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Many-body renormalization of Landau levels in graphene due to screened Coulomb interaction
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Renormalization of Landau level energies in graphene in strong magnetic field due to Coulomb interaction
is studied theoretically, and calculations are compared with two experiments on carrier-density dependent
scanning tunneling spectroscopy. An approximate preservation of the square-root dependence of the energies
of Landau levels on their numbers and magnetic field in the presence of the interaction is examined. Many-body
calculations of the renormalized Fermi velocity with the statically screened interaction taken in the random-phase
approximation show good agreement with both experiments. The crucial role of the screening in achieving
quantitative agreement is found. The main contribution to the observed rapid logarithmic growth of the
renormalized Fermi velocity on approach to the charge neutrality point turned out to be caused not by mere
exchange interaction effects, but by weakening of the screening at decreasing carrier density. The importance of
a self-consistent treatment of the screening is also demonstrated.
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I. INTRODUCTION

Many-body effects of Coulomb interaction between mass-
less Dirac electrons in graphene are widely studied both the-
oretically and in a series of transport and optical experiments
[1–3]. Renormalization of the electron Fermi velocity to higher
values, showing logarithmical divergence upon approaching
the charge neutrality point [3,4], is the most prominent
signature.

Graphene in quantizing magnetic field serves as a perspec-
tive system where both quantum single-particle and many-
body effects can be studied [5–8]. According to an idealized
single-particle picture, electrons in monolayer graphene in the
magnetic field B occupy the relativistic Landau levels

En = sgn(n) vF

√
2|n|Beh̄/c, n = 0,±1,±2, . . . , (1)

where vF ≈ 106 m/s is the Fermi velocity. In the presence of
Coulomb interaction, many-body effects cause renormaliza-
tion of these energies to new values E∗

n . Thus the problem of
systematization and theoretical description of the interaction
induced energy shifts E∗

n − En arises.
In several experiments [9–16] on scanning tunneling spec-

troscopy of graphene in magnetic field, E∗
n were measured

and turned out to be in agreement with the same square-root
law E∗

n ∝ sgn(n)
√|n|B as for noninteracting electrons. This

admits an effective single-particle description of the energy
levels in a many-body system using the phenomenological
renormalized Fermi velocity v∗

F:

E∗
n = sgn(n) v∗

F

√
2|n|Beh̄/c. (2)

However some of these experiments [15,16], where the
carrier density in graphene ne was varied, reported the growth
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of v∗
F when the density of electrons or holes decreases ap-

proaching the charge neutrality pointne = 0. This effect cannot
be described by an effective single-particle picture with a
fixed v∗

F. It has intrinsically many-body character and bears
similarities to renormalization of the effective Fermi velocity
predicted and observed in the absence of magnetic field [3,4].

Deviations of observable energies of inter-Landau-level
transitions from single-particle theory predictions, discovered
in cyclotron resonance [17–20] and magneto-Raman scatter-
ing [21–24] experiments, are another manifestation of many-
body effects in graphene in magnetic field. Proper theoretical
description of these deviations requires taking into account
not only renormalization of individual Landau levels but also
the excitonic effects of electron-hole interaction in a final
state [22,24–32]. The splitting of Landau levels in very strong
magnetic field can also be mentioned as a striking signature
of many-body effects (see, e.g., Refs. [5,7] and references
therein).

In this paper, we focus our theoretical study on renor-
malization of Landau levels in monolayer graphene, which
was observed in the scanning tunneling spectroscopy exper-
iments [15,16] where the variations of v∗

F versus ne were
measured. Our calculations are based on evaluating the mean-
field exchange energies of electrons at Landau levels using the
statically screened Coulomb interaction, as described in Sec. II.
Then in Sec. III we analyze the behavior of the renormalized
energies and discuss the validity of approximating a set of E∗

n

with the single formula (2), which is routinely applied in the
experimental works [9–16].

