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Suppression of scattering in quantum confined 2D helical Dirac systems
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Transport properties of helical Dirac fermions in disordered quantum wires are investigated in the large energy
limit. In the quasiballistic regime, the conductance and the Fano factor are sensitive to disorder only when the
Fermi energy is close to an opening of a transverse mode. In the limit of a large number of transverse modes,
transport properties are insensitive to the geometry of the nanowire or the nature and strength of the disorder
but, instead, are dominated by the properties of the interface between the ohmic contact and the nanowire. In the
case of a heavily doped Dirac metallic contact, the conductance is proportional to the energy with an average
transmission T = π/4 and a Fano factor of F � 0.13. Those results can be generalized to a much broader class
of contacts, the exact values of T and F depending on the model used for the contacts. The energy dependence
of Aharonov-Bohm oscillations is determined, revealing a damped oscillatory behavior and phase shifts due to
the one-dimensional subband quantization and which are not the signature of the nontrivial topology.
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I. INTRODUCTION

Transport properties of two-dimensional (2D) helical Dirac
fermions were first studied in carbon nanotubes [1–5] and
more recently in graphene [6,7] and topological insulators [8].
For massless fermions, the linear dispersion relation and the
symmetries that constrain scattering not to connect orthogonal
(pseudo)spins, induce a strongly anisotropic scattering, leading
to an enhanced transport scattering time [9–12]. The long
transport length � results in large mobilities and in quantum
confinement effects in disordered systems with one or more
dimensions smaller than �. Prior work [6,7] highlighted, for
instance, the properties of Dirac fermions either in the absence
of quantum confinement [9,10] or disorder [13–15] or in
the presence of both but focusing on the low-energy limit
[1–3,8,16,17]. Although the transport properties are rather
well understood close to the Dirac point, the coexistence of
strong quantum confinement and a high Fermi energy in Dirac
systems is most common in real nanostructures, such as three-
dimensional (3D) topological insulator nanowires [18–20] or
narrow graphene nanoribbons [21–23].

A clear understanding of the interplay between scattering
and quantum confinement far away from the Dirac point would
shed light on some recent experimental works [18,19,24–28].
In this paper, considering both metal contacts and disorder
allows us to evaluate their relative contributions to the transport
properties. Moreover, in the case of weakly disordered topolog-
ical insulator nanowires, we calculate the energy dependence
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of Aharonov-Bohm oscillations close to and far from the
Dirac point. This makes it possible to distinguish between
topologically trivial signatures (due to quantum confinement)
and nontrivial features [18,19,27].

In the model considered here, we investigate the properties
of disordered topological insulator nanowires with �/W > 1,
where W is the perimeter of the nanowire. We consider the case
of a perfect interface with metallic electrodes and we focus on
the high-Fermi-energy regime (ε � � with � = hv/W and v

the Fermi velocity) in the presence of a magnetic field parallel
to the nanowire axis. Starting from an approximate analyt-
ical derivation of the transmission of transverse modes, we
calculate the transport properties at any energy and magnetic
flux, including quantum corrections induced by intermode
scattering. The comparison to numerical simulations validates
our analytical approach and an excellent agreement is found
at high energy as long as �/W > 1. In this regime, the energy
and disorder strength dependence of the conductance and shot
noise reveal the ballistic nature of the transport. Furthermore,
we evidence the damped oscillatory behavior in the energy
dependence of Aharonov-Bohm oscillations away from the
Dirac point and phase shifts. We show that it is related to
quantum confinement only, in good quantitative agreement
with experimental results [18,19,27].

II. MODEL

For clarity, we consider the case of a band structure with
a single spin-helical Dirac cone [Fig. 1(a)], as realized, for
example, in Bi2Se3 [29], but our results are easily generalized
to the case of graphene nanoribbons or carbon nanotubes in
the absence of intervalley scattering. The system is described
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FIG. 1. (a) 2D band structure of a massless fermion system with
spin-momentum locking. The planes correspond to the section of the
cone for discrete values of the transverse wave vector due to quantum
confinement. (b) Section of the 2D band structure at a given Fermi
energy. (c) 1D cut of the disorder and contact potential at y = 0,
plotted together with the corresponding θ angle.

by the Dirac Hamiltonian,

H = vp · σ + V (r) + Vc, (1)

with σ = (σx,σy) the Pauli sigma matrices, r = (x,y) where x

is the longitudinal coordinate and y the transverse coordinate,
and V (r) stands for a Gaussian correlated scalar disorder such
that

〈V (r)V (r′)〉 = g
(h̄v)2

2πξ 2
e−|r−r′ |2/2ξ 2

. (2)

Here, ξ is the disorder correlation length and g is a dimen-
sionless parameter that measures the disorder strength. The
qualitative results of our study do not depend strongly on the
exact nature of the disorder correlation function. The contacts
are modeled by a potential Vc → −∞ for x < 0 and x > L

and Vc = 0 otherwise [13,16] [see Fig. 1(c)]. This model
corresponds to a strong doping of the topological insulator
below metallic electrodes, or, equivalently, to the injection
of quasiparticles from a metallic electrode with kx � ky (kx

and ky are the components of the wave vector k parallel and
perpendicular to the axis of the nanowire). Our results, as we
will see below, can be generalized to a broader class of contacts.

