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Density matrix approach to photon-assisted tunneling in the transfer Hamiltonian formalism
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The transfer Hamiltonian tunneling current is derived in a time-dependent density matrix formulation and is used
to examine photon-assisted tunneling. Bardeen’s tunneling expression arises as the result of first-order perturbation
theory in a mean-field expansion of the density matrix. Photon-assisted tunneling from confined electromagnetic
fields in the forbidden tunnel barrier region occurs due to time-varying polarization and wave-function overlap in
the gap which leads to a nonzero tunneling current in asymmetric device structures, even in an unbiased state. The
photon energy is seen to act as an effective temperature-dependent bias in a uniform barrier asymmetric tunneling
example problem. Higher-order terms in the density matrix expansion give rise to multiphoton enhanced tunneling
currents that can be considered an extension of nonlinear optics where the nonlinear conductance plays a similar
role as the nonlinear susceptibilities in the continuity equations.
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I. INTRODUCTION

Tunneling is a quantum phenomenon that has been exten-
sively studied mainly using semiclassical approaches based on
the Wentzel-Kramers-Brillioun (WKB) approximation [1,2].
Bardeen introduced a many particle transfer Hamiltonian [3]
approach to examine tunneling currents between superconduc-
tors and normal metals through an insulating gap. The model
treated the tunneling heuristically to match the observation of
gaps in quasiparticle tunneling seen in the superconductor-to-
superconductor [4] and superconductor-to-normal-metal [5]
tunneling current voltage data of Giaever. A more detailed
transfer Hamiltonian approach based on the second quan-
tized operator method and canonical transformations of the
operators was subsequently developed [6,7]. The extension of
Bardeen’s transfer Hamiltonian approach to include tunneling
between semiconducting half spaces forms the basis for the
independent particle or mean-field-type approach [8,9]. This
approach has been applied to a wide range of tunneling phe-
nomena in physics from superconducting tunneling [3,6,7,10–
12] to semiconductor devices [13–18] to scanning tunneling
microscopy [19,20].

The observation of photon enhanced tunneling in supercon-
ducting tunnel junctions under microwave illumination led to
theoretical investigations into dynamic tunneling phenomena
[10]. Tien and Gordon proposed a theory based on time-
dependent interaction of the microwave photons in the tunnel
barrier of a superconducting tunnel junction [11] where they
applied the transfer Hamiltonian to the multiphoton tunneling
processes in the insulator. This multiphoton enhanced tun-
neling process in superconducting tunnel junctions results in
plateaus in the current voltage characteristics in these devices
and has been used as a sensitive direct detector for millimeter
waves [12]. Direct detection based on rectification of displace-
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ment currents in tunneling devices has been proposed and
examined theoretically [21].

Photon-assisted tunneling has been experimentally ob-
served in antenna-coupled semiconductor superlattice de-
vices [22] and quantum dots [23,24]. These mesoscopic
systems show evidence of multiphoton-assisted tunneling
in the current-voltage characteristics under high-frequency
microwave illumination at cryogenic temperatures. Modified
Tien-Gordon models have been developed and well describe
the data [11]. Furthermore, Boson-assisted tunneling [25] in
single charged defect point-contact barriers and quantum dots
has shown the Kondo effect and resonant tunneling in these
structures [26,27]. These results have been modeled using the
Anderson model for a single charged or magnetic impurity,
and the tunneling currents computed using Bardeen’s transfer
Hamiltonian. These assisted tunneling observations have led
to the development of advanced modeling methods, including
perturbative expansions and nonequilibrium Green’s-function
techniques [28] which are techniques closely related to our de-
rived density matrix expansion at finite temperature. Recently,
photon-assisted tunneling in resonant quantum dot systems has
been examined as a means of thermoelectric energy conversion
[29,30] similar to enhanced tunneling in nanoantenna-coupled
MOS tunnel diodes [31,32].

Another key application of tunneling is in examina-
tion of leakage currents and gate control in metal-oxide-
semiconductor (MOS) device structures owing to its techno-
logical importance. The starting point for tunneling calcu-
lations is the Bardeen transfer tunnel current expression in
the static approximation and the barrier transmission expres-
sion computed within the WKB approximation. In the WKB
approach, the semiclassical barrier transmission expression
depends on the energy of the carriers on the side under bias
and is computed for electron or hole distributions driven out of
equilibrium by a bias voltage applied to the device. Parabolic
bands in the effective mass approximation are typically as-
sumed for the metal and semiconductors and the transverse
momentum integration is performed to give the usual supply
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function expression for the tunneling current [13,17]. The
asymmetric effective masses in the metal and semiconductor
give rise to large current asymmetries under bias. Tunneling
calculations for nonanalytic barriers can be calculated using a
transfer-matrix approach [33].