In Sec. IV we fit the experimental data with our calcu-
lations in different approximations, both with and without
screening. The bare Fermi velocity vF = 0.85 × 106 m/s and
the realistic dielectric constants allow us to achieve good
agreement with the experiments. We show that the main cause
of the renormalized Fermi velocity growth at decreasing carrier
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density is not the Landau-level filling factor dependence of
electron exchange energies but the weakening of the screening.
Therefore taking into account the interaction screening is
crucial for appropriate description of the many-body effects.
The important role of the self-consistent weakening of the
screening is also demonstrated. Our conclusions are presented
in Sec. V.

II. THEORETICAL MODEL

The conventional approach [25–37] to treat the interaction-
induced renormalization of Landau level energies is based
on the Hartree-Fock approximation, where the renormalized
energy

E∗
n = En + �n − �0 (3)

consists of the bare single-particle energy En and of the
exchange self-energy �n. To maintain the Dirac point location
at E = 0, the renormalized energy E∗

0 = �0 of the zeroth
Landau level was subtracted. The self-energy

�n = −
∑
n′k′

fn′ 〈ψnk,ψn′k′ |V |ψnk,ψn′k′ 〉 (4)

is a result of virtual processes of exchanging an electron on the
nth level with other electrons in all occupied n′th levels; fn′

are the occupation numbers of these levels (0 � fn′ � 1), and
〈ψnk,ψn′k′ |V |ψnk,ψn′k′ 〉 are the exchange matrix elements of
the Coulomb interaction V (r). The single-particle states ψnk

are characterized by the Landau level number n and by an
additional quantum number k, which accounts for a Landau
level degeneracy.

To handle the logarithmic divergence of the self-energies (4)
upon summation over the negative-energy Landau levels n′,
the physically motivated cutoff n′ � −nc should be intro-
duced [25–30]. Because of its degeneracy, each Landau level
hosts geB/2πh̄c electrons per unit area, where g = 4 is the
fourfold spin and valley degeneracy factor. Assuming that nc

occupied Landau levels below the Dirac point in charge neutral
graphene should host two electrons per elementary cell of the
area S0 = a2

√
3/2 (a ≈ 2.46 Å), we get

nc = 8πh̄c√
3ga2eB

≈ 39 600

B [T]
. (5)

As noted in Ref. [36], a numerical calculation and summation
of large numbers, typically tens of thousands, of matrix
elements in (4) presents a separate computational problem.
The formula (5) contains some uncertainties due to inaccuracy
of the Dirac low-energy model away from the Dirac point, but
our estimates show their influence of the calculation results
is weak: For example, changing the number 39 600 in the
numerator of (5) by 20% results in the change of the calculated
E∗

n by about 1%.
In most of the theoretical works [25–31,33,37], the

unscreened Coulomb interaction v(r) = e2/εr was used to
calculate the exchange energies (4). Here ε is the dielectric
constant of a surrounding medium, which varies from ε = 1
for suspended graphene to ε ∼ 10–20 for graphene on a
graphite substrate [22,32]. In our earlier paper [32] we
showed that the screening of Coulomb interaction by a
polarizable gas of massless electrons of graphene should be

taken into account to achieve quantitative agreement with
the experiments on cyclotron resonance and magneto-Raman
scattering [17,18,21,22]. In this paper we follow a similar
approach and use the statically screened interaction when
calculating the matrix elements in (4). Its Fourier transform is

V (q) = v(q)

1 − v(q)�(q,0)
, (6)

where v(q) = 2πe2/εq is the Fourier transform of the
unscreened interaction v(r), and �(q,ω) is the irreducible
polarizability of graphene in magnetic field. In the
random-phase approximation, the latter is calculated by
taking into account all virtual electron transitions between
filled and empty Landau levels,

�(q,0) = g
∑
nn′

Fnn′(q)
fn − fn′

En − En′
, (7)

where Fnn′(q) are the Landau level form factors (see the details
in Refs. [5,38–42]). Note that the statically screened interaction
was also used in Refs. [34–36] to analyze possible spontaneous
symmetry breaking and gap generation scenarios. Generally,
full dynamical treatment of the screening can provide more
accurate results than in the static approximation, although the
computational procedure in this case becomes very demanding.