In a nanowire geometry, ky is quantized due to peri-
odic boundary conditions [Figs. 1(a) and 1(b)]. In general,
ky = kn = εn/h̄v = (n + φ/φ0 − 1/2)(�/h̄v), where the 1/2
comes from the Berry phase induced by spin-momentum
locking on a curved surface [30–32] (absent in graphene
nanoribbons), n ∈ Z is a mode index, φ is the magnetic flux
threaded through the cross section of the nanowire, φ0 = h/e

is the magnetic flux quantum, and εn is the energy of the
mode n. In addition to the transverse quantized energy �, we
also consider the longitudinal quantized energy �‖ = πh̄v/L,
where L is the length of the wire.

Ignoring first the quantum confinement and considering
the 2D limit only, the transport relaxation time τ and the
transport length � = vτ can be explicitly determined for a
Gaussian potential, starting from Fermi’s golden rule [16,33].

As expected, � and τ do not depend on the incident direction
of the k vector of the wave function [34],

� = vτ = 2kξ 2

g

exp(k2ξ 2)

I1(k2ξ 2)
, (3)

where I1 is the modified Bessel function of the first kind.
Even if the 2D limit is valid only for k� � 4π , such that the
divergence of � at low energy is smoothed out, � reaches a
minimum �m at an energy ε corresponding to kξ ∼ 1. As a
result, for a conductor with a finite width W < �m, the disorder
is not strong enough to set the system in the 2D diffusive
limit. Boundary conditions modify the density of states that
exhibits a maximum at each transverse mode opening, a feature
typical of the 1D nature of the subband associated with the
mode: The system is then quantum confined. This condition
reads g � 0.5 for ξ/W = 0.05 (see Appendix A). We define
the different transport regimes by comparing �m to the length
and perimeter of the device. The ballistic, quasiballistic, and
diffusive regimes correspond to �m > 2L, 2L > �m > W , and
W > �m, respectively. A factor of 2 is introduced due to
the different boundary conditions along the longitudinal and
transverse directions of the nanowire.

III. TRANSMISSION MODES AND DISORDER

At high energies, � is larger than the system size and
transport properties are determined by the interface between
the nanowire and the lead. A perfect interface simply consists
of a step in the chemical potential at x = 0 and x = L. This
corresponds to the case of a nanowire with a screening length
shorter than the Fermi wavelength, a good approximation for
real systems [12]. As long as the step does not depend on y,
translational invariance implies the conservation of ky such
that only intramode backscattering processes take place at
the interface. Each transverse mode can be considered inde-
pendently, following Refs. [13,35]. For a given mode n with
θ = arctan{[(ε/εn)2 − 1]−1/2} [see Fig. 1(b)], the reflection
(rθ ′,θ ) and transmission (tθ ′,θ ) coefficients only depend on θ

in the nanowire and θ ′ in the contact. Contrary to the massive
case, the Hamiltonian (1) does not require the continuity of
the spatial derivative of the wave function but the continuity
of the two-component wave function, which gives rθ ′,θ =
sin([θ − θ ′]/2)/ cos([θ + θ ′]/2) and tθ ′,θ = cos(θ ′)/ cos([θ +
θ ′]/2). The total transmission amplitude tn of the mode n

considering a nondisordered nanowire and two contacts with
perfect interfaces is

tn = cos θ cos θ ′

cos θ cos θ ′ cos ϕ + i(sin θ sin θ ′ − 1) sin ϕ
, (4)

with ϕ = kxL. This expression is a generalization to an arbi-
trary θ ′ of the transmission amplitude for propagating modes
found in Ref. [13] (where θ ′ = 0). Contrary to Ref. [13], we do
not consider evanescent modes which exponentially vanish far
from the Dirac point and for long distances between the contact
(L > W ) such that transport properties are strongly dominated
by propagating modes. The transmission is Tn = |tn|2.