Recently, photon enhanced tunneling in nanoantenna-
coupled MOS tunnel diodes has been studied as an infrared
direct conversion device [31,32]. These large area distributed
tunnel diodes concentrate infrared time-varying transverse
electromagnetic fields in tunneling barriers and have been
shown to lead to measurable tunneling currents and gen-
eration of electrical power from a thermal source. In this
paper, we examine the time-dependent transfer Hamiltonian
in a mean-field density matrix perturbative expansion. The
transfer Hamiltonian problem is expanded into complete
and orthogonal bases on the right and left half spaces,
which are extended over the entire domain but not complete
[34,35]. The Bardeen tunneling current formula is found as
the first-order expression in the mean-field current expan-
sion. Higher-order terms in the density matrix expansion are
seen to give rise to resonant and nonresonant multiphoton
enhanced tunneling currents. A uniform barrier tunneling
problem is examined under incoherent infrared illumination
between dissimilar materials and single-photon enhanced tun-
neling currents are calculated for the asymmetric tunneling
problem.

II. TRANSFER HAMILTONIAN APPROACH

The transfer Hamiltonian approach to tunneling was formu-
lated by Bardeen as a semiempirical approach to calculate tun-
neling currents between a superconductor and a normal-metal
state through a very small gap. Since then it has been applied to
a host of general tunneling problems. The transfer Hamiltonian
approach is formulated as two half spaces separated by a
thin barrier interaction that connects the two half spaces
such that we can describe the system phenomenologically
as

H = Hl + Hr + HT (t), (1)

where r and l refer to right and left half spaces and HT (t) =
λV cos(�t) is the transfer Hamiltonian. The splitting of the
problem into left right half spaces imposes conditions on the
completeness of the states. The eigenstates on the left and right
should be complete on their respective support and exist in
the entire range of the total Hamiltonian. This requirement
is not compatible with the requirement that the left and right
Hamiltonians commute. We therefore give up on the notion
that the left and right energy is observable and the states of the
unperturbed Hamiltonian are not left-right product states [34].

With these caveats in mind, the eigenvalue problem in the
two half spaces can be readily stated, for the left half space
x < 0, we have |�l〉 = ∑

k ak(t) |φk〉 such that

Hl |φk〉 = El
k |φk〉 (2)

and we have the half-space orthogonality 〈φk′ |φk〉l = δk,k′ .
Similarly, for the right half space x � tox , we have |�r〉 =∑

q bq(t) |ψq〉 with

Hr |ψq〉 = Er
q |ψq〉 , (3)

and 〈ψq ′ |ψq〉r = δq,q ′ . The left and right eigenvectors are
orthogonal on their respective half spaces but extend into the
gap region, 0 < x � tox and beyond. Many particle Green’s-
function approaches have been used to examine tunneling
in the transfer Hamiltonian approach [28,35]. Density ma-
trix approaches are closely related to these Green’s-function
approaches but give simplified time-dependent perturbation
expansions and are amenable to mean-field approximations
at finite temperature.

In the following sections, we will show that the Bardeen
expression for the tunnel current corresponds to a first-order
term in a systematic density matrix expansion in the strength of
the interaction. This expansion in the density matrix will lead
to a generalized nonlinear current analogous to the nonlinear
polarization from nonlinear optics. These higher-order terms
correspond to resonant and nonresonant enhanced multiphoton
tunneling currents. The transfer interaction will be considered
to arise from the electromagnetic coupling term confined
within the tunnel barrier and we will derive the photon-assisted
tunneling current induced from a broadband incoherent source
in a simple uniform barrier model.

