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Stability of trions in coupled quantum wells modeled by two-dimensional bilayers
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We report variational and diffusion quantum Monte Carlo calculations of the binding energies of isolated
indirect trions and biexcitons in ideal two-dimensional bilayer systems within the effective-mass approximation,
and with a Coulomb 1/r interaction between charge carriers. The critical layer separation at which trions become
unbound has been studied for various electron-hole mass ratios, and found to be over an order of magnitude larger
than the critical layer separation for biexcitons.
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I. INTRODUCTION

Excitonic complexes consisting of bound states of small
numbers of electrons and holes have been observed under many
different conditions in semiconductors. In the dilute limit,
excitons collectively behave as a gas of weakly interacting
neutral bosons. It was predicted in the 1960s that Bose-Einstein
condensates of excitons might form under experimentally
accessible conditions [1,2], and coupled quantum-well het-
erostructures, in which electrons and holes are confined to
spatially separated layers, were later identified as an ideal test
bed for the observation of an excitonic condensate [3,4]. Such
geometries hinder recombination and significantly increase
the exciton lifetime, which is necessary if thermalization of
a photoexcited gas of excitons is to occur. Furthermore, at
sufficiently large layer separations, the repulsive dipole-dipole
interaction between spatially indirect excitons helps to prevent
the formation of larger charge-carrier complexes.

A Bose-Einstein condensate of excitons in a semiconductor
such as GaAs is expected to be dark, i.e., not to couple directly
to photons [5]. Striking fragmented-ring patterns of indirect
exciton photoluminescence have been observed around laser
excitation spots in GaAs coupled quantum wells [6], and
subsequent work [7] has indicated that these patterns arise due
to coherence of indirect excitons. More recent experimental
work has provided further evidence for the creation of an
excitonic Bose-Einstein condensate in coupled quantum wells,
as revealed by the macroscopic spatial coherence of indirect
excitons at low temperatures [8–11]. However, despite the
many exciting and important advances in this field, the situation
is not perfectly clear cut and there remains a need to analyze
factors that could influence the formation of an excitonic
condensate in a coupled quantum well [12].

The formation of indirect biexcitons (also neutral com-
posite bosons, but with a higher mass than excitons) could
potentially inhibit condensation, but various theoretical works
[13–16] showed that biexcitons are expected to be unbound
in the typical coupled quantum-well geometries accessible
to experimentalists, in which the layer separation is of the
order of tens of Å. In this work we investigate the stability
of a different class of charge-carrier complex, namely indirect
trions (bound states of two electrons in one layer and a hole

in the opposite layer, or vice versa) in coupled quantum wells.
Trion formation can occur if a nonzero concentration of free
charge carriers is present in a semiconductor, or if the different
mobilities of electrons and holes leads to a local imbalance in
the carrier concentration. Free charge carriers can then bind
to excitons created by optical excitation, producing trions. A
finite concentration of trions effectively provides disorder, and
could therefore tend to restrict Bose-Einstein condensation of
the remaining excitons. As an additional motivation for our
work, it is known that trions play a key role in the optical
properties of atomically thin transition-metal dichalcogenides
and other two-dimensional (2D) semiconductors [17–22]. We
shall assume an isotropically screened Coulomb interaction, as
appropriate for trions in GaAs/AlGaAs heterostructures, rather
than the Keldysh interaction appropriate for charge carriers in
2D systems with a significant in-plane polarizability [23,24].
Nevertheless, our results are of qualitative relevance to optical
studies of bilayers of 2D semiconductors.

We have used the variational and diffusion quantum Monte
Carlo (VMC and DMC) methods [25,26] to calculate the
ground-state energies and binding energies of spatially indirect
trions within the 2D-isotropic effective-mass approximation.
A negative trion in such an ideal 2D bilayer system is approx-
imately described by the Hamiltonian

Ĥ = − h̄2

2me
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where me and mh are the electron and hole effective masses,
e is the magnitude of electronic charge, d is the interlayer
separation, and ε is the permittivity of the medium in which the
two layers are embedded. The in-plane interparticle distances
are given by ree = |re1 − re2 | and reih = |rei

− rh|, where re1 ,
re2 , and rh are 2D vectors holding the in-plane coordinates of
the electrons and the hole, which are assumed to be confined
to parallel planes as shown in Fig. 1. Although our results
pertain directly to the negative trion (X−), the corresponding
properties of the positive trion (X+) can easily be generated
by charge conjugation, i.e., by interchanging me and mh (or,
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FIG. 1. Schematic arrangement of two electrons (light green) and
a hole (red) for a negative trion in a coupled quantum well, showing
the definition of the interparticle distances. The two electrons are in
a spin singlet state and hence act as distinguishable particles in the
spatial wave function. The electrons and hole move in two dimensions
in spatially separated layers.