We first consider a weak disorder and follow a Wentzel-
Kramers-Brillouin approach [36]. The main effect of the
disorder is to randomly redistribute the phase ϕ of each mode
without inducing any intermode scattering. Thus, the position
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of the Fabry-Pérot resonances that corresponds to kxL = pπ

(p ∈ N) in the clean case will be shifted depending on the
disorder configuration and the disorder-averaged transmission
is given by 〈Tn〉 = (1/2π )

∫ 2π

0 |tn(ϕ)|2dϕ. This approach is
equivalent to a temperature smearing with 4kBT > �‖. 〈Tn〉
can be explicitly calculated,

〈Tn〉 = cos θ cos θ ′

1 − sin θ sin θ ′ . (5)

More particularly, when Vc → −∞, we have θ ′ � 0 and

〈Tn〉 = cos θ =
√

1 −
(εn

ε

)2
. (6)

We note that the transmission of a mode differs from 1, except
for θ = 0 that corresponds to the perfectly transmitted mode
discussed in Refs. [16,37,38]. This mode corresponds to εn =
0, which requires half a quantum of flux to be threaded through
the cross section of the nanowire to compensate the Berry phase
picked up by a particle when it goes around the nanowire. This
approach is valid as long as (i) the system is quantum confined,
which requires � > W , and (ii) |dλ/dx| � 2π , where λ =
2π/kx [36]. It is therefore not valid close to the onset of a
mode but it is satisfied for ε � εn for the conditions we are
using here.

We compare the analytical expression (6) to numerical sim-
ulations following the method presented in Refs. [16,39,40].
The transmissions of a disordered nanowire with W = 200 nm
and L = 500 nm are calculated up to ε/� ∼ 25 and averaged
over ∼103 disorder configurations for different strengths of
disorder ranging from the ballistic limit (g = 0.02, �m > 2L)
to the diffusive limit (g = 1, �m < W ). We choose a correlation
length ξ = 10 nm consistent with experimental measurements
[12].

Results are presented in Fig. 2 for half a flux quantum
threading the cross section of the nanowire. Due to time-
reversal symmetry, the zero-energy mode is topologically
protected and its transmission is equal to 1, independently of
the disorder strength [16,38]. All other modes exhibit Fabry-
Pérot resonances that are not fully averaged out for a weak
disorder (g � 0.02). Nevertheless, the average transmission
roughly follows the analytical formula (6) in general.

We notice two kinds of deviations from the adiabatic limit
for the simulated data. First, dips appear close to the onset
of each mode for g � 0.05 [see, for instance, Fig. 2(b)].
They are smeared out for g � 1. This is the signature of the
modification of the density of states by quantum confinement.
More quantitatively, starting from the Fermi golden rule and
assuming � > W , we obtain

1

τk
= gv

2W

∑
kn

∣∣∣∣1 − cos2 θq

cos θn

∣∣∣∣ exp

(
−q2ξ 2

2

)
, (7)

where τk is the transport time of a k state, q = kn − k, θn is
the angle of the final kn state, and θq = θ − θn. Contrary to the
diffusive case, τk explicitly depends on the initial state k. Dips
in the transmission come from the opening of the transverse
mode associated with the divergence of the 1D density of state
(cos θn = 0). Far from the onset (ε − εn � �), this effect is
strongly reduced by the exponential cutoff of the Gaussian
disorder (q2ξ 2/2 � 1). For g � 1, the disorder broadening

FIG. 2. The transmission of the transverse modes calculated and
disorder averaged for different disorder strengths g (0.02, 0.2, and
1) ranging from the ballistic to the diffusive regime. Black dashed
lines indicate the ballistic transmission with no quantum corrections
(γ0 = 0 and γ1 = 0). Red lines are the best fit of the transmission
including quantum corrections for (a) (γ0 = 0.39 and γ1 = 0.43).
Good agreement with numerical data is obtained in (b) with γ0 = 0.4
and γ1 = −0.85 for g = 0.2, whereas no satisfactory parameters
fit the g = 1 data; the γ0 = 0.4 and γ1 = −0.85 transmissions are
indicated by red dotted lines in (c).

induces overlapping dips and the transmission deviates clearly
from its ballistic limit [see Fig. 2(c)]. This corresponds to δV =
〈V (r)V (r)〉1/2 ∼ �.

