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Plasmonic modes in nanowire dimers: A study based on the hydrodynamic Drude model including
nonlocal and nonlinear effects
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A combined analytical and numerical study of the modes in two distinct plasmonic nanowire systems is
presented. The computations are based on a discontinuous Galerkin time-domain approach, and a fully nonlinear
and nonlocal hydrodynamic Drude model for the metal is utilized. In the linear regime, these computations
demonstrate the strong influence of nonlocality on the field distributions as well as on the scattering and absorption
spectra. Based on these results, second-harmonic-generation efficiencies are computed over a frequency range
that covers all relevant modes of the linear spectra. In order to interpret the physical mechanisms that lead
to corresponding field distributions, the associated linear quasielectrostatic problem is solved analytically via
conformal transformation techniques. This provides an intuitive classification of the linear excitations of the
systems that is then applied to the full Maxwell case. Based on this classification, group theory facilitates
the determination of the selection rules for the efficient excitation of modes in both the linear and nonlinear
regimes. This leads to significantly enhanced second-harmonic generation via judiciously exploiting the system
symmetries. These results regarding the mode structure and second-harmonic generation are of direct relevance
to other nanoantenna systems.
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I. INTRODUCTION

Nanoplasmonic structures lie at the heart of numerous
recent advances in different research areas of fundamental
physics and technological applications. Examples include
surface- and tip-enhanced Raman scattering, frequency con-
version, nanoantennas, metasurfaces, and hyperbolic meta-
materials. While in many cases the modeling of the metallic
elements via linear Drude or Drude-Lorentz models is suffi-
cient, a number of scenarios exist where more refined material
models are required. These scenarios include structures with
nanoscale features such as nanogaps, tips, and grooves as well
as nanoantennas with emitters in their respective near field
for which taking into account the spatially nonlocal and/or
nonlinear characteristics of the metals is necessary for an
accurate description of the system. As a result, corresponding
advanced materials models, specifically the hydrodynamic
Drude model and various extensions thereof, have recently
received considerable attention [1–20]. For instance, the hydro-
dynamic Drude model allows us to investigate the frequency
shifts, the excitation of bulk plasmons, nonlinear wave-mixing
phenomena such as second-harmonic generation, and modified
field distributions and intensities. While it has been argued
that, in the linear regime, the hydrodynamic model yields
only semiquantitative results [8], recent improvements regard-
ing refined treatments of the systems’ behavior at interfaces
[13,14], as well as the incorporation of interband transitions
[2,13] and Landau damping [3,10], have demonstrated that
fully quantitative results may be obtained nonetheless [13].

Numerical computations using the hydrodynamic Drude
model are more demanding than those employing the ordinary
Drude model. In particular, the description of the interfaces’

behavior as well as of the potential constraining the electronic
fluid, needed for an adequate resolution of bulk plasmons with
a typical wavelength of the order of 1 nm, requires very efficient
Maxwell solvers. In recent years, new numerical schemes
for solving the hydrodynamic equations in a nonperturbative
fashion have emerged [17,21]. In contrast to earlier works [6,7],
time-domain approaches provide direct access to the nonlinear
properties of the hydrodynamic Drude model by solving the
full set of nonlinear equations [17,18,21], without making
any further assumptions about the nonlinear source terms. In
particular, the discontinuous Galerkin time-domain (DGTD)
method [22], a time-dependent finite-element framework, has
shown good performance characteristics for both nonlocal and
nonlinear properties [17,23].

In this work, we utilize the DGTD approach to investigate
the hydrodynamic Drude model. Specifically, we discuss both
its nonlocal and nonlinear characteristics by employing a
cylindrical nanowire dimer system and a single V-groove
structure as illustrative examples. The cylindrical dimer is
a particularly interesting system to study: Indeed, despite
its low symmetry, it can be treated analytically within a
(quasi)electrostatic approach. This allows, in turn, employing
a conformal transformation which provides a quite useful
classification of the modes existing in the system (see Sec. II).
These analytical results are subsequently utilized to accurately
interpret the numerical outcomes (Sec. III). Our first key
finding is that, for a specific angle of incidence, the spatial
nonlocality has a particularly strong effect on the scattering
spectra. Second, we demonstrate that, due to the nonlinearity,
modes are efficiently excited via second-harmonic generation
(SHG), while in the linear regime their excitation is symmetry
suppressed. In addition, our group-theoretical considerations
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FIG. 1. Conformal map for bicylindrical coordinates. The colors
indicate which regions are mapped onto each other. The cylindrical
structure imposes a 2π periodicity on the u coordinate. The solutions
for the electrostatic potential as functions of the bicylindrical coor-
dinates ξ and u are therefore given by trigonometric and hyperbolic
functions (displayed on the left).

allow us to discuss SHG efficiencies by properly tuning the
modes into singly and doubly resonant conditions. These key
findings are directly applicable to more general nanoantenna
structures.