Let us examine how the screened interaction V (q) de-
pends on the parameters vF, ε of the model. Via the energy
denominators, the polarizability (7) scales with the Fermi
velocity as �(q,0) ∝ v−1

F , thus the quantity v(q)�(q,0) in the
denominator of (6) scales as

v(q)�(q,0) ∝ rs ≡ e2

εh̄vF
. (8)

The dimensionless parameter rs (sometimes referred to as
the graphene analog α of the fine structure constant [3,5])
is conventionally used to characterize the relative strength
of Coulomb interaction. However in our approach it actually
measures the strength of the screening due to the linear scaling
between rs and �(q,0) in (6).

Another important point is a necessity of a self-consistent
treatment of the screening, i.e., calculation of the polariz-
ability using the electron Green functions, which are already
“dressed” by many-body interaction effects. In the simplest
approach, this reduces to a calculation of the energy differences
in the denominators of (7) with the renormalized energies E∗

n

instead of the bare ones En. Since the typical renormalized
Fermi velocities v∗

F can be up to 60% higher than the bare veloc-
ity vF [32] (and the same is true for the energy differences), the
self-consistent screening can be appreciably weaker than in the
random-phase approximation. Full self-consistent treatment of
the screening is highly computationally demanding so we use
the simplified model where �(q,0) retains its functional form
but becomes proportionally reduced by the factor vF/v

∗
F < 1.

This is achieved by replacing vF in the definition of rs by v∗
F,

so the resulting rs, which appears in the denominator of (6),
becomes smaller than in the case of the non-self-consistent
screening. The value of v∗

F in the prefactor of �(q,0) can be
taken either from experiments or from theoretical calculations.

The assumption of the unchanged functional form of �(q,0)
is reasonable because the renormalized Landau level energies
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retain their dependence E∗
n ∝ sgn(n)

√|n|B on n, B with
sufficiently high accuracy (as confirmed in the next section)
and only change by the overall numerical factor v∗

F/vF. The
remote levels with |n| � 1 can deviate from this regularity
because of a breakdown of the Dirac model at high energies,
but their contribution to �(q,0) is not critical due to small form
factors Fnn′(q) and large energy denominators.

In order to analyze the role of the screening, we carry out
the calculations using, similarly to Ref. [32], the following four
screening models:

(1) unscreened Coulomb interaction, when rs = 0;
(2) screened interaction, rs = e2/εh̄vF;
(3) self-consistently screened interaction with rs = e2/εh̄

〈v∗
F〉, where 〈v∗

F〉 is the average value of the experimental
renormalized Fermi velocity in the measured range of carrier
densities;

(4) self-consistently screened interaction with a variable
screening strength rs = e2/εh̄v∗

F(ne) where rs and v∗
F(ne) are

calculated at each ne iteratively: initially v∗
F = vF and then in

each iteration the next value of v∗
F is extracted from a set of

E∗
n calculated with rs = e2/εh̄v∗

F determined by the previous
value of v∗

F (typically five iterations are sufficient to achieve
convergence).

The third and fourth models consider the screening to be
self-consistently weakened with respect to that in the random-
phase approximation: In the third model the magnitude of
this weakening is estimated on the basis of experimental data,
while in the fourth model it is calculated theoretically. We will
show below that the third and fourth models provide much
better agreement with the experimental data indicating the
importance of the self-consistent treatment of the screening.

