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Lifetime of surface plasmons
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We calculate the lifetime of a surface plasmon on the surface of jellium metal from the process of the surface
plasmon decaying into electron-hole pairs in the metal. We find that this process only occurs over a finite interval
of wave vector, and at large values of wave vector. Our calculation contained two new features: (i) we used the
Brillouin formula to normalize the electromagnetic field traveling along the surface and (ii) we included the spin
rotation term in the electron current. The latter contribution has no effect at large wave vector of the surface
plasmon.
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I. INTRODUCTION

Surface plasmons are the fundamental electronic excitation
on metal surfaces [1]. Their dispersion has been measured
for many common metals [2–9]. Correspondingly, theoretical
calculations on many metals predict quite well the measured
dispersions [10–34]. An excellent review by Plummer’s group
is in Ref. [35].

There has been some work [2,22,32,33,36] on the lifetime of
surface plasmons. Fuchs and Kliewer [33] used the Lindhard
dielectric function to evaluate the plasmon lifetime. It is the
dielectric function for Coulomb interactions in the interior of
the metal, but is not appropriate for the surface nor for photonic
interactions. It ignores the electromagnetic component of
the surface plasmon. Khurgin [32] also used the Lindhard
function. A recent calculation by Gao et al. [36] used a
semiclassical model, whereas our calculation is fully quantum
mechanical. Many of the older calculations used the Feibelman
d parameters [19], which is usually a small wave vector
approximation. However, Liebsch [22] used the local-density
approximation to calculate the real and imaginary part of the
d(ω) function to high frequency: the latter is the lifetime
of the surface plasmon. Our theory is valid for large wave
vectors. None of these calculations included the new features
of this calculation, which are using the Brillouin formula to
quantize the surface plasmons, and including the spin rotation
in the electron current. Our results for the surface plasmon
lifetime are shown in Fig. 1. We have not found a similar
figure in any previous publication. Nor have we found any prior
work that found the dielectric function for the electromagnetic
interactions of the surface plasmons.

Here we calculate the lifetime of surface plasmons on a
jellium metal planar surface due to the plasmons exciting
electron-hole pairs in the metal. Our calculation contains
new features absent in earlier work: (i) the quantization of
the electromagnetic modes on the surface uses the Brillouin
formula [37–39] and (ii) we include the spin rotation terms in
the current of the electrons [40]. Much of the previous theory
was concerned with the dispersion of surface plasmons, and
most theories only applied at small wave vectors. Our theory
applies at small and at large wave vectors.

Plasmonics is now a huge field of research [41–46]. Our
exact results should be useful for this field.

If the surface is in the (x,y) plane, then the two-dimensional
wave vector of the surface is q = (qx,qy,0). A related wave
vector is Q = (qx,qy,qz). The standard formula for the surface
mode is [1]

q2c2 = ω2 ε(ω)

ε(ω) + 1
. (1)

In the past, this equation was solved by ignoring the wave
vector dependence and using ε(0,ω) for the dielectric function.
The reason is that, although the bulk dielectric function ε(Q,ω)
is known, the surface dielectric function ε(q,ω) was not known,
although there have been numerous guesses. Here we derive
the surface dielectric function ε(q,ω). We use it to calculate
the lifetime of the surface plasmon.

We derive the transverse dielectric function for a metal
surface. It is the response to a photon field. The dielectric
function is a 3×3 tensor. The longitudinal component is q̂ · ε ·
q̂. Earlier we derived [47] the longitudinal dielectric function
of the surface. Here we derive the transverse components of
the surface dielectric tensor ξ̂ · ε · ξ̂ , where ξ̂ is the photon
polarization vector.

II. THEORY

We solve for the wave vector dependence of surface plas-
mons on a jellium metal surface. The usual theory of surface
plasmons ignores the wave vector dependence of the dielectric
function: ε(q,ω) is approximated as ε(ω). Then the dispersion
of surface plasmons is given by the formulas [1]

0 = p + γ

ε
, (2)

p2 = q2 − ω2

c2
, (3)

γ 2 = q2 − ε(ω)
ω2

c2
, (4)

ε(ω) = 1 − ω2
p

ω2
, ω2

p = nee
2

ε0m
, (5)
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FIG. 1. The function J (x) vs. x.