II. QUASIELECTROSTATIC THEORY OF A
CYLINDRICAL NANOWIRE DIMER

We consider two identical, parallel, and infinitely extended
circular nanowires with a 10-nm radius, separated by a 2-nm
gap. These wires are situated in vacuum and are made of
a Drude metal, described by a (local and linear) dielectric
constant

ε(ω) = 1 − ω2
p

ω(ω + iγ )
, (1)

with a plasma frequency ωp = 1.39 × 1016 rad/s (∼9 eV) and
damping constant γ = 3.23 × 1013 rad/s (∼21 meV). These
values correspond to the Drude contribution to the permittivity
of silver reported by Johnson and Christy [24]. With these
parameters the system can be described to a good approx-
imation within the quasielectrostatic approximation, which
amounts to neglecting retardation effects and setting the speed
of light to infinity. In the quasielectrostatic limit, the dimer
structure can be treated analytically. This is done by performing
a conformal map to an appropriate coordinate system, where
the Laplace equation, which in quasielectrostatics takes over
the role of the wave equation, becomes separable [25–27]. The
mapping, which describes a transformation between a strip of
R2 and two cylinders, is depicted schematically in Fig. 1. The
corresponding bicylindrical coordinates are called ξ and u, and
the transformation from the Cartesian coordinates reads

x = a sinh ξ

cosh ξ − cos u
, y = a sin u

cosh ξ − cos u
. (2)

The system is built around two foci which lie at x = ±a.
The parameter a depends on the parameters characterizing the
system we wish to describe and is uniquely determined for a
specific set of radii R1,2 and center points xc1,2 of the cylinders
by the following relations [25]:

xc1,2 = a

tanh ξ1,2
, R1,2 = a

| sinh ξ1,2| . (3)

The ξ -level lines are nonconcentric circles (so-called Apollo-
nian circles) around the foci, which lie in the left half-space
(x < 0) for ξ < 0 and in the right half-space (x > 0) for ξ > 0.
For ξ → ±∞ the circles collapse into the foci, and for ξ → 0
they enclose the corresponding half-space (x > 0 for ξ → 0+
or x < 0 for ξ → 0−) and the entire y axis. The vacuum-metal
interfaces where the boundary conditions for the fields have
to be imposed are thus given by two fixed ξ -level lines,
ξ = ξ1,2. In the present case, we consider cylinders with equal
radii R1,2 = R = 10 nm and a gap of 2 nm, corresponding to
xc1,2 = ±xc = ±11 nm. We then have

ξ1,2 = ±ξ0 = ±arcosh
(xc

R

)
= ±0.443568245 . . . , (4)

a = 4.582575 . . . nm. (5)

Within these coordinates, the Laplace equation reads

�V =
(

cosh ξ − cos u

a

)2[
∂2
ξ V + ∂2

uV
] = 0. (6)

This equation is separable and has the harmonic solutions

V1 = [sinh mξ, cosh mξ ] or [emξ ,e−mξ ], (7)

V2 = [sin mu, cos mu] or [eimu,e−imu], (8)

which are depicted along with the mapping in Fig. 1. From
this, we can construct four physical solutions as combinations
of u and ξ , where the variable u plays the role of the azimuthal
coordinate and introduces a 2π periodicity which results in a
“quantization” of the solutions labeled by the discrete index
m ∈ N+.

In the quasielectrostatic description the electromagnetic
boundary conditions read

Vi(±ξ0) = Vo(±ξ0),

ε(ω)
∂Vi

∂ξ

∣∣∣∣
±ξ0

= ∂Vo

∂ξ

∣∣∣∣
±ξ0

, (9)

where the subscripts i and o stand for inside and outside the
cylinder, respectively. The permittivity on the inside is given
by Eq. (1). The hyperbolic functions of Eqs. (7) are chosen
to describe the field outside the cylinders, while exponentially
decaying solutions characterize the field inside the cylinder
(see Fig. 1).

As a consequence, the composite solutions exhibit different
symmetry properties, and we categorize them in four classes
(labeled I–IV). The solutions for the potentials and those for
the resulting electric field distributions are displayed in Figs. 2
and 3.