equivalently, by replacingσ byσ−1). Furthermore, we consider
only the ground-state case in which the two electrons are
distinguishable (opposite-spin electrons). Trions and biexci-
tons with indistinguishable electrons are much less stable than
trions with distinguishable electrons; by analogy with results
obtained for biexcitons in single-layer 2D semiconductors,
we expect that trions and biexcitons with indistinguishable
particles are only stable when the indistinguishable particles
are very heavy, so that exchange effects are negligible [24].

Although biexcitons in coupled quantum wells have been
studied extensively, there are relatively few theoretical studies
of indirect trions. Kulakovskii and Lozovik [27] and Berman
et al. [28] study trions consisting of a direct exciton in one
layer bound to a charge carrier in a neighboring layer, and
make the interesting suggestion that Wigner crystallization of
trions could occur. Kovalev and Chaplik [29] investigated the
behavior of indirect trions in an out-of-plane magnetic field by
treating the interlayer electron-hole Coulomb potential within
a harmonic approximation. Sergeev and Suris [30] studied a
model similar to ours within a heavy-hole approximation. We
compare our results with theirs in Sec. III A.

The rest of this paper proceeds as follows. In Sec. II we
describe our methodology for calculating the binding energies
of trions and biexcitons; in Sec. III we present our results;
and finally in Sec. IV we draw our conclusions. Except where
otherwise stated, we use excitonic units: energies are given
in terms of the exciton Rydberg R∗

y = μe4/[2(4πεh̄)2] and
lengths are given in terms of the exciton Bohr radius a∗

0 =
4πεh̄2/(μe2), where μ = memh/(me + mh) is the reduced
mass of the electron and hole. In these units the dimensionless
solutions E/R∗

y to the Schrödinger equation only depend on
the electron-hole mass ratio σ = me/mh and the dimensionless
layer separation d/a∗

0 .

II. COMPUTATIONAL METHODOLOGY

The VMC and DMC methods [25,26] as implemented in the
CASINO code [31] were used in conjunction with a trial wave
function of the form

� = exp(J )�ee�e1h�e2h, (2)

where

�ee = exp

[
c1ree

1 + c2ree
+ 1

2
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�e1h = exp

[
c3re1h + c4r

2
e1h

1 + c5re1h

]
, (4)
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2
e2h
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]
, (5)

to perform total-energy calculations for the negative trion. Our
trial wave function is similar to the one used by Tan et al. to
study biexcitons [32], but with an additional term that describes
the behavior of the wave function when one electron is far
from the remaining exciton. The nested exponential in Eq. (3)
acts as a “switching on” term; the logarithm only manifests
appreciably in the case that the two electrons are far apart. The
Jastrow exponentJ contains cuspless two-body and three-body
polynomial functions of the interparticle distances, truncated
at finite range [33,34]. The wave function of Eqs. (2)–(5) incor-
porates both short- and long-range effects through the use of
the Padé-form exponents. It exhibits the correct symmetry of
the ground-state system, being invariant upon the exchange
of the two electrons, i.e., �(re1 ,re2 ,rh) = �(re2 ,re1 ,rh). The
trial wave function reduces to

� → A
1√
ree

exp[−kree] exp

[
c3re2h + c4r

2
e2h

1 + c5re2h

]
, (6)

when one electron is far from the remaining exciton, where
k > 0 and A is constant. This form of wave function is
appropriate for an electron moving in the potential energy
due to the static charge distribution of the remaining indirect
exciton. The static dipole moment of the exciton is p = −edez,
where ez is a unit vector in the z direction. Let the separation
of the electron from the center of the exciton be r + (d/2)ez,
where r is the in-plane separation. Hence the repulsive long-
range exciton-electron interaction energy is

−e
p · [r + (d/2)ez]

4πε|r + (d/2)ez|3 ∼ r−3. (7)

The polarization of the exciton by the electric field due to
the lone electron gives an attractive O(r−4) potential-energy
contribution. At large r the 2D radial Schrödinger equation for
the relative motion of two particles interacting with a potential
that decays more rapidly than r−1 reduces to Bessel’s equation,
giving an asymptotic wave function of form r−1/2 exp(−kr) for
bound particles, where k is a positive constant; this behavior
is exhibited by Eq. (6).