III. MULTIPHOTON DENSITY MATRIX EXPANSION

The transfer interaction for a confined electromagnetic field
in the gap can be examined by considering a semiclassical
electromagnetic field interaction that takes on the familiar
form,

HT (t) = ih̄
e

mc
A(t) · ∇, (4)

where A(t) is the spatially varying real vector potential in the
gap region. The transfer interaction from a broadband source
can be expressed in terms of the time-dependent electric field,

HT (t) =
∫ ∞

−∞

dω

2π
e−iωt eh̄

mω
E(ω) · ∇, (5)

where we have used the Fourier transform of the vector
potential to derive the electric field along with the constraints
of real valued fields. The transfer Hamiltonian for the con-
fined electromagnetic interaction is anti-Hermitian, H ∗

T (t) =
−HT (t), which has been derived in Appendix A. This transfer
interaction is shown to transfer a quasiparticle from right to left
and and vice versa, and for the above form of the interaction
is driven by the induced polarization from the electromagnetic
field in the gap. The states of the system are not product states,
but single-particle states that are defined by projection specified
with the general index n. The two noninteracting half spaces
satisfy

H0 |n〉 = En |n〉 , (6)

where H0 = Hl + Hr , where En = {Enr
,Enl

} depending on
whether projected into right or left half space.

The density matrix operator can be defined in terms of the
single-particle states and is given by

ρ =
∑
n,m

ρnm |n〉 〈m| . (7)
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The Liouville equation gives the equation of motion for the
density matrix is

ih̄
∂ρnm

∂t
= (En − Em)ρnm

+
∑
n′m′

(〈n|HT n′〉 δm,m′ − 〈m′H ∗
T |m〉 δn,n′ )ρn′m′ ,

(8)

where 〈m|HT n〉 means that HT operates on the nth state (see
Appendix A for the general derivation and Fourier analysis
of the electromagnetic transfer interaction). The Liouville
equation for the density matrix can be solved using a formal
perturbation expansion in the strength of the interaction,
HT (t) → λHT (t), where λ is treated as a formal parameter in
perturbation. Here the density matrix expansion is expanded
in the interaction strength to give

ρnm = ρ(0)
nm + λρ(1)

nm(t) + λ2ρ(2)
nm(t) + λ3ρ(3)

nm(t) . . . , (9)

where the unperturbed density matrix is ρ(0)
nm = fnδnm and is

assumed to be time independent and diagonal and fn is the
static nonequilibrium distribution function.

We can perform the same Fourier analysis for the time-
dependent density matrix, derived in Appendix B, to give

ρ(i)
nm(t) =

∫ ∞

−∞

dω

2π
e−iωt ρ̃(i)

nm(ω). (10)

By grouping the terms in the strength of the interaction, we
obtain the series expansion terms in the frequency domain. We
have the density matrix expansion terms

ρ̃(0)
nm(ω) = fnδn,mδ(ω),

ρ̃(1)
nm(ω) = Gnm(ω)

∑
n′m′

∫ ∞

−∞

dω′

2π
T̃nm;n′m′ (ω − ω′)ρ̃(0)

n′m′(ω′),

ρ̃(2)
nm(ω) = Gnm(ω)

∑
n′m′

∫ ∞

−∞

dω′

2π
T̃nm;n′m′ (ω − ω′)ρ̃(1)

n′m′(ω′),

ρ̃(3)
nm(ω) = Gnm(ω)

∑
n′m′

∫ ∞

−∞

dω′

2π
T̃nm;n′m′ (ω − ω′)ρ̃(2)

n′m′(ω′),

...
... (11)

where Gnm(ω) = (h̄ω − En + Em)−1 is the free-carrier prop-
agator, and we define

T̃nm;n′m′(ω) = (Vn,n′δm,m′ − Vm′,mδn,n′ ), (12)

and

Vn,n′ (ω) = eh̄

mω

∫
dxE(ω) · [φ∗

n(∇φn′)]. (13)

The iterated density matrix can be expressed as an integral
equation in the frequency domain and is derived in Appendix B.
The first-order correction to the density matrix is

ρ̃(1)
nm(ω) = Gnm(ω)Vn,m(fm − fn), (14)

where we have assumed a uniform transverse electric field.