The four classes of potentials from Fig. 2 can be identified
with the four irreducible representations of the dihedral sym-
metry point group D2 (in two dimensions, D2 is isomorphic to
the group C2v) [28,29]. There are four symmetry operations in
this group, all of which map the original dimer geometry onto
itself: The identity operation I , a rotation around the z axis by
180◦ C2z, mirroring on the xz plane σxz, and mirroring on the
yz plane σxz. The group is Abelian and the character table of
D2 is presented in Table I.
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FIG. 2. The harmonic solutions for the electrostatic potential in
a bicylindrical setup allow for four classes of solutions with different
symmetries. The potentials for m = 1 are displayed for each solution;
the arrows depict the gradients of the potentials. For each potential,
the irreducible representation is given.

Consequently, the four potentials transform according to

T [V I] = B1, T [V II] = B3,
(10)

T [V III] = B2, T [V IV] = A,

where T [F ] denotes the decomposition of a quantity F into
irreducible representations; that is, it indicates under which
transformation F is mapped onto itself. The two-dimensional
nabla operator transforms as

T [∇] =
⎛
⎝T [∂x]

T [∂y]

⎞
⎠ =

(
B2

B3

)
. (11)

The multiplication rules can be readily extracted from the
character table by multiplying the elements in the same column
and identifying the results with one of the four possible
symmetry classes. By applying the nabla operator to the
potentials

T [∇]T [V i] = T [Ei], i = I, . . . ,IV, (12)

TABLE I. Character table of the Abelian point group D2 [28].

D2 I C2(z) σxz σyz

A 1 1 1 1
B1 1 1 −1 −1
B2 1 −1 1 −1
B3 1 −1 −1 1

FIG. 3. Electric field distributions for the m = 1 modes pertaining
to the four symmetry classes. For each field component, the irreducible
representation is given. The field components were calculated directly
from the potentials in Fig. 2 via E = −∇V .

we obtain the symmetries of the fields in Fig. 3, which are
not equivalent to the symmetries of the potentials from the
same class:

T [EI] =
(

B3

B2

)
, T [EII] =

(
B1

A

)
,

T [EIII] =
(

A

B1

)
, T [EIV] =

(
B2

B3

)
. (13)

In order to excite one of the modes, the irreducible representa-
tion of the electric fields of an incoming light pulse has to match
those of the field components in Eq. (13). A static external field
(as one would have within a capacitor) is represented by A. As a
consequence, a static electric field in the x direction is capable
of exciting the mode from class II, and a static field in the y

direction is capable of exciting that of class III.
By inspection, one finds that the electric field Ekx of a wave

packet propagating in the x direction, with an electric field in
the y direction, is represented by

T [Ekx ] = A ⊕ B2, (14)

where the direct-sum symbol ⊕ indicates that the symmetries
of the field are given by a superposition of two irreducible rep-
resentations. In this sum, all signs and magnitudes are dropped.
Note, however, that the deeper we enter the quasielectrostatic
limit (smaller particle sizes), the smaller the influence of the
B2 contribution on the spectra becomes. The type of excitation
given by Eq. (14) complies with the symmetries of modes II
and I.
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FIG. 4. Graphic solution for the electrostatic problem for the
cylindrical dimer (neglecting the imaginary part of the permittivity).
We find a hybridization of the solutions. For large m, the modes tend
to the surface plasmon frequency ωsp.

On the other hand, for a pulse propagating in the y direction
with an electric field in the x direction, we have an electric field

T [Eky ] = A ⊕ B3. (15)

This field therefore excites modes of classes I and III (see
Fig. 3). Thus, modes of class IV are dark for wave packages of
this type or linear combinations thereof, i.e., regardless of the
angle of incidence.

Having discussed the symmetries of the modes, we proceed
to the determination of their frequencies. In the quasielec-
trostatic problem, the frequency dependence is introduced by
means of the material model and the boundary conditions given
by Eq. (9). In these considerations, the azimuthal variable u

does not play a role because the angular dependence is the same
everywhere in space. Therefore, within the quasielectrostatic
theory, classes I and III as well as classes II and IV are
degenerate. As a result, we arrive at the following solutions:

ε(ω) = − coth(mξ0),

ε(ω) = − tanh(mξ0) (16)

for solutions I and III and solutions II and IV, respectively,
which are displayed in Fig. 4. (The imaginary part of the per-
mittivity is neglected in the graphical solution, but it is included
in the analytical calculation of the mode frequencies). The
degeneracy is lifted when we go beyond the quasielectrostatic
limit. As demonstrated in Fig. 4, for a cylindrical dimer we find
a hybridization of modes, having frequencies both below and
above that of a single cylinder; namely, the surface plasmon
frequency ωsp = ωp/

√
2, which is obtained from Re(ε) = −1.