The parameter set {c1, . . . ,c6} is subject to the following
conditions: (i) the values of c1 and c3 are fixed by the electron-
electron and electron-hole Kato cusp conditions [35,36]; (ii)
c4 < 0 to ensure that the wave function falls off as reih → ∞;
(iii) c2,c5 > 0 to avoid divergences in the wave function; and
(iv) c6 > 0 to enforce the correct long-range behavior of an
electron in a dipole field. The optimal values of the parameters
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{c1, . . . ,c6} were obtained by successive minimization of the
variance of the local energy and the energy expectation value
[37–39].

In the DMC method the ground-state component of the
trial wave function is projected out by simulating a stochastic
process governed by the Schrödinger equation in imaginary
time. In systems such as those considered here, in which there
are no indistinguishable fermions, there are no uncontrolled
approximations in the DMC ground-state energy. We simul-
taneously remove time-step bias and population-control bias
by performing DMC calculations at two different, small time
steps, with the walker population being in inverse proportion
to the time step, and extrapolating linearly to zero time step.

The binding energy Eb
X− of a negative trion is defined as

the energy required to split the trion into an exciton and a free
electron, i.e.,

Eb
X− = EX − EX− , (8)

where EX and EX− are the ground-state total energies of an
exciton and a negative trion, respectively. Instability of the trion
with respect to dissociation into a free electron and an indirect
exciton is signalled by difficulty optimizing a bound-state trial
wave function, followed by the occurrence of nonpositive Eb

X−
values in DMC calculations in which the trial wave function
is forced to be bound. Forcing the trion to be bound raises
the energy of the trion due to confinement effects and hence
reduces the binding energy; if anything our predicted critical
separation is therefore expected to be underestimated. The
curve defined by Eb

X− (d/a∗
0 ,σ ) = 0, where Eb

X−(d/a∗
0 ,σ ) is the

binding energy of the trion with a given electron-hole mass
ratio σ and dimensionless layer separation d/a∗

0 , defines the
boundary of the stability region of the trion. In practice we
invert this relation and simply quote the critical layer separation
dcrit

X− (σ ) as a function of mass ratio. We have attempted to probe
the trion stability region directly by studying systems with
electron-hole mass ratios σ = 1/4, 1/2, 3/4, 1, 4/3, 2, and
4, and fitting the resultant trion binding energies to a Padé
approximant of the form

Eb
X− (d/a∗

0 )

R∗
y

= Eb
X−(0)/R∗

y + ∑3
i=1 ai(d/a∗

0 )i

1 + ∑4
j=1 bj (d/a∗

0 )j
, (9)

where {ai} and {bj } are fitting parameters. We have found
that this functional form yields sufficiently accurate fits of the
binding energies for all mass ratios considered here.

Where the trion is bound, we have performed fits to a “partial
2D” Padé approximant of the form

Eb
X−(σ,d/a∗

0 )

R∗
y

=
∑3

i=0

∑3
j=0 fij (1 + σ )−i/2(d/a∗

0 )j

1 + ∑4
k=1 gk(d/a∗

0 )k
, (10)

where fij and gk are fitting parameters, and the σ depen-
dence is motivated by the harmonic approximation within the
Born-Oppenheimer approximation in the case that σ → ∞
[24,30,40].

Finally, we report pair-distribution functions (PDFs),
which give information about the structure and spatial ex-
tent of charge-carrier complexes. For a negative trion, the
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FIG. 2. Negative-trion binding energy as a function of interlayer
spacing d and electron-hole mass ratio σ , in excitonic units. The inset
shows the edge of the region of stability for negative trions in greater
detail.

electron-electron and electron-hole PDFs are defined via

gee
X−(r) = 〈δ(r − ree)〉 (11)

geh
X−(r) =

〈
2∑

i=1

δ(r − reih)

〉
. (12)

The PDFs in a biexciton are defined in an analogous fashion.
The PDFs are evaluated by binning the interparticle distances
sampled in the VMC and DMC calculations. The error in the
VMC and DMC estimates of the PDF is first order in the error
in the trial wave function; however, the error in the extrapolated
estimate of the PDF, given by two times the DMC result minus
the VMC result, is second order in the error in the trial wave
function [41]. The PDF results that we report were obtained
by extrapolated estimation.

III. RESULTS AND DISCUSSION

A. Trion binding energy and region of stability

Our negative-trion binding-energy results are displayed in
Fig. 2, and our predicted critical layer separations are shown
in Table I. For larger electron-hole mass ratios σ , the binding
energy decays slowly to zero, and furthermore the DMC

TABLE I. Critical layer separations for negative trions (dcrit
X− )

and biexcitons (dcrit
XX) at different electron-hole mass ratios σ . The

biexciton critical layer separations were evaluated using Eq. (2) of
Ref. [16].

