. 3(b) (the energy of
this state falls into a topological gap, hence coupling with bulk
modes is excluded). This is in sharp contrast to the situation
encountered in honeycomb lattices [36], where all extended
nonlinear Bloch waves are clearly unstable. Metastability was
encountered only for nonlinear Bloch modes from the second
gap, but not for the modes from the first gap. This phenomenon
is one of the central results of this Rapid Communication, and
it suggests the use of nonlinear Bloch waves in dislocated Lieb
lattices as a suitable background for topological dark solitons.
Instabilities of Bloch waves from the second gap may show
up only very close to the edge of the third band [i.e., close
to the dashed line in Fig. 3(b) indicating a band edge]. When
decreasing the value of μ, the instability development takes
more and more time, and in the final run instability becomes
undetectable, even though, importantly, the peak amplitude of

the corresponding nonlinear edge state is not small (stable so-
lutions can have amplitude a− ∼ 0.7), hence nonlinear effects
are still strong. At the same time, instabilities are strong for
nonlinear states bifurcating from the red and green branches in
Fig. 2(b).

The robustness of the topological nonlinear edge states in a
dislocated Lieb lattice suggests the possibility of the existence
of topological dark solitons nesting inside the infinitely ex-
tended states. To obtain their envelope analytically, we rewrite
Eq. (1) as i∂�/∂t = L� + N�, where the operators L,N
account for the linear and nonlinear terms, respectively, and
then substitute the following integral expression, �(x,y,t) =∫ +K/2
−K/2 A(κ,t)u(x,y,k + κ)ei(k+κ)y−iεt dκ . Here, the spinor u =

(u+,u−)T solves the linear equation (L − ε)ueiky = 0, i.e., it
corresponds to the linear Bloch state with momentum k. Here,
κ is the offset from the carrier momentum k, and A(κ,t) is an
unknown spectrally narrow function localized in κ . Using a
Taylor series expansion for the spinor u(k + κ) and the energy
ε(k + κ), the integral expressions for � and L� take the
form

�(x,y,t)

= eiky−iεt

∞∑
n=0

[inn!]−1[∂nu/∂kn][∂nA(y,t)/∂yn], (3)

L�(x,y,t)

= eiky−iεt

∞∑
n=0

[inn!]−1[∂n(εu)/∂kn][∂nA(y,t)/∂yn], (4)

where A(y,t) = ∫ +K/2
−K/2 A(κ,t)eiκydκ is the envelope function

to be found. Assuming that u changes with k much slower
than the energy ε, one can keep only the n = 0 term in Eq. (3),
so that � = Aueiky−iεt , and use ∂n(εu)/∂kn ≈ u∂nε/∂kn in
Eq. (4), where we keep derivatives of energy ε up to the
second order only. We then project i∂�/∂t = L� + N� on u,
and after some tedious calculations find the required envelope
equation,

i
∂A

∂t
= −iε′ ∂A

∂y
− 1

2
ε′′ ∂

2A

∂y2
+ gA|A|2, (5)

where ε′ = ∂ε/∂k, ε′′ = ∂2ε/∂k2, and g =∫∫
u†Nu dxdy/

∫∫
u†u dxdy is the positive nonlinear

coefficient. When ε′′ > 0, Eq. (5) predicts the absence
of modulation instability and the existence of dark
solitons (robust nonlinear edge states are possible
exactly in the ε′′ > 0 domain). The function describing
the envelope of the dark soliton is given by A(y,t) =
[(μ − ε)/g]1/2 tanh{[(μ − ε)/ε′′]1/2(y − ε′t)}ei(ε−μ)t , where
μ − ε � 0 is the energy shift due to repulsive nonlinearity that
should be kept small to ensure that A(y,t) is broad relative to
the lattice period. A similar approach to the construction of
moving bright solitons was applied in Refs. [49–52].

In Fig. 7 we show the evolution of a soliton-carrying edge
state � = Aueiky−iεt constructed using the envelope function
A(y,t) found above and the Bloch modes u = (u+,u−)T from
the blue branch of Fig. 2(b) for μ − ε = 0.02 and the momen-
tum k = 0.2 K corresponding to ε′′ > 0. The top row shows
the nonlinear case, while in the bottom row the nonlinearity
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FIG. 7. Stable evolution of a dark soliton nested in the edge state
(blue branch in Fig. 2) at μ − ε = 0.02, k = 0.20 K, β = 0.3, and
� = 0.5 in the nonlinear cases (top row) and its spreading in the
linear case (bottom row). The middle row shows the width of the
dark sport as a function of time. Due to strong vertical displacement
experienced by the soliton, the distribution at t = 820 was shifted
vertically.

in Eq. (1) was switched off. A dark soliton traverses hundreds
of lattice periods, but experiences only small oscillations of

the width of its notch (see the curve labeled wnl in the central
panel). No signs of background instability are visible and there
is almost no radiation into the bulk of the lattice. By and
large, dark solitons superimposed on a metastable nonlinear
Bloch wave background are metastable objects, too. However,
they are excited from rather general input conditions and
propagate over long time intervals (t > 103) exceeding the
realistic current lifetime of polariton condensates. Therefore,
they should be readily observable experimentally. In contrast,
the same state strongly disperses in the linear medium, as
visible in the evolution of the corresponding width wlin in
the central panel of Fig. 7. For the larger energy offsets,
μ−ε ∼ 0.1, comparable to the width of the existence domain
of the nonlinear edge states, the initial dark soliton becomes
gray upon evolution and its velocity deviates from ε′.

We also studied the impact of losses on the dynamics of the
dark solitons by using a dissipative version of Eq. (1) with the
additional loss term −iα� included in the right-hand side of
the equation. We used α = 0.01 corresponding to a polariton
lifetime ∼190 ps, as in state-of-the-art experiments [36]. As
expected, the soliton amplitude decreases adiabatically and
its width self-adjusts in accordance with its instantaneous
amplitude. Consistent with expectations, up to t < 1/α the
dynamics is nonlinear with the width-amplitude ratio closely
corresponding to the theoretical predictions. For t > 1/α

the dynamics becomes effectively linear since the amplitude
drops significantly.

Summarizing, we have shown that a dislocated Lieb lattice
supports topological polariton edge states in both linear and
nonlinear regimes. The nonlinear edge states bifurcating from
the linear branches were found to be remarkably robust in
contrast to the honeycomb lattices [36]. We also discovered
topological dark solitons embedded within the nonlinear edge
states. Our results can be applicable for photonic Lieb lattices
[53] made from helical waveguides and cold atom systems
[43,44].
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