The modes for m = 1 are well separated from the next higher
modes. For large m, the mode frequencies tend to ωsp. For
infinite separation, xc → ∞ the mode frequencies collapse
to ωsp, and the field distributions become the well-known
multipolar distributions of regular cylinders, with their dipoles
oriented according to the symmetries described above.

III. NUMERICAL RESULTS

A. Cylindrical dimer

The hydrodynamic model describes the electrons in the
metal as a charged and compressible fluid subject to elec-

tromagnetic forcing, leading to a set of equations of motion
comprising the Euler equation and the equation of charge
conservation. The full electromagnetic problem is then defined
by the solution of the dynamics of this system along with the
Maxwell equations that couple to the fluid equations via the
electric current. We employ the usual hard-wall slip boundary
condition, which consists of setting the normal component of
the fluid’s velocity to zero at the material surface, allowing
the electrons to slip sideways [30]. This additional boundary
condition (of nonelectromagnetic origin), which is equivalent
to the vanishing of the normal component of the current at
the interface, is physically related to the possibility of having
a nonzero volume charge density at the surface [31,32]. The
pressure term appearing in the hydrodynamic equation (see
below) induces a smearing out of the charge density on the
scale of the plasma screening length (given in our case by
the Thomas-Fermi wavelength) [33], preventing the fluid from
having singular behaviors at the surface. The influence of the
resulting electron spill out at the particle surface has previously
been studied by Toscano et al. [13] in a framework similar to
the one employed here.

The nonlinear, nonlocal, and fully retarded version of the
hydrodynamic model is described by the following equations
[17]:

∂tn = −∇ · (nv), (17a)

n∂tv = −n(v · ∇)v − 1

M
∇p − γ nv

+ e

M
n(E + μ0v × H), (17b)

where M = 0.96me (me is the free-electron mass [24]), n =
n(r,t), v = v(r,t), and p = p(r,t) denote the electron fluid
density, velocity, and pressure, respectively. Equations (17)
are conservation relations addressing the number of charge
carriers [Eq. (17a)] and their total momentum [Eq. (17b)]. They
have been applied in different circumstances to describe the
dynamics of carriers not only in metals but also semiconductors
[34,35]. For metals, using the Thomas-Fermi approximation,
the pressure is given as

p = 1

5

h̄2

me

(3π2)2/3n5/3. (18)

Upon linearization, the above set of equations for the longitu-
dinal component gives the usual nonlocal permittivity

εL(k,ω) = 1 − ω2
p

ω(ω + iωγ ) − β2k2
, (19)

while the transverse permittivity εT(ω) still has the local form
of Eq. (1). For our set of parameters we have β2 ≈ 6.9738 ×
1011 m2/s2. Owing to its simplicity, the linearized model
allows for an analytical solution of the full electromagnetic
problem in certain simple geometries. This is the case for
a single-cylinder configuration, which has been used as an
analytical reference for the convergence study of our numerical
computations [17]. In the following, the DGTD method is
used to solve the full nonlinear and nonlocal electromagnetic
problem and to compute the scattering spectra of the dimer
system. To calculate the spectra, a total-field/scattered-field
(TFSF) formalism is employed, wherein a closed contour
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is provided around the scatterer. At this contour a pulse is
injected, and the scattering signal is subsequently calculated
by recording the flux of the Poynting vector through said
contour [22,30]. At first, the system is excited using a spectrally
broadband Gaussian pulse with a central frequency of 0.67ωp,
a width of 1.36 ωp, and a rather low field amplitude of 103 V/m.
The E field is polarized in plane, and we study two angles of
incidence: incidence perpendicular to the dimer axis (k in the
y direction) and along the dimer axis (k in the x direction).

In Fig. 5, we display the scattering spectra, calculated
using both a nonlocal hydrodynamic Drude model and a local
Drude model, while indicating the analytic quasielectrostatic
solutions by vertical lines [36]. The corresponding spectra
for both the local and nonlocal calculations exhibit clearly
separated peaks which allow for classification by identifying
them with the quasielectrostatic solutions for the different
symmetry classes and different values of m (see Sec. II).
The nonlocal spectra exhibit a blueshift with respect to the
local calculations, which is a typical feature of the nonlo-
cal material model in conjunction with hard-wall boundary
conditions [37].