Second, the transmission Tn is not strongly affected by
a weak disorder and Tn remains close to its clean limit T ∗

n
(g = 0) given by Eq. (6), for g up to 0. 2. Nevertheless, some
deviations δTn = Tn − T ∗

n due to the coupling between the
different transverse modes are observed for g �= 0. Despite this
coupling and for a weak disorder (g � 0.2), δTn is small and the
transport properties can still be described by the transmission
of the transverse modes kn. In this case, we observe two kinds
of systematic deviations:

(1) Close to the onset (ε � εn), δTn < 0: Indeed, for a
Gaussian disorder, the scattering is limited to adjacent modes
due to the exponential cutoff in Eq. (7). It will be dominated by
an adjacent mode close to the onset since the density of states
diverges at the onset [the cos θn term in Eq. (7)]. Therefore,
scattering is strong when ε � εn, which generally reduces the
transmission.

(2) At high energy (ε � εn), δTn > 0: In this regime,
the 1 − cos2 θq term in Eq. (7) vanishes—single scattering
events should have no impact on the transmission and should
lead to δTn → 0. This deviation can be only explained by
quantum interferences (multiple scattering processes) inducing
conductance corrections. Simulations give disorder-averaged
transmissions which average out all quantum interference
contributions, except for weak antilocalization (WAL) inter-
ferences that lead to some positive corrections [2].
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FIG. 3. (a) Schematic of a loop corresponding to WAL quantum
interferences in real space. (b) The same loop represented in k space.
(c) The loops that dominate the WAL corrections for a mode n (we
chose here n = 2 and φ = φ0/2).

We can roughly estimate the energy dependence of the
corrections due quantum interferences. The trajectories that are
generally involved in WAL loops are k → k1 → · · · → kn →
−k and their time-reversed trajectories k → −kn → · · · →
−k1 → −k as described in Fig. 3. On the one hand, the expo-
nential cutoff in Eq. (7) favors loops minimizing the number
of intermode scattering events in the WAL corrections, and the
minimal exponential cutoff is obtained for only two scattering
events q1 and q2. In this case, we have exp [−(q2

1 + q2
2 )ξ 2/2] =

exp (−q2ξ 2/2) = exp (−2k2ξ 2). The amplitude of probability
of such a loop is even strongly enhanced if one of the two
scattering events involves a reflection on the interface between
a contact and the nanowire [Fig. 3(c)]. Indeed, the reflection
coefficient r of the interface for θ ′ = 0 is given by rn =
sin(θ/2)/ cos(θ/2) = sin(θ )/[1 + cos(θ )], which tends to zero
when ε � εn as a power law of ε instead of an exponential
decay [∝ exp (−2ε2ξ 2/h̄2v2)] for a disorder-driven scattering
process. On the other hand, the spin projection of the initial
state on the scattered state tends to favor the contribution of
loops that maximize the 1 − cos2 θq term in Eq. (7). This is ob-
tained for loops involving again two scattering events only (q1

and q2) with θq1
= θq2

= π/2. Nevertheless, the contribution
of such trajectories to quantum corrections is exponentially
suppressed, and the WAL corrections are dominated at high
energy by loops implying one reflection on the contact interface
and one disorder-driven scattering event as shown in Fig. 3(c).

The quantum interferences involved in WAL are then
dominated by trajectories, whose amplitude of probability is
given by the product of rn (related to q1), and the amplitude
of probability associated with the q2 intermode scattering
event [see Fig. 3(c)]. The latter is related to the scattering
probability given by Eq. (7) with q2 = 2nπ/W that is energy
independent and is therefore an even function of εn/ε. The
energy dependence of rn reads

rn = sin (θ )

1 + cos (θ )
= εn/ε

1 +
√

1 − (εn/ε)2
, (8)

an odd function of εn/ε. Hence, the amplitude of probability of
the trajectories is an odd function of εn/ε and the probability
an even function of εn/ε that can be expanded at high energy
(εn/ε � 1) in a Taylor series. Due to the parity, the WAL quan-
tum corrections to the transmission only involve even orders
of εn/ε and the transmission can be generally approximated at

high energy by

〈Tn〉 =
√

1 −
(εn

ε

)2

⎡
⎣1 +

∞∑
p=0

γp

(εn

ε

)2(p+1)

⎤
⎦, (9)

where the coefficients γp depend on the effectiveness of the
disorder in coupling k+ to −k− (see Fig. 3). When we consider
only the large energy limit corresponding to ε � εn, only
the lowest order in (εn/ε)2 will significantly contribute to
the quantum corrections. We find good agreement with the
numerical simulation by including only the first two order
corrections γ0 and γ1 for the full set of transmissions up to
g = 0.5 at high energy (see Fig. 2).

Importantly, for a weak disorder, the transmissions 〈Tn〉only
depend on the mode index n through the ratio εn/ε such that
the γ parameters no longer depend on n, as shown in Appendix
B. This allows us to describe all the transmissions with a single
set of γ parameters. Also, γ0 and γ1 only weakly depend on
L, ξ , and g as long as � > W (see Appendix B) with γ0 ≈
0.43 and γ1 ≈ −0.93. Hence, the transport properties of the
system no longer depend on either the length or the detail of
the microscopic disorder (g and ξ ).