where q is the two-dimensional wave vector of the surface
plasmon, and ωp is the plasma frequency in terms of the
electron density ne and mass m. The dispersion relation can
be manipulated to give

c2q2 = ω2 ε

ε + 1
. (6)

Solving this equation gives the surface plasmon dispersion
as [1]

ω2
q = (cq)2 + ω2

sp −
√

(cq)4 + ω4
sp, (7)

ωsp = ωp√
2
. (8)

The interactions of photons with jellium has two terms:

V1 = e2

2m

∫
d3rρ(r)A2(r), (9)

V2 = −
∫

d3r �j (r) · �A(r), (10)

where ρ(r) is the electron charge density in the metal, �j (r)
is the electron current operator in the metal, and �A(r) is the
vector potential of the photons. The interaction V1 has already
been included in deriving the dielectric function in Eq. (5).
The interaction V2 contributes to the wave vector dependence
of the surface plasmon.

III. QUANTIZATION OF THE VECTOR POTENTIAL

The first step in the derivation is to quantize the vector
potential. This has been discussed in earlier publications

[37–39,48], so here we summarize the result. We use the
electromagnetic units called “rationalized MKSA” in Jackson
[39]. The surface plasmon is a transverse magnetic mode with
wave vector q = (qx,qy,0) along the surface in the (x,y) plane.
We introduce an unknown function B0(q) along with some
raising and lowering operators a

†
q,aq for the surface polariton.

The magnetic field generated by the surface plasmon is

�B(r,t) =
∑

q

B0(qy, − qx,0)(ξaq + ξ ∗a†
q)φB(z), (11)

φB(z) = e−pz, z > 0, (12)
= eγ z, z < 0, (13)

ξ = exp[i(q · ρ − ωqt)]. (14)

Note that �∇ · �B = 0. From Maxwell’s equation we can derive
the electric field and vector potential:

Ex,y(r,t) = −ic2
∑

q

B0
qx,yp

ωq

(ξaq − ξ ∗a†
q)φB(z), (15)

Ez(r,t) = c2
∑

q

B0
q2

ωq

(ξaq + ξ ∗a†
q)φz(z), (16)

Ax,y(r,t) = c2
∑

q

B0
qx,yp

ω2
q

(ξaq + ξ ∗a†
q)φB(z), (17)

Az(r,t) = ic2
∑

q

B0
q2

ω2
q

(ξaq − ξ ∗a†
q)φz(z), (18)

φz(z) = e−pz, z > 0, (19)

= 1

ε
eγ z, z < 0. (20)

The quantization of the electromagnetic field proceeds from
Brillouin’s formula [37–39]:

∑
q

h̄ωq(a†
qaq + 1/2) = ε0

2

∫
d3r[g(ω)E2 + c2B2], (21)

g(ω) = ∂

∂ω
[ωε(ω)] = 1 + ω2

p

ω2
. (22)

After some algebra, one finds

B2
0 = 2γ h̄ωq

ε0A(qc)2
J (q) =

(
2h̄

ε0Ac

)
ωq

pc
J (q),

J = ω4
q

(
ω2

p − ω2
q

)2

ω2
q

(
ω2

p − 2ω2
q

)(
ω2

p − ω2
q

)2 + (cq)2
[
ω4

q

(
ω2

p + ω2
q

) + (
ω2

p − ω2
q

)2(
ω2

p + 3ω2
q

)] , (23)

which provides the function B0(q) needed for proper quan-
tization. It is used to evaluate the interaction V2. Here A is

the area of the surface plane. The dimensional units of B0 are
Volts · sec/meter, while J (q) is dimensionless.
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IV. p · A INTERACTION

We confine the electrons in the metal slab −L < z < 0 so
that their wave function is

φ(r) =
√

2

LA
eik·ρ sin(kiz)χ, ki = nπ

L
, (24)

si,f = sin(ki,f z), ci,f = cos(ki,f z), k = (kx,ky,0), (25)

where χ is the spin part. The derivation of the electrical current,
and the interaction V2, is detailed in the Appendix. We include
in the current the spin rotation terms in the current for fermions,
as described by Sakurai [40]:

V2 = −
∑

k,q,ki ,kf

C
†
k+q,kf

Ck,ki
(aq − a

†
−q)MT , (26)

MT = eh̄(cq)2B0

2mLω2
q

V−

{
(χ †

j χi)