In Fig. 5(a), we display the spectra for an incident pulse
propagating along the dimer axis. As expected from our group-
theoretical analysis, for incidence along the dimer axis, all
modes should be either class I or class III and therefore lie
below the plasmon frequency. In fact, the fields belonging to
the prominent peaks can be identified as belonging to class
III. Modes of class I are, however, also allowed. Within the
quasielectrostatic description, they are degenerate with those of
class III and are therefore not visible in the scattering spectrum.
In the Supplemental Material [29], we show that the modes of
class I are, in fact, also excited and that in a fully retarded
computation the degeneracy in frequency is lifted.

For incidence along the dimer axis [Fig. 5(b)], we have
solutions of classes I and II, which energetically lie below
and above the surface plasmon frequency, respectively. This
also confirms the expectations from our group-theoretical
considerations above [38]. For incidence along the dimer axis,
we observe another notable effect of the nonlocality: The
spectra show a number of small but well-separated peaks
just above the surface plasmon frequency ωsp which do not
exist in the local case. They originate from high-order modes
which, in a local description, coalesce at the limiting point ωsp

but, within a nonlocal framework, split away and are increas-
ingly blueshifted beyond this frequency, separating from each
other [11].

As a next step, we investigate the nonlinear properties of our
model. As in Ref. [17], we raster scan a broad frequency range
by exciting the system with spectrally narrowband Gaussian
pulses (each with a spectral width of 0.03ωp and a field
strength of 106 V/m) that are centered at different fundamental
frequencies and subsequently record the second-harmonic
signal once again employing the TFSF formalism. Specif-
ically, the excitation pulses at the fundamental frequencies
have to be chosen to exhibit a sufficiently narrow bandwidth
such that their spectra have zero overlap with the second-
harmonic frequency range, thereby enabling a background-
free detection of the second-harmonic signal. In Fig. 6, we
display the resulting second-harmonic spectra (the signal at
the fundamental frequency of the excitation is not displayed;

FIG. 5. The local and nonlocal spectra for a dimer structure for
(a) incidence perpendicular to the dimer axis and (b) incidence along
the dimer axis. The nonlocality has a particularly strong effect for the
case in (b). For the local Drude model, the spectrum in (a) contains
exclusively modes of class I or III that are confined to frequen-
cies below the surface plasmon frequency ωsp [as expected from
(quasi)electrostatic theory]. For the nonlocal hydrodynamic Drude
model, the entire spectrum is blueshifted. The field distributions were
recorded at the frequencies corresponding to the m = 1 resonances
and can be identified with the (quasi)electrostatic solutions from
Fig. 3. The positions of the quasielectrostatic modes, according to
Eq. (16), are indicated by vertical lines. Only the real part of the field
distributions is displayed. The imaginary part can be found in the
Supplemental Material [29].

it matches the linear spectrum known from the broadband
calculations above). The corresponding SHG peaks can once
again be associated with certain well-defined m values of the
quasielectrostatic theory. For both excitation directions, we
find a strong signal near 0.85ωp, which corresponds to an
m = 1 mode. Through the field distributions, we determine
that the excitation, for both angles of incidence, belongs to
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FIG. 6. Second-harmonic signals for (a) incidence perpendicular
and(b) incidence along the dimer axis, obtained via a scan using
a sequence of spectrally narrowband pulses at the fundamental
frequencies. The field distributions are displayed for the m = 1 mode.
The vertical lines indicate the positions of the quasielectrostatic modes
[see Eq. (16)].

symmetry class IV, which cannot be excited on the linear level
from the far field. Furthermore, for an excitation propagating
perpendicular to the dimer axis [Fig. 6(a)], only resonances
above the surface plasmon frequency ωsp occur. There is a
broad resonance just below the class IV m = 1 mode. This
broad peak corresponds the class II m = 1 mode.

For an incident pulse along the dimer axis [Fig. 6(b)], there
are resonances below and above the surface plasmon frequency
ωsp. An inspection of the field distributions shows that they
belong to class III. This means that for both angles of incidence,
we are now exciting those modes that were previously not
excited in the linear calculations.

A group-theoretical investigation of the intrinsic symme-
tries of the hydrodynamic Drude model in combination with the
Maxwell equations provides an explanation for this behavior.
In order to facilitate our analysis, we treat the combined
nonlinear set of equations within a perturbative approach.
Specifically, the fields pertaining to the hydrodynamic equa-
tions are expanded into a series of harmonics [1,18],

E = E0 + E1 + E1 + · · · , (20)

H = H1 + H2 + · · · , (21)

n = n0 + n1 + n2 + · · · , (22)

v = v1 + v2 + · · · , (23)

where the subscripts i = 0,1,2 correspond to static fields, fields
at the fundamental frequencies, and fields pertaining to the
second-order response, respectively. Upon inserting the above
expansions into the hydrodynamic equations (17), we obtain
source distributions for the fields at the second-order response
that are expressed in terms of various combinations of the
fields at the fundamental frequency. Consequently, we can
determine the symmetry properties of the second-order fields
from the symmetries of the corresponding source distributions,
i.e., from the symmetries of the fundamental fields through
appropriate compatibility relations (see the Supplemental
Material [29]). Using this procedure, we find