IV. CONDUCTANCE AND SHOT NOISE

From the transmissions of the different transverse modes,
we extract the conductance G = (e2/h)

∑
i〈Ti〉 and the Fano

factor F = ∑
i〈Ti〉(1 − 〈Ti〉)/

∑
i〈Ti〉 for a quantum confined

nanowire. For a large number of modes (ε � �), we can take
the continuous limit and we replace the discrete sum by an
integral where i is considered as a continuous index. Keeping
only γ0 and γ1 corrections, we have

G = e2

h

2ε

�
T , (10)

F = 1 −
(

2

3
+ 4

15
γ0 + 4

35
γ1

)
/T , (11)

with the average transmission per transverse mode,

T = π

4
+ π

32
(2γ0 + γ1). (12)

Agreement with the simulations is excellent for g < 0.05 even
at low energy and it remains very good up to g � 0.5 in the
limit of a large number of modes. We note that for all g, best
fits give 2γ0 ∼ −γ1 such that the conductance and the Fano
factor can be approximated within an error < 1% by

G � e2

h

2ε

�

π

4
, (13)

F � 1 − 8

3π
. (14)

As already reported for graphene nanoribbons [22,23], the
linear dependence of the conductance with ε or kF is the
signature of quantum confinement, and for the model we
used for the contact, the proportional factor is T = π/4. In
the diffusive limit, indeed, the conductivity σ is related to
the density of states ∂n/∂μ and to � through the Einstein
relation σ = e2(∂n/∂μ)v�/2. At low energy, the disorder is
short ranged and kξ � 1. In this regime, � ∝ ε−1 and no
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FIG. 4. Upper panel: Energy dependence of the conductance.
Gray lines are numerical data for g = 0.02, 0.2, and 0.5 (from light to
dark gray). The red line is the conductance calculated from Eq. (10)
with γ0 = 0.43 and γ1 = −0.92 and the blue dashed line is the large
number of mode limits for the same values of γ0 and γ1. Lower panel:
Energy dependence of the Fano factor shown with the same color code
as for the conductance. The ballistic limit (γ0 = γ1 = 0) is indicated
by the dotted line and the arrow points at the energy corresponding
to kξ = 1.

longer depends on ξ (see Appendix A). As ∂n/∂μ ∝ ε, the
conductance does not show any energy dependence. At high
energy, the disorder is long ranged (kξ � 1) and σ ∝ (εξ )3.
In our model, it is not possible to know the exact energy
dependence of the conductance since ξ is a given parameter.
Nevertheless, a microscopic model [9,10] considering an en-
semble of charge impurities with a screened Coulomb potential
(a non-Gaussian potential) gives σ ∝ ε2, in agreement with
experimental results.

In the simulations, deviations to the linearity are observed
for g � 0.1 and are maximal when kξ ∼ 1. When increasing
the energy such that kξ � 1 (long-range disorder), G(ε) tends
to its nondisordered limit (see Figs. 4 and 6). The linearity
is recovered even for g = 1 at ε > 10�, with a slope that
corresponds to a T slightly above π/4. This is a consequence
of the energy dependence of � that reaches a minimum when
kξ ∼ 1 and continuously increases with the energy for kξ � 1
(see Fig. 8 in Appendix A). For g = 0.5, we found � > W for
ε/� > 4, and g = 1, � > W for ε/� > 6, in rough agreement
with the threshold measured in Fig. 5 (bottom). This goes with
a slight enhancement of the slope as shown in Fig. 5 (top). For
g � 0.5, the nonlinearity becomes significant and corresponds
to the condition �m � W , which determines the diffusive limit.

Generally, the transmission of a mode 〈Tn〉 depends on the
model used for the contact far from the Dirac point [41–43].
Nevertheless, as long as the transmission (tn) and reflection (rn)
coefficients of the contact-to-nanowire junction are functions
of the energy through the ratio ε/εn only, the high-energy
conductance and the Fano factor can be expressed in a similar
way to that in Eqs. (13) and (14). Indeed, the transmission 〈Tn〉

FIG. 5. Upper panel: Slope of G(ε/�) obtained by directly fitting
the conductance in the linear regime. The dashed line indicates the
clear limit corresponding to T = π/4 or, equivalently, to a slope of
π/2. Lower panel: Value of the energy from which G(ε/�) is linear.

is then also a function of ε/εn, and if we note

〈Tn〉 = f (εn/ε), (15)

we have

G � e2

h

2ε

�

∫ 1

0
f (x)dx, (16)

F � 1 −
∫ 1

0 [f (x)]2dx∫ 1
0 f (x)dx

. (17)

The average transmission is given by T = ∫ 1
0 f (x)dx. In the

model we used so far, this condition is satisfied as long as
we neglect intermode scattering. T = 1 when the contacts are
macroscopic pads adiabatically coupled to the nanowire.