The hierarchy of density matrices in the dynamic tunneling
case allows for multiphoton processes to enhance the tunneling
current within the device structure. The dynamic tunneling
current and the photon-assisted static current are derived in
Appendix C. The dynamic current is given by

I (ω′) = i
2e

h̄

∑
nm

∫ ∞

−∞

dω

2π
Vm,n(ω)ρ̃nm(ω′ − ω), (15)

and the static tunneling current is

I = −i
2e

h̄

∑
nm

∫ ∞

−∞

dω

2π
Ṽm,n(ω)ρ̃nm(ω). (16)

Here we have

Ṽm,n′ (ω) = eh̄

mω

∫
dxE∗(ω) · [φ∗

m(∇φn′)]. (17)

The expansion of the density matrices in the strength of
the interaction leads to a similar expansion of the static and
dynamic currents. We have that

I = I (0) + λI (1) + λ2I (2) + λ3I (3) . . . (18)

from the expansion of ρ̃. This expression gives rise to an
expansion for the nonlinear conductances in the same fashion
as the nonlinear susceptibilities arise in nonlinear optics. Note
that the static current at zero order is not included in the
expansion; the static part of the density matrix is included in the
dynamic zeroth-order term and has the frequency dependence
of the electric field only.

The first-order term in the static current expression can be
written explicitly

I (1) = −i
2e

h̄

∑
nm

∫ ∞

−∞

dω

2π
Ṽm,nVn,mGnm(ω)(fm − fn), (19)

where we have used Eq. (14) in obtaining the above current.
The first-order current can be simplified if we consider the
special case of a uniform transverse electric field in the gap
and use the principal value expression for the Green’s-function
energy denominator,

Gnm(ω) = P

(
1

h̄ω − En + Em

)
+ iπδ(h̄ω − En + Em),

(20)

to obtain

I (1) = 2πe

h̄

∫ ∞

−∞

dω

2π

(
eh̄

mω

)2

|Ez(ω)|2
∑
nm

umnunm(fm − fn)

× δ(h̄ω − En + Em), (21)

where unm = 〈n|∇zm〉, and which represents the first-order
real-valued static current induced by a frequency-dependent
transverse electric field. Equation (21) is a generalized Bardeen
transfer expression for photon-induced tunneling from a broad-
band radiation source. The frequency integral can be restricted
to positive frequencies leading to two contributions to the
photon-assisted current corresponding to absorption and emis-
sion of a photon.

The higher-order currents can be derived by iterating the
density matrix expansion in Eq. (12), but lead to much more
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FIG. 1. Illustration transfer interaction for a simple one-dimensional (1D) potential barrier. (a) The schematic shows the right and left wave
functions, φk and ψq , respectively. These become evanescent in the potential barrier region. The overlap in this region leads to the tunneling
current. (b) Energy-level diagram showing the one photon tunneling process at zero bias. The quasiparticle occupancy of the left and right half
spaces are shown schematically. The schematic impact of applying a bias (dashed black lines) leads to a shift in the bands on the right side of
the barrier with a spatially varying potential in the barrier.

complex expressions. The second-order static current can be
obtained in the uniform field case,

I (2) = −i
2e

h̄

∫ ∞

−∞

dω

2π

(
eh̄

mω

) ∫ ∞

−∞

dω′

2π

(
eh̄

mω′

)(
eh̄

m(ω − ω′)

)

×E∗
z (ω)Ez(ω

′)Ez(ω − ω′)

×
∑
ln′m′

um′luln′un′m′[fm′ − fn′ ]Gn′m′(ω′)

× [Gm′l(ω) − Gln′ (ω)], (22)

where unm = 〈n|∇zm〉. The second-order current is obtained
from the real value of the above expression and is cubic
in the electric-field strength and has a complex frequency
dependence. In the following, we will consider a special
example of a uniform barrier with different contact materials on
either side of the barrier. This simple problem will be evaluated
using our first-order static current result [Eq. (21)] and will
show photon-assisted tunneling in a simple example problem
with technical relevance.

IV. UNIFORM BARRIER EXAMPLE

It is instructive to examine a simple example. We consider
tunneling through a uniform barrier in the presence of a
transverse uniform time-varying electromagnetic field. The
electric field is from an incoherent blackbody source with
a small and finite bandwidth. We consider a simple transfer
Hamiltonian of the form

H =
(

p2

2mox

+ V

)
+ HT (t), (23)

where V is a real-valued constant barrier height in the region
0 < x � tox , and the last term is the imaginary potential that
arises from the time-varying vector potential. Equation (21)
can be applied to the uniform barrier problem to evaluate the
first-order tunneling current. The wave functions in the barrier
from the left and right regions are given by

φk = √
pl exp(ik · r − kx), (24)

ψq = √
pl exp[iq · r − q(tox − x)] (25)

where k and q are the transverse momentum, and k =√
2ml(V − El)/h̄2 and q =

√
2mr (V − Er )/h̄2, where V is

the barrier height. Here pl,r = 1/Vl,r are the real-valued vol-
ume normalizations in the left and right half spaces. Figure 1(a)
shows schematically the wave functions in the two half spaces
and the overlap in the barrier. The wave function in the barrier
region exponentially decays away from the left and right
interfaces respectively. The tunneling occurs due to the dipole
polarization induced by the field confined in the gap and the
wave function overlap in this region.