III. EVALUATION OF v∗
F

The renormalized Landau level energies (3) depend on the
Landau level number n, magnetic field B, and, importantly, on
the filling factor ν. The latter equals to 0 in undoped graphene,
when the zeroth level is half filled, while a complete filling of
each new Landau level increases ν by 4 because of the fourfold
spin-valley degeneracy of electron states in graphene [5]. The
filling factor is related to the carrier density as

ne = eB

2πh̄c
ν ≈ 0.0242 ν × 1012 cm−2 × B [T] (9)

and reaches the values up to ν ≈ ±(15 − 30) in the experi-
ments [15,16].

It was commonly accepted [9–16] that E∗
n ∝ sgn(n)

√|n|B
at fixed ne and varying (n,B). However the recent exper-
iments [21–23] on magneto-Raman scattering revealed the
visible dependence of v∗

F on a magnetic field of the form
v∗

F ≈ C1 − C2 ln B. Its origin can be traced theoretically from
Eq. (4): As the sum has a logarithmic divergence which has
been regularized using the cutoff (5), so the result will be
logarithmically dependent on a cutoff position and hence on B.

In Fig. 1, the typical dependence of E∗
n on n, B, and ν is

investigated. The calculations are carried out under the typical
conditions of the experiment [15] in the third aforementioned
screening model (see Sec. III). Analyzing behavior of the linear

FIG. 1. Renormalized Landau level energies E∗
n as functions

of sgn(n)
√|n|B calculated with vF = 0.85 × 106 m/s, ε = 2, rs =

0.87 at different filling factors ν. Each level with the number n = −3,

−1, +1, or +3 is presented by the series of five points (crosses) at
magnetic fields B = 4,6,8,10,12 T. The linear fits for these sets of
points on the electron and hole sides are shown by the solid lines.

fits (2) as well as deviations of individual points from these fits,
we can note the following regularities:

(a) The effective Fermi velocities

v∗
F(n,B) = E∗

n

sgn(n)
√

2|n|Beh̄/c
(10)

assigned to individual points (n,B) always decrease at in-
creasing B. For example, the n = +3 points in Fig. 1(a) lie
slightly above the linear fit at low B and slightly below the
fit at high B. This conforms both the experiments and the
theory demonstrating the logarithmic decrease of v∗

F versus
B [21–23,29–32].

(b) The electron-hole asymmetry between Figs. 1(a)
and 1(c) implies that v∗

F(n,B) is higher when n and ν have
the same sign (both are on the electron or on the hole side) and
lower when they have different signs (one is on the electron,
and the other is on the hole side). In other words, the energies of
those Landau levels which lie closer to the Fermi level undergo
stronger renormalization to higher values.

(c) The effect of the upward renormalization of the Fermi
velocity is generally more pronounced for Landau levels with
smaller |n|. For example, in Fig. 1 it is appreciably stronger
for n = ±1 than for n = ±3.

The same regularities are presented more clearly in Fig. 2,
where the effective Fermi velocities v∗

F(n,B) are plotted
as functions of the filling factor ν. Without the screening
[Fig. 2(a)], v∗

F(n,B) are the piecewise-linear functions of ν
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FIG. 2. Effective Fermi velocities v∗
F(n,B) [see Eq. (10)] as func-

tions of the filling factor ν, calculated at vF = 0.85 × 106 m/s, ε = 2
(a) with the unscreened interaction and (b) with the self-consistently
screened interaction (rs = 0.87). Solid and dashed lines correspond,
respectively, to magnetic fields B = 4 and 12 T.

with the kinks at ν = ±2, ± 6, ± 10, . . ., where an integer
number of Landau levels is filled. This behavior is dictated
by Eq. (4), which implies a linear change of E∗

n versus fn′

during filling of each Landau level. The screening [Fig. 2(b)]
significantly reduces the effective Fermi velocities and re-
moves the strict piecewise-linear behavior because now the
screened interaction V (q) also changes during the filling of
each Landau level. Nevertheless, an approximate piecewise
linearity survives. Note that the evident piecewise linear depen-
dence was observed in the recent magneto-Raman scattering
experiment [24].