We can now generalize the conditions related to the energy
dependence of tn and rn to any value of Vc and examine the
ε dependence of tn and rn when the Fermi energy is constant
in the contact. This corresponds to a gated device for which
the field effect is screened under the contact and not in the
nanowire. We consider again the case of an interface inducing
no intermode scattering (∂Vc/∂y = 0). This case is equivalent
so we set the value of θ ′ to a constant to study the dependence
of the transmission Tn with θ as in Sec. III. In this case, the
reflection (rn) and transmission (tn) coefficients only depend
on θ and θ ′. The global transmission Tn depends on the energy
only through θ and is therefore a function of εn/ε only so that
the condition given by Eq. (15) is satisfied.

Remarkably, in addition to the linearity of G(ε), the length
and disorder strength dependences of the transport properties
also strongly deviate from the diffusive limit, for which G ∝
g−1 and G ∝ L−1 (see Appendix C) for g up to 0.5. For � > W ,
scattering to modes close to their onset dominates [Eq. (7)],
inducing oscillations of the transmission. As long as the
disorder broadening δ = h/τ is smaller than �, scattering has
only a marginal effect on G since the nonoverlapping condition
�/δ = �/W > 1 holds for any mode index and therefore over
the full energy scale. Hence, quantum confinement drives the
system in the ballistic regime. This weakening of the scattering
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by quantum confinement leads to a conductance that is not
proportional to the length between the contacts, as observed in
Ref. [18]. The ballistic feature of the conductance is confirmed
by the low value of F that is significantly smaller than its
diffusive value F = 1/3 at large energy (see Fig. 3). This
value is given by the nature of the interface between the
nanowire and the contact. In the case of a interface transmission
coefficient tn = 1 when ε > εn, as for an adiabatic quantum
point contact (we have then Vc = 0) [21–23], the Fano factor
vanishes. For the perfect interface considered here (Vc �= 0),
the transmission of each mode is not equal to 1 but F is
nevertheless considerably reduced with respect to its diffusive
limit.

The consequences of quantum confinement on the transport
regime are specific to Dirac systems. For massive particles
with a mass m, the quantum confinement condition reads
�/W � �0N/δ > 1, where N is the number of transverse
modes and �0 = h2/(mW 2). As the energy spacing between
the modes n and n + 1 is �n�0 for n � 1, the quantum
confinement condition at large energy (N � 1) does not
guarantee nonoverlapping between two consecutive transverse
modes, especially for small index modes (n � 1). As a result,
a strong deviation from the ballistic regime is expected for
massive particles even for � � W [44].

V. AHARONOV-BOHM OSCILLATIONS

The influence of an Aharonov-Bohm flux on the trans-
mission of the mode n is entirely contained in the value
of εn = (n + φ/φ0 − 1/2)�. We neglect here the effect of a
Zeeman coupling that only shifts the position of the Dirac point
and renormalizes the value of the Aharonov-Bohm period.

Apart from Aharonov-Bohm oscillations, the transport
properties should generally not depend on the magnetic flux φ

in the high-energy limit, for ε � �. For ε � 2�, the transport
properties are strongly influenced by the existence of a per-
fectly transmitted mode [16] (εn = 0 for n = 0 and φ = φ0/2),
which has a topological origin and is therefore insensitive
to the disorder strength g, the length L of the nanowire,
or any other parameter that does not break the symmetries
protecting the topological class. As a result, the impact of
this mode will be particularly important at low energy for
strongly disordered nanowires, as seen in Fig. 6. For ε > 2�,
no significant difference in the trends of the conductances can
be observed for φ = 0 and φ = φ0/2, and the influence of the
perfectly transmitted mode on transport properties vanishes.

We notice a π -phase shift of the oscillations of G(ε)
when the disorder has an intermediate strength (g = 0.2 in
Fig. 6). This feature is also reported in a recent work, using a
different code for the simulations [20]. In this case, disorder
is strong enough to couple the transverse modes (intermode
scattering), which generates regular dips in the transmission,
as already mentioned in Sec. III [see Fig. 2(b)], but it is weak
enough to avoid overlapping between the dips [Fig. 2(c)],
which maximizes the oscillations in the conductance. As this
effect is related to the opening of new transverse modes
εn = (n + φ/φ0 − 1/2)�, the oscillations are phase shifted for
φ = 0 and φ = φ0.