[
q · (2k + q) + 1

ε
k+k−

]

− γ [χ †
f (qyσx − qxσy)χi]

(
1 + 1

ε

)}
, (27)

V− =
[

1

γ 2 + k2−
− 1

γ 2 + k2+

]
, (28)

k± = ki ± kf . (29)

This interaction is evaluated in the second order of perturbation
theory. After squaring the matrix element MT , we must average
over spin components (s,s ′) in the initial and final states:

1

2

∑
ss ′

|MT |2 =
(

eh̄B0

2mL

)2(
cq

ωq

)4

V 2
−

{[
q · (2k + q) + k−k+

ε

]2

+ γ 2q2

(
1 + 1

ε

)2}
.

The last term is from the spin rotation parts of the current
operator. From Eq. (1), we have the identity(

1 + 1

ε

)2

=
(

ωq

cq

)4

. (30)

The correction to the photon Green’s function is

Dμν(q,ω) = 2ωq

ω2 − ω2
q − 

, (31)

= ωq

h̄

∑
k,ki ,kf ,s,s ′

|MT |2 nF (k,ki) − nF (k + q,kf )

E(k,ki) − E(k + q,kf ) − h̄ω
, (32)

= C0I, (33)

C0 = 2e2γ

ε0m

(
cq

ωq

)2

J (q), (34)

I =
∫

dki

π

∫
dkf

π

∫
d2k

(2π )2
nF (k,ki)V

2
−T

×
[

1

q · (2k + q) + ξ+
+ 1

q · (2k + q) + ξ−

]
, (35)

T =
[[

q · (2k + q) + k−k+
ε

]2

+ q2γ 2

(
1 + 1

ε

)2]
, (36)

ξ± = k2
f − k2

i ± q2
0 , q2

0 = 2mω/h̄, (37)

where C0 has the units of meter2/sec2.

V. LIFETIME

(q,ω) has an imaginary part, which is determined by

�{} = L(ω) − L(−ω), (38)

L(ω) = π

∫
dki

π

∫
dkf

π

∫
d2k

(2π )2
nF (k,ki)T V 2

−

×δ[q · (2k + q) + ξ+]. (39)

The integral over
∫

d2k gives
∫

d2kδ[q · (2k + q) + ξ+]

= 1

2q2

√
4q2

(
k2
F − k2

i

) − (q2 + ξ+)2. (40)

Denote s =
√

k2
F − k2

i and get for the right-hand-side

= 1

2q2

√(
k2
f − k2

l

)(
k2
u − k2

f

)
, (41)

k2
l = k2

F − q2
0 − (q + s)2, (42)

k2
u = k2

F − q2
0 − (q − s)2. (43)

The integral is nonzero only when k2
u > 0, which constrains

2q

√
k2
F − q2

0 + q2
0 − q2 > k2

i > q2
0 − q2 − 2q

√
k2
F − q2

0 .

(44)

When ω = ωsp, the ratio (q0/kF )2 = h̄ωsp/EF = 0.665
√

rs ,
where rs is the density parameter of the electron gas [49]. So
q2

0 > k2
F for all metals with rs > 2.26, which includes all but a

dozen metals. In a metal with rs > 2.66, when ω = ωsp, then
k2
u < 0 and the imaginary part of (q,ω) is zero. Next examine

k2
l . It is negative for many values of (q,ω,ki). In those cases,

the integral
∫

dkf has its lower limit of zero.
There are two different regions of wave vector q. At small

values q ∼ ωsp/c, the surface plasmon dispersion rises from
zero to its full value ωq ≈ ωsp. However, all of the experiments
on surface plasmons are performed at much larger wave
vectors, of the order q ∼ 1/Å. We confine our calculation
to this latter region, which simplifies the integrals. Then
γ ≈ p ≈ q, ωq = ωsp, and ε = −1. Then T = q4

0 + ω4
sp/c4

and J → ω2
sp/8(qc)2. The second term in T is negligible.

Collecting the remaining terms gives

L(ω) = q4
0

q2(2π )3

∫ kF

0
dki

∫
dkf

√(
k2
f − k2

l )
(
k2
u − k2

f

)
V 2

−.