σ dcrit
X−/a∗

0 dcrit
XX/a∗

0 (Ref. [16])

1/4 4.52(4) 0.48
1/2 5.26(6) 0.43
3/4 6.63(9) 0.42
1 7.69(7) 0.42
4/3 >8 0.42
2 >8 0.43
4 >8 0.48
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calculations become more difficult due to the separation of
imaginary-time scales for the different particles. The inset to
Fig. 2 illustrates the challenge in determining a precise value
for the boundary of the region of stability. Nevertheless, we
can easily place lower bounds on the critical layer separation
at a given mass ratio. As can be seen in Fig. 2 and Table I, trions
are stable over a large region of the (d/a∗

0 ,σ ) model parameter
space. When compared with the biexciton stability region [16],
we find that the trion is bound for layer separations over an
order of magnitude larger than those for which the biexciton is
bound. Trion formation is always possible whenever biexcitons
are bound, and trion binding energies are typically far larger
for the same set of material parameters.

The biexciton (XX), whose dominant decay is into a pair
of excitons (XX → X + X), has a stability region that is
determined by the effective interactions of the constituent
indirect excitons, and this effective interaction is a repulsive
dipole-dipole interaction at long range [14,16]. Negative-trion
dissociation is determined by the effective interaction of a lone
electron with a single indirect exciton. The interaction potential
between an indirect exciton and a lone electron consists of
a repulsive part due to the static charge distribution of the
exciton, which falls off as r−3, and an attractive part due to
the induced dipole moment of the exciton, which falls off
as r−4. Over the intermediate range the attractive part of the
interaction plays a much more important role in the trion than
in the biexciton.

Fitting Eq. (10) to our trion binding energies results in
a maximum error of 5 × 10−4R∗

y , with over 90% of the
data points falling within 2 × 10−4R∗

y of the fit. The fitting
parameters fij and gk are [42]

f =

⎛
⎜⎝

1.408 21.53 25.25 1.676
−2.340 −40.43 −36.22 −11.51
1.617 30.47 5.803 17.36

−0.2129 −0.5492 7.423 −8.694

⎞
⎟⎠, (13)

g =

⎛
⎜⎝

26.16
147.7
186.4
29.45

⎞
⎟⎠. (14)

This fit applies only for 1/4 � σ � 4 and 0 � d �
min{8a∗

0 ,dcrit
X− }. Accurately parametrizing the binding energy

near the critical separation dcrit
X− is not possible with our limited

data, and caution should be applied when relying on this fit
near the critical region.

Appropriate model parameters for the GaAs/AlGaAs cou-
pled quantum-well device studied by Butov et al. [6] were
identified in Ref. [32]. In particular the layer separation d was
chosen such that the exciton binding energy obtained using
the screened Coulomb interaction with strictly 2D electrons
and holes matched the exciton binding energy obtained using
a more realistic model for electrons and holes moving in the
quantum wells [43]. The electron and hole masses are taken to
be me = 0.067m0 and mh = 0.134m0, where m0 is the bare
electron mass. The permittivity is taken to be ε = 13.2ε0.
Hence the mass ratio is σ = 0.5, the exciton Bohr radius is
a∗

0 = 156 Å, and the exciton Rydberg isR∗
y = 3.5 meV. Finally,

the layer separation is taken to be d = 100 Å = 0.64a∗
0 .

With these parameters, Lee et al. [16] found the
critical layer separation for biexciton formation to be
dcrit

XX(0.5) = 0.43(5)a∗
0 = 67(8) Å. This is significantly less

than the actual layer separation, implying that biexcitons
are unbound. On the other hand, we find the critical layer
separation for negative-trion formation to be dcrit

X− (0.5) =
5.26(6)a∗

0 = 821(9) Å and the critical layer separation for
positive-trion formation to be dcrit

X− (2) > 8a∗
0 = 1248 Å.

Both of these are many times larger than the actual layer
separation, implying that both positive and negative trions
are bound. Using Eq. (9), the predicted binding energies of
negative and positive trions are 0.0411(4)R∗

y = 0.14 meV and
0.061 66(3)R∗

y = 0.22 meV, respectively. Hence both isolated
positive and isolated negative trions are expected to be present
at temperatures below T = 2 K, which corresponds to an
energy of about kBT = 0.17 meV.