We use our model to describe the complete flux dependence
of the conductance at low and large energies in the clean limit

FIG. 6. Energy dependence of the conductance for different
disorder strengths (g = 0.02, 0.2, and 1) and for φ = 0 (dark colors)
and φ = φ0/2 (light colors).

where intermode scattering is neglected (g < 0.1). We define
δG(ε) = G(ε,φmax) − G(ε,φmin), where φmax (φmin) refers to
the flux that maximizes (minimizes) the conductance at a
given energy ε. As we can see in Fig. 7, the Aharonov-Bohm
amplitude δG(ε) is maximum at ε = 0, where δG = e2/h.

FIG. 7. Upper panel: Energy dependence of Aharonov-Bohm os-
cillations for g = 0.02 (γ0 = 0.43 and γ1 = −0.92) at a temperature
4kBT/� = 0.01. The inset is a zoom closed to ε/� = 0. Lower panel:
The flux dependence of the conductance for different energies at
the same temperature. The smallest value of the conductance G(φ)
corresponds to ε/� = 0 and the largest one to ε/� = 4.5 in steps of
ε/� = 0.05. Energies such that 2ε/� ∈ N are indicated with bold
lines.
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Close to ε = �/2, δG drops down and oscillates in a sawtooth
manner with a period �/2, as experimentally observed in
Refs. [18,27]. More information on the specific shape of the
Aharonov-Bohm oscillations is given in Appendix D. Figure 7
indicates that each period is associated with a π -phase shift,
which has been experimentally observed in Ref. [27]. Such
phase shifts are a consequence of the quantum confinement
and have a trivial origin. Only the low-energy pinning of δG

at e2/h for any values of g, L, W , or ξ is a signature of the
nontrivial topology.

VI. CONCLUSION

In summary, we determined the transmission of all mode
of a quantum confined Dirac nanowire including quantum
correction in the presence of disorder and for a perfect interface
with the contact. Our analytical analysis is in good agreement
with numerical simulations and shows that quantum confine-
ment (�/W > 1) drives the system into a ballistic regime,
with an average transmission per mode of π/4 and a Fano
factor F � 0.13. Aharonov-Bohm oscillations are found to be
periodically modulated in energy with a period corresponding
to �/2. A phase shift of the oscillations occurs every time
the Fermi energy crosses an integer value of �/2. At low
energy (ε < �/2), a signature of the topology can be seen
in the amplitude of oscillations which saturates at e2/h,
independently of the geometry or the microscopic properties
of the disorder.
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APPENDIX A: ENERGY DEPENDENCE OF �/W

We present in Fig. 8 the energy dependence of �/W . For
Dirac fermions, the transport length � has a minimum �m for
kξ ∼ 1 and diverges both at low energy (due to the reduction of
the density of states) and at large energy (due to the anisotropy
of scattering). In those two limits, � can be approximated by
its asymptotic form,

� ∼
{

4/(gk), for kξ < 1,

2
√

2πk2ξ 3/g, for kξ > 1.
(A1)

This is different from the massive case for which � → 0 at low
energy. As the 2D approximation is only valid for k� � 1, the
low-energy divergence will be smoothed out.

In Fig. 8, the quantum confinement condition �m > W

is satisfied for g � 0.5 for ξ/W = 0.05. We note that this
approach does not describe collective effects such as Thomas-
Fermi screening. It is therefore not suitable for an accurate
determination of the energy dependence of � that requires one
to take into account the density dependence of both ξ and
δV = h̄v/ξ

√
g/2π [9,10]. Nevertheless, the aim of this work

is to show that the transport properties of quasiballistic systems

FIG. 8. Transport length � as a function of energy ε for ξ/W =
0.05 and g = 0.1 (light blue), 0.2 (blue), and 0.5 (dark blue). Red
dotted lines indicate the asymptotic dependence at low and high
energies for ξ/W = 0.05 and g = 0.2. The black dashed line shows
� with ξ/W = 0.015 and g = 0.2. The gray domains indicate the
ballistic regime characterized by � > 2L with L = 2.5W and the
quantum confined (quasiballistic) regime for which � > W .

are dominated by the interface between the contact and the
nanowire and not by the disorder in the nanowire, such that
the exact energy dependence of � does not play a role for our
conclusions as long as �m � W .