In the scanning tunneling spectroscopy experiments [9–16],
the values of v∗

F were evaluated by approximating some set
of measured E∗

n with different (n,B) by the formula (2). In
Refs. [15,16], this procedure was repeated at each density ne to
obtain the v∗

F(ne) relationship. The presented analysis allows
us to conclude that the result of such evaluation can depend
on a taken set of (n,B). Generally, higher B and |n| lead to
lower vF, and the electron-hole asymmetry can influence the
result, though in the most cases the approximation (2) is quite
accurate.

IV. COMPARISON WITH EXPERIMENTS

In the first considered experiment [15], graphene on a SiO2

substrate was studied and the fitting of the energies of several
lowest Landau levels n = −3,−2,−1,0 at magnetic fields in
the range B = 4–8 T was reported. The carrier densities ne

were taken at rather low hole doping levels not exceeding −3 ×
1012 cm−2. As shown in the inset in Fig. 3, v∗

F in spite of some
scattering of the experimental points demonstrates the clear
growing trend at decreasing |ne| which can be approximated

FIG. 3. The best fits to the experimental [15] dependence of
v∗

F on the carrier density ne at vF = 0.85 × 106 m/s: with the un-
screened interaction (thin solid line), screened interaction (short-
dashed line), self-consistently screened interaction with the constant
rs (long-dashed line), and self-consistently screened interaction with
the iteratively calculated varying rs (dotted line). The logarithmic
trend (11) of the experimental Fermi velocity growth is shown by
thick solid line. Inset shows the experimental points (squares) and the
extracted logarithmic trend.

by the logarithmic function

v∗
F(ne)

106 m/s
=

(
1.363 − 0.192 ln

|ne|
1012 cm−2

)
. (11)

To reproduce these results theoretically, we have taken the set
of 20 energies E∗

n with n = −3,−2,−1,0 at B = 4,5,6,7,8 T
and evaluated v∗

F at each ne by their least-square fitting with
the formula (2). Note that even at fixed ne the filling factor ν

varies in the calculations when B is changed due to Eq. (5).
Each of the four calculation models, described in Sec. II,

need the bare Fermi velocity vF and the dielectric constant
of surroundings ε as the parameters. As known (see, e.g.,
Refs. [32,43]), the phenomenological values of vF used by
different authors to describe such many-body renormalized
observables of graphene as electron transition energies or
quantum capacitance fall in the range (0.8–1) × 106 m/s.

Table I shows the results of adjusting ε at several selected
values of vF in the four models, made in order to achieve the
best least-square fits of the experimental points v∗

F(ne). In the
absence of the screening, we have obtained the overestimated
values of ε because higher external dielectric constants are
required to simulate the screening of the interaction caused
by both surrounding medium and graphene electrons. On the
contrary, the non-self-consistent static screening requires very
low ε (sometimes even unphysically smaller than 1), which in-
dicates an overestimation of the actual screening in this model.
Finally, the two self-consistent screening models provide more
realistic values of ε. To determine rs in the third model, we take
the experimental average 〈v∗

F〉 = 1.253 × 106 m/s.
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TABLE I. Dielectric constants of surrounding medium ε, which
provide the best least-square fittings of the experimental data from
Ref. [15] at several selected vF. The fittings are carried out in four
screening models, described in Sec. II.