T [E2x] = B2[T [E1x]]2. (24)

We recall that for a wave packet propagating in the y direction,
the symmetry of the incoming electric field is given by

T
[
E

ky

x,inc

] = T [E1x] = A ⊕ B3, (25)

which is compatible with modes of classes I and II that are
both excited in this case. Calculating the second-order fields

T
[
E

ky

2x

] = B2[A ⊕ B3]2 = B2(A ⊕ B3) = B2 ⊕ B1 (26)

reveals that the second-harmonic modes are associated with
the remaining two symmetries, i.e., the modes of classes II
and IV (see Fig. 3). We thus explicitly see that the transfor-
mation behavior of the second-order fields differs from that
of the fundamental (excitation) fields, thus explaining many
nontrivial features of SHG spectra. The considerations on the
incidence of a pulse propagating in the x direction proceed in
a completely analogous fashion. Starting with

T
[
E

kx

y,inc

] = A ⊕ B2, (27)

the modes of classes I and II are excited, which must have
first-order Ex fields of the type

T
[
E

kx

1x

] = B1 ⊕ B3. (28)

Therefore, for the second-order response, we find

T
[
E

kx

2x

] = B2[B1 ⊕ B3]2 = B2(A ⊕ B2) = B2 ⊕ A, (29)

which means that second harmonics of classes III and IV are
excited (see Fig. 3).

B. V-groove

The findings from the previous section can be applied
to other systems with different symmetry. For instance, a
V-groove structure, i.e., a rod-shaped antenna with a notch on
one side (see Fig. 7) represents a system with a lower symmetry
than that of a dimer as it cannot be mirrored upside down.
In a recent work we found that this system exhibits strong
second-harmonic generation efficiencies due to the possibility
to engineer the structure to exhibit double-resonant effects
[17].

In fact, the V-groove exhibits a symmetry corresponding to
the point group C2. It is mapped onto itself by a rotation around
the y axis (which in two dimensions is isomorphic to mirroring
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100 nm

20 nm

x

y

FIG. 7. Schematic of the V-groove geometry, including geometric
data.

on the yz plane). Since C2 represents a subgroup of the D2

group of the dimer, we can simply reuse the group-theoretical
analysis developed for the dimer and adapt it to the V-groove
case. This means that, to obtain the character table of C2, the
operations not belonging to this point group can be eliminated
from the character table of D2 (see Table II). Consequently,
only two symmetries and two classes of modes, hereafter called
I′ and II′, remain, and we can identify the symmetries of the
dimer geometry with those of the V-groove geometry as

B
D2
1 ≡ BC2 , (30)

B
D2
2 ≡ BC2 , (31)

AD2 ≡ AC2 , (32)

B
D2
3 ≡ AC2 . (33)

By carrying out the corresponding substitutions in the equa-
tions for the dimer, we readily obtain the symmetries for the
first- and second-order fields for the V-groove. Specifically, for
a wave propagating in the y direction, with the E field polarized
in the x direction, we find

T
[
E

ky

1x,dimer

] = AD2 ⊕ B
D2
3

−→ T
[
E

ky

1x,V-groove

] = AC2 , (34)

and therefore, the second-order field is given by

T
[
E

ky

2x,V-groove

] = BC2 [AC2 ]2

= BC2 (AC2 )

= BC2 . (35)

This demonstrates that, for this direction of incidence, the
nonlinearly excited modes are different from those that are
excited in the linear limit.

For pulses with the direction of incidence along the x axis,
we find for the mode symmetries

T
[
E

kx

1x,dimer

] = B
D2
1 ⊕ B

D2
3

−→ T
[
E

kx

1x,V-groove

] = BC2 ⊕ AC2 , (36)

TABLE II. Character table of the point group C2. Since C2 is a
subgroup of D2, the corresponding character table can be obtained by
deleting some operations (indicated by a dash) of Table I.