Next consider the term L(−ω), change the sign of q2
0 . The

constraint that k2
F > q2

0 is now relaxed, and this L(−ω) is
nonzero for all metals. Now the constraint k2

u > 0 is

2q

√
k2
F + q2

0 − q2
0 − q2 > k2

i > 0, (45)

which requires a nonzero value of q to be satisfied:

kF +
√

k2
F + q2

0 > q >

√
k2
F + q2

0 − kF . (46)
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At zero frequency, the electron-hole excitations in a metal
are constrained to be 0 < q < 2kF . However, for nonzero
frequency, the minimum and maximum values of q increase,
in this case to the above values. The integral for L(−ω) is
evaluated numerically in dimensionless units: x = q/kF ,y =
ki/kF ,z = kf /kF ,W = q2

0/k2
F = 0.665

√
rs .

�{} = G(q)J (x), (47)

G(q) = ω2
sp

2π2(kF a0)
, (48)

J (x) = 1

x

∫ 1

0
dy

∫ zu

zl

dz

√(
z2
u − z2

)(
z2 − z2

l

)

×
[

1

(y − z)2 + x2
− 1

(y + z)2 + x2

]2

, (49)

z2
u,l = W + y2 − x2 ± 2x

√
1 − y2, (50)

where a0 is the Bohr radius.
(1) For zu > 0, then

1 − (x − √
1 + W )2 > y2 > 1 − (x + √

1 + W )2. (51)

(2) For zl > 0 then

y2 > 1 − (x − √
1 + W )2. (52)

(3) Therefore, z2
l < 0 where z2

u > 0, so that the integral∫
dz goes from zu > z > 0.
Figure 1 shows an evaluation of the double integral forJ (x)

as a function of x = q/kF . For numerical convenience, we
chose W = 1.25,

√
1 + W = 1.5, which is a metal with rs =

3.53. Then the limits of the wave vector are 0.5 < x < 2.5.
The values of J (x) reach a peak right above the threshold, and
then decline in value. It is negligible at the upper end x = 2.5.
The decline at large values of q comes from the asymptotic
behavior V 2

− → q−8.
The imaginary part of (ω) has the units of frequency

squared. At these large wave vectors, we can write the photon
Green’s function as

D(q,ω) = 2ωsp

ω2 − ω2
sp[1 + iφ(q/kF )]

, (53)

φ(x) = 0.093J (x), (54)

where the prefactor of φ(x) equals 1/[2π2(kF a0)], where
1/(kF a0) = rs/1.9192 is evaluated at rs = 3.53. What is the
lifetime τ (q) of the surface plasmon? We answer this question
by taking a Fourier transform of the Green’s function from
frequency to time, which results in an exponent

exp[−iωt] → exp[−itωsp

√
1 + iφ], (55)

≈ exp

[
−itωsp

(
1 + iφ

2

)]
, (56)

1

τ
= ωspφ(x)

2
. (57)

At its peak value, 1/τ is about 2% of the surface plasmon
frequency.

VI. DISCUSSION

We have calculated the lifetime of a surface plasmon on
the surface of jellium metal from the process of the surface
plasmon decaying into electron-hole pairs in the metal. We
find that this process only occurs over a finite interval of wave
vector, and at large values of wave vector. It is interesting that
the same feature is found in plasmon decay in three dimensions
[49]. Our calculation contained two new features: (i) we used
the Brillouin formula [37] to normalize the electromagnetic
field traveling along the surface and (ii) we included the
spin rotation term [40] in the electron current. The latter
contribution has no effect at large wave vector of the surface
plasmon. Our main result, obtained by a two-dimensional
numerical integral, is contained in Fig. 1, which shows the
dimensionless lifetime as a function of x = q/kF , where kF is
the Fermi wave vector of the metal. We have not found a figure
of this type in any prior publication.