Unscreened Screened Self-cons. Self-cons.
vF, interaction interaction screening screening
106 m/s rs = 0 rs = e2

εh̄vF
rs = e2

εh̄〈v∗
F〉 rs = e2

εh̄v∗
F(ne)

0.8 5.83 <0.01 1.40 1.46
0.85 6.54 0.35 2.01 1.95
0.9 7.45 1.36 2.79 2.60
1 10.31 4.31 5.33 4.70

Similarly to our earlier work [32] and to Ref. [44], we find
the bare Fermi velocity vF = 0.85 × 106 m/s as providing the
best agreement of the many-body theory with the experiments.
In the most accurate third and fourth screening models, we get
ε ≈ 2 which is close to the experimental effective dielectric
constant 2.5 arising when graphene is supported by the SiO2

substrate from the bottom.
Figure 3 shows the best fits at this vF in four screening

models, which correspond to the entries in the second row
of Table I. Due to noticeable scattering of the experimental
points (see the inset), it is better to compare the calculations not
with the points themselves, but with their smooth logarithmic
trend (11). The third and fourth self-consistent screening
models, which use rs determined from either experimental or
from iteratively calculated v∗

F, are the best in reproducing the
experimental trend in the whole range of ne with realistic ε.

As seen, the unscreened interaction does not describe the
rapid growth of v∗

F on approach to the charge neutrality point
even at the optimal ε. Therefore the conventional first-order
logarithmic renormalization of the Fermi velocity [4] fails to
reproduce the experiment [15] with realistic model parameters
vF, ε. The screening resolves this problem because at smaller
|ne| the polarizability of graphene decreases and thus the up-
ward renormalization of the Fermi velocity becomes stronger.
To illustrate this point, we compare in Fig. 4 the calculations
in the second and fourth screening models, which are carried
out, on the one hand, with the screening correctly dependent
on ne, and, on the other hand, with a constant polarizability
“frozen” at the typical filling factor ν = −14. We see that
the latter calculations, which take into account only changes
of the occupation numbers fn′ in (4) on varying the carrier
density, does not reproduce the rapid growth of v∗

F. So the
dependence of �(q,0) on ne is crucial to achieve agreement
with the experiment.

In the second considered experiment [16], graphene on
a hexagonal boron nitride substrate was studied and en-
ergies of larger number of Landau levels, typically n =
−8,−7, . . . ,+7,+8, at magnetic fields B = 2 and 5 T were
measured. Two sets of experimental points v∗

F(ne) were ob-
tained in the range −3 × 1012 cm−2 < ne < 3 × 1012 cm−2 in
two locations inside electron and hole puddles. These points
follow the logarithmic trend

v∗
F(ne)

106 m/s
=

(
1.128 − 0.0799 ln

|ne|
1012 cm−2

)
. (12)

FIG. 4. The same as Fig. 3, but only the models of the screened
interaction (short-dashed line) and the self-consistently screened
interaction with the iteratively calculated varying rs (dotted line)
are retained. Calculations in the same approximations but with the
screening corresponding to the constant filling factor ν = −14 are
shown by, respectively, dash-dotted and dash-double-dotted lines. The
logarithmic trend (11) of the experimental Fermi velocity growth is
shown by thick solid line.

We have taken in our calculations 34 combinations of n =
−8,−7, . . . ,+7,+8, and B = 2,5 T to evaluate v∗

F(ne) in the
same range.

Similarly to the analysis of the previous experiment, we
have carried out the least-square fitting by adjusting ε, and
the results are given in Table II. In the third model we take the
average experimental Fermi velocity 〈v∗

F〉 = 1.105 × 106 m/s.
Here we see the same regularities as in the previous analysis,
but the optimal dielectric constants turn out to be larger,
because here the measured renormalized Fermi velocities are
generally lower than in [15] due to a stronger screening from
the substrate. The best results with vF = 0.85 × 106 m/s in
the self-consistent screening models provide ε ≈ 4−4.5 which
are close to the experimental ε = 3.15 [16] corresponding
to graphene on the hexagonal boron nitride substrate. The
best fits at vF = 0.85 × 106 m/s in the four screening models,

TABLE II. Dielectric constants of surrounding medium ε, which
provide the best least-square fittings of the experimental data from
Ref. [16] at several selected vF. The fittings are carried out in four
screening models, described in Sec. II.