C2 I C2(z) σxz σyz

A 1 — — 1
B1 1 — — −1
B2 = B1 1 — — −1
B3 = A 1 — — 1

FIG. 8. Linear scattering spectra for the V-groove structure.
(a) Incidence along the short axis. (b) Incidence along the long axis.
The resonances indicated by vertical lines will be important in the
discussion of SHG (see Fig. 9). The plots employ a logarithmic scale
on the y axis.

so that modes of both symmetry classes can be excited. For the
second-order fields, we obtain

T
[
E

kx

2x,V-groove

] = BC2 [BC2 ⊕ AC2 ]2

= BC2 (AC2 ⊕ BC2 )

= BC2 ⊕ AC2 , (37)

which demonstrates that both classes of modes can also be
excited at the second-order response.

We are now in a position to computationally validate
the symmetry relations at both the linear and second-order
response levels. In addition, we can classify the symmetries of
the excited modes by close inspection of the corresponding
linear and second-order scattering spectra. In other words,
contrary to the standard approach where the symmetry of the
excited modes allows for assessing the second-order response,
we have, based on our group-theoretical analysis, sufficient
information to invert the procedure and determine the excited
modes just by analyzing the linear and nonlinear spectra.

To demonstrate this, we again use a broadband excitation
pulse to compute the linear scattering spectra (see Fig. 8).
According to the symmetry analysis, for incidence with the
E field polarized in the x direction and the k vector pointing
along the y axis (short axis), only one class of modes (class I′)
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FIG. 9. Second-harmonic spectra from a doubly resonant V-
groove. (a) Incidence along the short axis. A strong doubly resonant
behavior is found as the linear signal coincides with ω1, yielding a
signal that is five orders of magnitude larger than for the other angle of
incidence [17]. Resonances are found at the frequencies of ω2 = ω∗

2

and of ω∗
3 . (b) Incidence along the long axis. A doubly resonant

enhancement is not found as the ω∗
1 resonance on the linear level

is weak for this direction of incidence. Resonances are found at the
frequencies of ω2 = ω∗

2 , of ω∗
3 , and of ω4 = ω∗

4 . Note that the linear
signal is scanned across only the ω1 peak, from 0.25ωp to 0.35ωp,
where doubly resonant behavior is expected. This is not a frequency
scan over the whole spectrum.

is excited. Thus, all modes in Fig. 8(a), labeled ω1,ω2, and
ω4, must belong to this class. If the direction of incidence
is rotated by 90◦ (long axis), both class I′ and II′ modes are
excited. The latter spectrum is displayed in Fig. 8(b), and all
resonances for the corresponding direction of incidence ω∗

1,ω
∗
2,

ω∗
3, and ω∗

4 are marked by an asterisk for later reference. A
close inspection of the spectra in Fig. 8 reveals that for every
frequency at which there is a resonance in Fig. 8(a), there is
also a resonance in Fig. 8(b), but the reverse does not hold. This
is fully consistent with the group-theoretical analysis which
suggests that, for incidence along the long axis, both classes of
modes are excited, while for incidence along the short axis only
one class is excited [see Eqs. (34) and (36)]. All peaks in the
spectra of Fig. 8(a) must pertain to class I′. Three peaks which
will be important for our subsequent discussions are labeled
ω1, ω2, and ω4. On the other hand, the peaks in Fig. 8(b) could
correspond to either class I′ or class II′ modes. We find that

TABLE III. Summary of the symmetry classes of the modes
excited in the V-groove geometry. The asterisk indicates that, in the
linear spectrum, the spectral peak was found during excitation along
the long axis of the structure. Peaks ω2 and ω∗

2 are degenerate in
frequency. While ω2 has contributions from only class I′, ω∗

2 has
contributions from both classes. Peak ω∗

3 , which was found for only
one excitation direction, is class II′. Peaks ω4 and ω∗

4 come from the
same mode, which is class I′. The fundamental signal for this SHG
study was chosen near ω1 to exploit the doubly resonant behavior of
the structure; hence, the peak at ω1 itself is excluded from the study.

ω2 ω∗
2 ω∗

3 ω4 ω∗
4

Class I′ X X X X
Class II′ X X

the peaks labeled ω∗
1, ω∗

2, and ω∗
4 occur at the same frequencies

ω1, ω2, and ω4 as before. Therefore, each of these peaks could
have contributions of a class I′ mode and a class II′ mode.
The peak labeled ω∗

3 can have only contributions from class
II′ since no peak is found at this frequency when the system
is excited along the short axis [Fig. 8(b)]. By investigating the
second-order response, the contributions to peaks ω∗

1, ω∗
2, and

ω∗
4 can be identified.

According to Eq. (24), for the second-order response, for
incidence along the short axis, the nonlinearly excited modes
are class II′, i.e., precisely those modes that are not excited
by the fundamental signal. In turn, for incidence along the
long axis, on both the fundamental (linear) and second-order
(nonlinear) levels, modes of classes I′ and II′ will be excited.