Our results show that isolated trions are bound in realistic
coupled-quantum-well geometries. By continuity, we expect
trions to persist as quasiparticles at low, finite charge-carrier
concentrations in these systems. A well-defined direct trion
persists in a host monolayer 2D electron gas at low or interme-
diate electron concentrations, up to the point where the density
parameter rs is about three times the exciton Bohr radius [40];
however, a bilayer electron-hole gas is a significantly different
system to a single hole in a monolayer electron gas. Screening
of the electron-hole attraction by a finite concentration of
charge carriers in an electron-hole bilayer is expected to reduce
the binding energy of an indirect trion and hence to reduce
the critical layer separation relative to that of an isolated
trion.

Sergeev and Suris have studied indirect trions in coupled
quantum wells using the same model as us, but making use
of a heavy-hole approximation [30]. They used a variational
approach to find an approximate solution to the 2D Schrödinger
equation of a single electron in one layer moving in the
potential supplied by two fixed holes in the other layer. The
resulting ground-state energy as a function of hole separation
provided a Born-Oppenheimer potential-energy surface for
the two holes. They then numerically solved the Schrödinger
equation for the relative motion of the holes in that potential-
energy surface to predict X+ binding energies in GaAs and
ZnSe coupled quantum wells. In the case of GaAs, at a layer
separation of d = 0.42a∗

0 , Sergeev and Suris predict an X+
binding energy of 0.43 meV, whereas the fit to our DMC results
(after charge conjugation) yields 0.63 meV. In the case of ZnSe,
at d = 1.25a∗

0 , Sergeev and Suris predict a binding energy of
0.48 meV; however fits to our DMC results yield 0.77 meV. In
order to make these comparisons as fair as possible, we have
taken excitonic Rydberg units and electron-hole mass ratios
identical to Sergeev and Suris (for GaAs, R∗

y = 4.84 meV and
σ = 0.196; for ZnSe, R∗

y = 20 meV and σ = 0.26).

B. Biexciton binding energy

In an extension to the earlier work of Lee et al. [16], for
completeness we provide an accurate parametrization of the
biexciton binding energy in the bound region. We have used
the same trial wave function form as in Ref. [32], multiplied
by a polynomial Jastrow factor [33,34]. We have fitted the
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FIG. 3. (a) Electron-electron [gee
X− (r)] and (b) electron-hole

[geh
X− (r)] pair-distribution functions for indirect negative trions in

bilayers with different separations d and electron-hole mass ratios
σ . The x axis shows the in-plane separation.

function

Eb
XX(σ,d/a∗

0 )

R∗
y

=
∑2

i=0

∑2
j=0 Fij (σ + σ−1)i/2(d/a∗

0 )j∑3
k=0 Gk(d/a∗

0 )k
(15)

to our biexciton binding-energy data, where Fij and Gk are
fitting parameters. This obeys the necessary symmetry under
charge conjugation (σ → σ−1). As in Eq. (10), the square-
root behavior in Eq. (15) arises from harmonic motion in the
Born-Oppenheimer approximation [24]. Our fit of Eq. (15) has
a maximum error of 2 × 10−2R∗

y , with over 90% of the data
points falling within 5 × 10−3R∗

y of the fit. The results of this

fit are

F =
⎛
⎝ 0.03495 −0.9822 2.437

0.07670 0.3303 −1.786
−0.005277 −0.02931 0.2942

⎞
⎠, (16)

G =

⎛
⎜⎝

0.1726
3.256
1.567
29.95

⎞
⎟⎠. (17)

C. PDFs

In Fig. 3 we plot electron-electron and electron-hole pair-
distribution functions for negative trions. It is clear that the
spatial extent of the trion increases rapidly with layer separa-
tion, but is relatively insensitive to mass ratio.

IV. CONCLUSIONS

We have generated statistically exact total-energy data for
isolated indirect trions and biexcitons in a simple model
of charge-carrier complexes in coupled quantum-well het-
erostructures. We have found that for indirect trions, the critical
layer separation at which the trion becomes unbound is at least
an order of magnitude larger than that of the biexciton.

We have applied our results to the coupled quantum-well
device studied by Butov et al. [6], as modelled by Tan et al. [32].
We find that, although biexcitons are unbound in this system,
positive and negative trions are bound, with substantial binding
energies. Qualitatively similar physics is expected in bilayers
of 2D materials, where the interlayer and intralayer charge-
charge interaction potentials reduce to the Coulomb 1/r form
studied here at long range. In 2D materials the binding energy
of the trion relative to the biexciton is further magnified by the
nonlocal screening of the charge carriers by the 2D layers [22].
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