Unscreened Screened Self-cons. Self-cons.
vF, interaction interaction screening screening
106 m/s rs = 0 rs = e2

εh̄vF
rs = e2

εh̄〈v∗
F〉 rs = e2

εh̄v∗
F(ne)

0.8 7.57 1.50 2.93 2.94
0.85 9.05 3.08 4.27 4.26
0.9 11.23 5.32 6.27 6.25
1 21.76 15.58 16.12 16.09
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FIG. 5. The best fits to the experimental points [16] (squares and
diamonds, corresponding to electron and hole puddles) on v∗

F versus
carrier density ne at vF = 0.85 × 106 m/s. The designations of the
curves are the same as in Fig. 3. The logarithmic trend (12) of the
experimental data is shown by thick solid line.

corresponding to the entries in the second row of Table II, are
shown in Fig. 5.

Again, we see that the unscreened interaction cannot pro-
vide a sufficiently rapid growth of v∗

F near the charge neutrality
point. To illustrate the effect of the screening weakening at
small carrier densities, we compare in Fig. 6 the calculations
with the polarizability dependent on ne and with that “frozen”
at the filling factor ν = −14. Similarly to Fig. 4, this effect
turns out to be crucial to correctly reproduce the experimental
data of Ref. [16].

V. CONCLUSIONS

Using the statically screened Coulomb interaction in the
random-phase approximation, we carried out the many-body
calculations of renormalized Landau level energies E∗

n in
graphene in quantizing magnetic field. Fitting a set of E∗

n at
different (n,B) by the formula (2), we evaluated the renor-
malized Fermi velocity v∗

F as a function of the carrier density
ne and compared our calculations with the two scanning
tunneling spectroscopy experiments [15,16]. We achieved
good agreement using the bare Fermi velocity vF = 0.85 ×
106 m/s and the realistic values of the dielectric constant ε

as the model parameters. The same value of vF proved to be
optimal in our previous work [32] where the cyclotron reso-
nance and magneto-Raman scattering experimental data were
described.

Our analysis allows us to draw the following main con-
clusions. First, the characterization of several renormalized
energies E∗

n of different Landau levels n at different magnetic
fields B at once with a single renormalized Fermi velocity v∗

F,
assumed in many experimental works [9–16], generally works
very well. However there exist small but systematic deviations

FIG. 6. The same as Fig. 4, but for experimental points of Ref. [16]
with the logarithmic trend (12).

from the formula (2), both predicted by the theory and found
in some experiments. In particular, the logarithmic decrease
of v∗

F with increasing B was measured in magneto-Raman
scattering [22,23]. Small deviations from the linear fits (2),
similar to those presented in Fig. 1, can be noted in the results
of several other experimental works [12,14,45] and thus can
possibly be attributed to many-body effects.

Second, the screening of Coulomb interaction is necessary
to achieve a quantitative agreement between the theory and
the experiments with realistic values of vF and ε. Besides, the
calculations without the screening fail to reproduce the rapid
growth of v∗

F on approach to the charge neutrality point reported
in Refs. [15,16]. It can be reproduced only with taking into
account that the screening becomes weaker when the carrier
density decreases.

Third, the self-consistent weakening of the screening due to
interaction-induced enlargement of virtual electron transition
energies is also important to obtain quantitatively correct
theoretical results. In our previous work [32], we made the
same conclusion based on the analysis of the other experi-
ments [17,22]. In this work, we additionally demonstrate that
the rapidly converging iterative self-consistent calculations of
the Landau level energies and polarizability are possible in the
case of graphene in a magnetic field.

Finally, we note that although the logarithmic growth of
the quasiparticle velocity v∗

F, predicted when the particle
momentum approaches the Dirac point k → 0 in undoped
graphene [1,3,4], is similar to the growth of v∗

F in doped
graphene when the carrier density decreases ne → 0; their
physical origins are not the same. In the second case, the key
role of the carrier-density dependent screening should be taken
into account.
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