The matrix element of the transfer interaction is readily
evaluated,

uqk = −kTqk(2π )2δ(q − k), (26)

and similarly for the transpose,

ukq = qTkq(2π )2δ(k − q), (27)

where transverse momentum conservation is explicit, k = q,
and Tkq = Tqk is symmetric with

Tqk = tox√
VlVr

e−(k+q)tox/2 sinh[(k − q)tox/2]

(k − q)tox/2
. (28)

The imaginary part of the transfer interaction matrix elements
occurs due to the momentum operator matrix elements with the
evanescent decaying wave functions. The imaginary transfer
interaction is needed to give rise to a nonzero current through
the barrier and implies that we are not in an equilibrium
situation but a dynamic situation in which quasiparticles are
injected and removed from a reservoir at the left and right
contacts.

The first-order photon transfer tunneling current is given by
Eq. (21), and the sums are over both transverse and longitudinal
wave vectors. These sums are converted to integrals

∑
k

→ Vl

∫
dk

2π

∫
dk

(2π )2
(29)

over longitudinal and transverse momenta and similarly for
right half-space momenta q. The current density can be
obtained by integrating over the transverse momentum in the
left and right half spaces. This can be done analytically if the
parallel effective masses in the left and right half spaces are
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assumed to be equal, me, and the evanescent x wave vectors
do not depend on the transverse momenta. The single-photon
tunneling current is

J (1) = 4πeme

h3β2

(
mrml

m2
ox

) ∫ ∞

0

dω

2π

(
etox

h̄ω

)2

|E(ω)|2T (ω),

(30)

where the transmittance is defined as

T (ω) = β

∫
dElt(El,El + h̄ω)ln

[
1 + exp(−βEl)

1 + exp[−β(El + h̄ω)]

]

+ (ω → −ω), (31)

and where β = 1/kBT , and the photon energy h̄ω acts as an
effective bias in the supply function. There is a smaller back-
flow current contribution that corresponds to photon emission
in the barrier, El − h̄ω. This contribution to the transmittance
has been ignored. In Eq. (30), the first term has the units
for the current density, AT 2 where A = 120 A/cm2K2 is
Richardson’s constant. The second expression in parentheses
is the ratio of the x-directed perpendicular effective masses
for the right and left half spaces and oxide barrier. The third
term is dimensionless interaction strength and depends on the
amplitude of the field in the barrier, |E|, and the transmittance
T (ω). This integral is over all positive frequencies, but can be
limited to a finite bandwidth dν near the photon energy. The
transmittance is the scaled integral over the barrier transmit-
tance and supply function give the overall transmittance. The
barrier transmittance is

t(El,Er ) = e−(k+q)tox sinhc2

(
(k − q)tox

2

)
, (32)

where the first term has the form of the standard tunneling
exponential and the second term is the square hyperbolic sinc
function. The evanescent wave vectors in the barrier region
are k = [2ml(V − El)/h̄2]1/2 and q = [2mr (V − Er )/h̄2]1/2

as previously defined.
Figure 2(a) shows the computed first-order current for fixed

barrier thickness and Fig. 2(b) for fixed barrier height as the
device temperature is varied from 25 ◦C to 425 ◦C. A key

component of the calculation is the photon field amplitude in
the barrier, |E|. The photon field amplitude is derived from a
blackbody spectral exitance, M0