APPENDIX

Here we derive the expression for the electron current
operator jμ(r,t) in the metal. We include the spin rotation
terms derived in Sakurai [40]. The current for spin one-half
Fermions is written in terms of derivatives and Pauli matrices
(σx,σy,σz):

jx = eh̄

2mi

{
χ
†
f

[
I ∂

∂x
− iσy

∂

∂z
+ iσz

∂

∂y

]
χi

−
[
χ
†
i

[
I ∂

∂x
− iσy

∂

∂z
+ iσz

∂

∂y

]
χf

]†}
, (A1)

jy = eh̄

2mi

{
χ
†
f

[
I ∂

∂y
− iσz

∂

∂x
+ iσx

∂

∂z

]
χi

−
[
χ
†
i

[
I ∂

∂y
− iσz

∂

∂x
+ iσx

∂

∂z

]
χf

]†}
, (A2)

jz = eh̄

2mi

{
χ
†
f

[
I ∂

∂z
− iσx

∂

∂y
+ iσy

∂

∂x

]
χi

−
[
χ
†
i

[
I ∂

∂z
− iσx

∂

∂y
+ iσy

∂

∂x

]
χf

]†}
, (A3)

where I is the 2×2 identity tensor, and the wave functions
contain two-dimensional spinors (χi,χf ). The electrons scatter
from the initial state (k,ki) to a final state (k + q,kf ). The initial
wave functions have the form ρ = (x,y,0):

φi(r) =
√

2

AL
eik·ρ sin(kiz)χi, (A4)

and a similar form for the final wave function: χi,f are the spin
eigenfunctions. The current operator becomes

jx = eh̄

mLA
e−iρ·q{[(χ †

f χi)(2kx + qx)sisf − i(χ †
f σzχi)qysisf

−(χ †
f σyχi)(kicisf + kf sicf )}, (A5)

jy = eh̄

mLA
e−iρ·q{(χ †

f χi)(2ky + qy)sisf + i(χ †
f σzχi)qxsisf

+ (χ †
f σxχi)(kicisf + kf sicf )}, (A6)
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jz = eh̄

miLA
e−iρ·q{(χ †

f χi)(kicisf − kf sicf ) − (χ †
f σxχi)qysisf

+ (χ †
f σyχi)qxsisf }, (A7)

si,f = sin(ki,f z), ci,j = cos(ki,j z). (A8)

Multiply the above current by the vector potential of surface
plasmons:

�j · �A = eh̄

mLA

∑
k,q

e−iq·ρC†
k+q,kf

Ck,ki

×
∑
Q′

B0c
2

ω2
q ′

eγ ′z(Mx + My + Mz), (A9)

Mx + My = (aq′ξ + a
†
q′ξ

∗)p{(χ †
f χi)q · (2k + q)sisf

+ [χ †
f (qyσx − qxσy)χi](kf cf si + kicisf )},

(A10)

Mz = q2

ε
(aq′ξ − a

†
q′ξ

∗){(χ †
f χi)(kicisf − kf cf si)

− sisf [χ †
f (qyσx − qxσy)χi]}. (A11)

It is interesting that some of the spin-rotation terms have
canceled out. Now we evaluate the integral

∫
d3r in V2. The

two-dimensional integral over (x,y) sets q = ±q′ in the current
and the vector potential. The z integrals give

∫ 0

−L

dzeγ zsisf = γ

2
(1 ± e−γL)V−, (A12)

∫ 0

−L

dzeγ z(kicisf − kf cf si) = k−k+
2

(1 ± e−γL)V−, (A13)

∫ 0

−L

dzeγ z(kicisf + kf cf si) = −γ 2

2
(1 ± e−γL)V−, (A14)

V− =
[

1

γ 2 + k2−
− 1

γ 2 + k2+

]
, (A15)

k± = ki ± kf . (A16)

The exponent exp(−γL) also has a factor of exp(−iLk±) =
±1. We consider a thick slab, and calculate the dispersion at one
surface: so set exp(−γL) = 0. Also note the identity pγ = q2.
The interaction is now

V2 = −
∑

k,q,ki ,kf

C
†
k+q,kf

Ck,ki
(aq − a

†
−q)MT , (A17)

MT = eh̄(qc)2B0

2mLω2
q

V−

{
(χ †

j χi)

[
q · (2k + q) + 1

ε
k+k−

]

+γ [χ †
f (qyσx − qxσy)χi]

(
1 + 1

ε

)}
. (A18)

In calculating , we will average over spin arrangements in
〈|MT |2〉

1

2

∑
ss ′

〈|MT |2〉 = T

(
eh̄(qc)2B0

2mLω2
q

V−

)2

, (A19)

T = [q · (2k + q) + k−k+
ε

]2 + q2γ 2

(
1 + 1

ε

)2

. (A20)

The last term is due to spin rotation.
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