In Fig. 9, we display the SHG spectra for the V-groove
structure, just like before for the dimer in Fig. 6. We notice
first that the frequencies ω∗

2, ω∗
3, and ω∗

4 are such that they are
approximately at twice the frequency of ω∗

1. Thus, utilizing a
fundamental pulse centered near ω∗

1 that generates a second-
harmonic signal at those peaks leads to a doubly resonant
excitation. Note that since the fundamental signal is centered
near ω∗

1, the peak at ω∗
1 itself is not included in the SHG studies.

For incidence along the short axis, the fundamental signal at
ω1 is very strong, which yields a strong double resonance,
while for incidence along the long axis, the signal (ω∗

1) is very
small, and therefore, the double-resonance effect is weak (see
Fig. 9). For incidence along the short axis, there is a strong
SHG enhancement, yielding a signal which is approximately
five orders of magnitude larger than the signal obtained for
incidence along the long axis.

As pointed out above, an analysis of the SHG spectra
in Fig. 9 suffices to determine whether the peaks under
investigation pertain to class I′ or class II′ (see Table III for a
summary). In fact, two very pronounced peaks at frequencies
ω∗

2 and ω∗
3 are found in Fig. 9(a). Above, we already discussed

that the class II′ ω∗
3 mode is expected in the SHG signal. The

fact that there is also a resonance at ω∗
2 means that the ω∗

2 peak
in the linear spectrum must have a contribution of a class II′

mode which is degenerate in frequency with the ω2 class I′
mode. On the other hand, the fact that there is no SHG signal
at ω∗

4 means that the ω∗
4 has only a class I′ contribution, just

like ω4. The SHG signal for incidence along the long axis
[Fig. 9(b)] exhibits peaks at all three frequencies, ω∗

2, ω∗
3, and
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ω∗
4. This confirms the group-theoretical prediction that, for this

direction of incidence, modes from both symmetry classes are
excited linearly and nonlinearly. Consequently, the mode at ω∗

3 ,
which is clearly class II′, is excited linearly and nonlinearly,
and so is peak ω4, which, in turn, we have identified as
having class I′ contributions. Finally, peak ω∗

2 is a mixed result
of the class I′ and class II′ modes’ responses at this same
frequency.

IV. CONCLUSIONS

We have presented a numerical and analytical study of
the plasmonic modes in different nanowire systems and their
excitation on both the fundamental linear and second-order
nonlinear levels. A description based on the quasielectro-
static approximation allows for an extremely useful mode
classification which, for cylindrical dimer systems and the
ordinary Drude model, has been carried out fully analytically.
In combination with a group-theoretical analysis of the funda-
mental linear and second-order nonlinear responses, we have
established mode selection rules predicting the excitation of the
linear and nonlinear plasmonic modes for different directions
of incidence. With the help of the analytical results, we have
been able to interpret the resulting linear and nonlinear numer-
ical spectra obtained using the DGTD method, although the
computations were performed outside the quasielectrostatic
regime and using a nonlocal material model. In order to further
demonstrate the utility of the mode classification and group-
theoretical analyses, we have derived the selection rules of a
low-symmetry single V-groove system from those of the high-
symmetry dimer system. This also shows that our analyses can
be readily applied to other geometries which have a symmetry
that is the same as or lower than that of a cylindrical dimer,
i.e., a very wide range of possible nanoantenna geometries.

Our analysis relies on the nonlocal, nonlinear, and fully
retarded hydrodynamic Drude model as described in Eqs. (17).
In such a model the metal is described as a plasma with
finite compressibility, in contrast to a local description where
the fluid is rigid. The hydrodynamic equations allow for the
analytical inspections and numerical implementations pre-
sented above and provide a good description of the system.
Further investigations will aim to improve such a description
by considering further effects such as the Landau damping,
which were neglected in our present treatment. Previous work
[39] has indeed shown that the interplay between nonlocal-
ity and dissipation can substantially alter some features of
the resonance spectrum, adding, for example, additional line
broadening. Modifications of the hydrodynamic model which
partially take these features into account have already been
presented in the literature [2,3,10,13,13,14,40]. Further, by
exploiting the connection to plasma physics, an alternative and
highly interesting procedure relies on the implementation of
the fully nonlinear Boltzmann transport equation to describe
the dynamics of the carrier (quantum) distribution in the metal
[33,41]. The combination of this and other similar approaches,
providing a microscopically based description of the material
properties, with an analysis of the geometry-induced system
symmetries offers a powerful and constructive route for de-
signing realistic and highly efficient nanodevices that are able
to achieve strong SHG.
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