ν , given by

d�

dν
= M0

ν (T ) = 2πhν3

c2

1

exp(βhν) − 1
, (33)

where � is the power per unit area, ν = ω/2π is the photon fre-
quency, and dν is the bandwidth. The electric field amplitude
in the barrier is

|E(ω)|2 = 2Z0M
0
ν (T ), (34)

where Z0 is the impedance of free space. In Fig. 2(a) we
see that there is strong variation of the current density with
barrier height with increasing current with decreasing barrier
height as expected. There is also a strong temperature de-
pendence with the current density sharply increasing above
a critical temperature. This critical temperature decreases
with lowered barrier and is due to the thermal occupancy
of the left and right energy bands and the increase of the
thermal photon electric field amplitude in the barrier with
increasing temperature. Figure 2(b) shows the dependence of
the the tunneling current density on the barrier thickness. The
tunneling current increases with decreasing barrier thickness
as expected. Interestingly, the current density above a critical
temperature asymptotically approaches a common exponential
growth for increasing temperatures. The barrier transmittance
and the dimensionless field amplitude terms in Eq. (30) de-
pend exponentially and quadratically on the barrier thickness,
respectively, and are the source of this asymptotic behavior.
Short circuit tunneling current in large area nanoantenna
coupled tunnel diodes illuminated a thermal source have been
reported experimentally [31,32]. In these devices, high-field
concentration in the tunnel barrier from thermal infrared
sources leads to high short currents with strong temperature
dependence and may lead to different radiative thermoelectric
direct conversion of thermal radiation into direct electric
power.
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FIG. 2. Tunneling current density for various barrier parameters. (a) Computed tunneling current for varying barrier energy V for fixed
barrier thickness tox = 1.5 nm as a function of temperature. (b) Computed tunneling current for different barrier thicknesses tox for fixed barrier
energy, V = 1.5 eV, as a function of temperature. For all calculations, ml = me, mr = 0.19me, and mox = 0.5me where me is the bare electron
mass. The photon energy h̄ω = 0.17 eV corresponding to a wavelength of approximately 7.3 μm. The field in the barrier E(ω) is obtained from
a blackbody distribution for the specified temperature at the above central wavelength with dν = 1 THz bandwidth.
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V. CONCLUSIONS

We have derived the transfer Hamiltonian tunneling current
using a time-dependent mean-field density matrix perturbation
expansion. The density matrix is computed to all orders in
perturbation theory and the generalized tunneling current is
obtained. The Bardeen tunneling current expression is obtained
to first order in the density matrix expansion. Photon-assisted
tunneling arises due to confined electromagnetic fields in the
tunnel barrier region. These fields and wave-function overlap
in the barrier produce a time-varying polarization which leads
to a net current flow. This complex interaction in the barrier is
a direct consequence of the imaginary momenta in the barrier
and results in an imaginary transfer interaction that leads to
the tunneling current. The dependence on the photon energy
in the density matrix hierarchy gives rise to photon-assisted
tunneling through the barrier, where the photon energy acts as
an effective bias.

To examine the effect of photon-assisted tunneling, we
examine a uniform barrier model with asymmetric effective
masses in the two half spaces. We consider the confined
field in the tunnel gap arising from blackbody irradiation
consistent with the experimental observation of short-circuit
tunneling current observed in infrared nanoantenna-coupled
tunnel diode rectifiers [31,32]. In these devices, electric-field
confinement in the tunnel gap results from strong photon-
phonon interaction near a longitudinal optical-phonon mode
in the oxide tunnel barrier. We find that the tunneling current
has a temperature-dependent turn on as the source temperature
is increased, and is seen to saturate at different tempera-
tures for varying barrier thicknesses. Multiphoton-assisted
tunneling arises from higher-order terms of eE0tox/h̄ω, which
is small and represents a minor contribution to the first-
order Bardeen tunneling current computed for the uniform
barrier model considered. In this paper, we have presented
a generalized density matrix approach to the computation
of multiphoton-assisted tunneling currents and examined a
simple 1D asymmetric tunneling model. The effect of ap-
plying a bias and the role of surface states are challenging
problems under consideration in photon-assisted tunneling
devices and need to be solved within a consistent many-body
framework.
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APPENDIX A: GENERALIZED DENSITY MATRIX

The transfer Hamiltonian under consideration explicitly in
this paper is given by the electromagnetic interaction in the

tunnel barrier; we have

HT (t) = i
eh̄

mc
A(t) · ∇. (A1)

The real-valued vector potential can be written in terms of a
Fourier transform,

A(t) =
∫ ∞

−∞

dω

2π
e−iωtA(ω), (A2)

and we require A∗(−ω) = A(ω) for real-valued fields. The
vector potential in the Coulomb gauge can be expressed in
terms of the electric field, we have E(ω) = iω/cA(ω) and
we have E∗(−ω) = E(ω). The resulting transfer interaction
is given by

HT (t) =
∫ ∞

−∞

dω

2π
e−iωt eh̄

mω
E(ω) · ∇, (A3)

and we find that H ∗
T (t) = −HT (t), and care must be taken

regarding order of the gradient operations. In the following, we
will examine the equations of motion for the density matrix in
great detail for clarity.

The density matrix can derived for the transfer interaction.
The Hamiltonian for the system is H = H0 + HT (t), with
H0 |n〉 = En |n〉 where H0 is the unperturbed Hamiltonian with
orthonormal states, 〈m|n〉 = δnm. Schrodinger’s equation of
motion is

ih̄∂t |�〉 = [H0 + HT (t)] |�〉 , (A4)

and the total wave function can be expanded in the unperturbed
basis |�〉 = ∑

n cn(t) |n〉, to give

ih̄ċn = Encn +
∑
n′

〈n|HT n′〉 cn′ , (A5)

and a similar expression for the conjugate gives

ih̄ċ†m = −Emc†m −
∑
m′

〈m′H ∗
T |m〉 c

†
m′ . (A6)

The generalized density operator is

ρ̂ = |�〉 〈�| =
∑
n,m

cn(t)c†m(t) |n〉 〈m| , (A7)

where ρnm = cn(t)c†m(t). The density matrix equation of mo-
tion is

ih̄
∂ρnm

∂t
= (En − Em)ρnm

+
∑
n′m′

(〈n|HT n′〉 δm,m′ − 〈m′H ∗
T |m〉 δn,n′ )ρn′m′ .

(A8)

It is convenient to define the transfer matrix

Tnm;n′m′ = (〈n|HT n′〉 δm,m′ − 〈m′H ∗
T |m〉 δn,n′ ). (A9)

The matrix elements can be evaluated in the transfer matrix;
we have

Tnm;n′m′ =
∫

dx
∫ ∞

−∞

dω

2π
e−iωt eh̄

mω
E(ω)

· [φ∗
n(∇φn′ )δm,m′ − φ∗

m′(∇φm)δn,n′ + ∇(φ∗
m′φm)],

(A10)
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where the last term can be converted to a divergence which
vanishes on the bounding surface and a term proportional to
∇ · E = 0. Therefore, we obtain

Tnm;n′m′ =
∫ ∞

−∞

dω

2π
e−iωt eh̄

mω

∫
dxE(ω)

· [φ∗
n(∇φn′)δm,m′ − φ∗

m′(∇φm)δn,n′ ], (A11)

where the equation of motion becomes

ih̄
∂ρnm

∂t
= (En − Em)ρnm +

∑
n′m′

Tnm;n′m′(t)ρn′m′ . (A12)

APPENDIX B: TIME-DEPENDENT PERTURBATION
EXPANSION

The expansion of the density matrix in the strength of the
interaction is given by Eq. (9) in the text; we obtain

ih̄ρ̇(1)
nm − (En − Em)ρ(1)

nm =
∑
n′m′

∫ ∞

−∞

dω

2π
e−iωtTnm;n′m′ρ

(0)
n′m′ ,

(B1)

ih̄ρ̇(2)
nm − (En − Em)ρ(2)

nm =
∑
n′m′

∫ ∞

−∞

dω

2π
e−iωtTnm;n′m′ρ

(1)
n′m′ ,

(B2)

ih̄ρ̇(3)
nm − (En − Em)ρ(3)

nm =
∑
n′m′

∫ ∞

−∞

dω

2π
e−iωtTnm;n′m′ρ

(2)
n′m′ ,

...
... (B3)

and we recall that the zeroth-order term is time independent
and diagonal. We can perform the same Fourier analysis for
the time-dependent density matrix,

ρ(i)
nm(t) =

∫ ∞

−∞

dω

2π
e−iωt ρ̃(i)

nm(ω). (B4)

The first-order correction to the density matrix is

ρ̃(1)
nm(ω) = 1

h̄ω − En + Em

(
eh̄

mω

)
E(ω) · 〈n|∇m〉 (

fm − fn

)
,

(B5)
where we have assumed a uniform transverse electric field. The
second-order density matrix and higher-order terms are

ρ̃(2)
nm(ω) = 1

h̄ω − En + Em

×
∑
n′m′

∫ ∞

−∞

dω′

2π
T̃nm;n′m′ (ω − ω′)ρ̃(1)

n′m′(ω′), (B6)

ρ̃(3)
nm(ω) = 1

h̄ω − En + Em

×
∑
n′m′

∫ ∞

−∞

dω′

2π
T̃nm;n′m′(ω − ω′)ρ̃(2)

n′m′ (ω′),

...
... (B7)

where we note that

T̃nm;n′m′(ω) = eh̄

mω

∫
dxE(ω)

· [φ∗
n(∇φn′)δm,m′ − φ∗

m′(∇φm)δn,n′ ]. (B8)

The density expansion can be considered a consequence of an
iterated integral equation for the total density matrix. We have

ρ̃nm(ω) = ρ̃(0)
nm(ω) + 1

h̄ω − En + Em

×
∑
n′m′

∫ ∞

−∞

dω′

2π
T̃nm;n′m′(ω − ω′)ρ̃n′m′ (ω′), (B9)

which has the form of a scattering equation. The matrix element
T̃ acts as a self-energy term in the nonequilibrium density
matrix and the above equation can be formally inverted for the
nonequilibrium density matrix.

APPENDIX C: CURRENT CONTINUITY

The transfer Hamiltonian for the system is given by

H = H0 + HT (t), (C1)

where in general

H0 = − h̄2

2m
∇2 + U, (C2)

with U the spatially dependent real-valued potential. The
expansion of the wave function is also as given above; we
have

� =
∑

n

cn(t)φn(x). (C3)

From the equation of motion and the definition of the density
matrix given in previous appendixes, we obtain

∑
n,m

(
∂ρnm

∂t
φ∗

mφn + ∇ · jnmρnm

)

= 2e

h̄

∑
nm

∫ ∞

−∞

dω

2π
e−iωt 1

ω
E(ω) · jnmρnm, (C4)

where the current is defined as

jnm = h̄

2mi
[φ∗

m(∇φn) − (∇φ∗
m)φn]. (C5)

If we now integrate over an arbitrary volume, we can apply
Green’s theorem to convert to a surface integral over the
bounding volume to obtain

∂N

∂t
+

∫∫
dAn̂ · j = 2e

h̄

∫ ∞

−∞

dω

2π
e−iωt 1

ω

∫
V

dxE(ω) · j,

(C6)
where the current is j = ∑

nm jnmρnm, and the number of
quasiparticles is

N =
∑
nm

ρnm

∫
V

dxφ∗
mφn. (C7)

The charge current is obtained by multiplying by the −e

electronic charge and the electrical current density is J = −ej.
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The resulting expression for the electrical current is

I = 2e

h̄

∫ ∞

−∞

dω

2π
e−iωt 1

ω

∫
V

dxE(ω) · J + e
∂N

∂t
, (C8)

where

I = −e

∫∫
dAn̂ · J. (C9)

Equation (C8) is the general equation for current continuity
in the presence of dissipation. If we ignore the time-varying
charge density term, we obtain

I = 2e

h̄

∫ ∞

−∞

dω

2π
e−iωt 1

ω

∫
V

dxE(ω) · J. (C10)

The current from Eq. (C10) can be expressed in terms of the
transfer Hamiltonian. Explicitly, we have

I = i
∑
nm

∫ ∞

−∞

dω

2π
e−iωt e2

mω

∫
V

dxE(ω)

· [φ∗
m(∇φn) − (∇φ∗

m)φn]ρnm. (C11)

Using the previous integration by parts, we get

I = i
2e

h̄

∑
nm

∫ ∞

−∞

dω

2π
e−iωt eh̄

mω

∫
V

dxE(ω) · [φ∗
m(∇φn)]ρnm,

(C12)
or

I (ω′) = i
2e

h̄

∑
nm

∫ ∞

−∞

dω

2π

eh̄

mω

∫
V

dxE(ω)

· [φ∗
m(∇φn)]ρ̃nm(ω′ − ω), (C13)

and since we are mainly interested in the dc current that results
from the dynamic electromagnetic field, we evaluate at ω′ = 0

I0 = −i
2e

h̄

∑
nm

∫ ∞

−∞

dω

2π

eh̄

mω

∫
V

dxE∗(ω) · [φ∗
m(∇φn)]ρ̃nm(ω).

(C14)
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