The values of � explain the clear ballistic features (Fabry-
Pérot) observed for g = 0.02 [see Fig. 2(a) of the main text]
since �m lies above the ballistic limit whereas those resonances
are averaged out for g = 0.2 [see Fig. 2(b) of the main
text], for which �m is below this limit. Nevertheless, the dips
due to intermode scattering for g = 0.2 reveal the quantum
confinement as expected, since �m is above the diffusive limit
for any ε. Finally, dips are smeared out by disorder broadening
for g = 1, as shown in Fig. 2(c), pointing to a diffusive regime,
as expected from �m that clearly lies below the diffusive limit
in a broad range of energies.

APPENDIX B: FIT OF THE TRANSMISSIONS AND
DEPENDENCE OF THE γ PARAMETERS

In order to fit the transmissions and to find the best γ

parameters, we used the fact that for a weak enough disorder,
the transmissions of the different transverse modes depend on
the ratio εn/ε only. We plot the transmissions of the modes
n = 1, 5, 10, 15, and 20 as functions of εn/ε in Fig. 9. We
restrict our analysis to five modes only, but no significant
differences are obtained if all modes are taken into account.
The transmissions are roughly superimposed and we fit the data
with a single set of free parameters γ0 and γ1 that describe the
quantum corrections for all transmissions. For systems close
to the diffusive limit, we adjust the parameters to minimize the
error in the high-energy limit only, without applying the full
fitting procedure. Agreement is found to be excellent over the
full energy range for g < 0.1 (ballistic regime). At high energy
(ε/εn � 1), excellent agreement can be found for g up to 0. 5.

The dependence of the γ parameters on the disorder
strength, wire length, and correlation length is weak (see
Fig. 10, which is plotted on a semilogarithmic scale). Never-
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FIG. 9. The transmission for the modes corresponding to n = 1,
5, 10, 15, and 20 (from light gray to black) as a function of εn/ε and
for g = 0.02 and L/W = 2.5. The best fit corresponds to the red line.

theless, the dependence of the parameters corresponds to what
is roughly expected. The longer the nanowire, the stronger is
the interaction with the disorder and the stronger should be
the quantum corrections as reported by the dependence with
L. A similar evolution is expected and observed for the g

dependence. As explained in the main text, the ξ dependence
leads to corrections that vanish for long ξ since the q2 scattering
process exponentially decays with ξ .

Remarkably, the ratio γ0/γ1 is almost constant for any value
of the different parameters and we have γ1/γ0 � −2. Hence,
the contribution of the two first-order transmission corrections
to the transport properties compensate each other [see Eqs. (10)
and (11) in the main text] and the conductance as well as the
Fano factor are very close to the nondisordered limit.

APPENDIX C: LENGTH DEPENDENCE OF
THE TRANSPORT PROPERTIES

We focus here on the length dependence of the transport
properties (G and F ) for g = 0.02 and g = 0.2 (Fig. 11). In the
weak disorder limit (g = 0.02 in Fig. 11, left), the length has
only a marginal effect on the conductance or the Fano factor.
Generally, it induces sharp dips in the transmission (and then
in the conductance) for each energy corresponding to the onset
of a transverse mode that does not influence significantly the
general transport properties. This is expected since for such a
weak disorder, the system is in the ballistic regime (�m > 2L)
even for L = 2 μm (see Fig. 8).

For a stronger disorder (g = 0.2 in Fig. 11, right), the system
is far below the ballistic limit for L = 500 nm to L = 2 μm
and even very close to this limit for L = 200 nm. We indeed
observe a length dependence of the conductance, but this
dependence is much weaker than in the diffusive regime, for
which G ∝ 1/L. Likewise, the Fano factor remains well below
the diffusive limit (F = 1/3), which confirms the ballistic
nature of the transport even for a large ratio L/W as long
as the system is quantum confined.

FIG. 10. The dependence of γ0 and γ1 is shown as a function of
L, g, and ξ in semilogarithmic graphs.

APPENDIX D: AHARONOV-BOHM OSCILLATIONS

Figure 4 in the main text shows the expected shape of the
Aharonov-Bohm oscillations for a weakly disordered system
where the magnetic flux dependence of δG is plotted for
different positions of the Fermi energy. It indicates a rich
content in harmonics of δG, as observed in experiments
[18,26]. At low energy (ε � �/2), the conductance exhibits
sharp peaks for φ = φ0/2 and the Fourier transform of the
magnetoconductance contains, therefore, many harmonics.
The harmonic content is strongly reduced when the energy
increases, but the ratio between the fundamental and the
first harmonic remains generally energy dependent. Hence,
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FIG. 11. Left: Conductance and Fano factor (g = 0.02, W = 200 nm, ξ = 10 nm) for different wire lengths L. The large number of mode
limits is indicated by the red dashed line. Right: Conductance and Fano factor (g = 0.2, W = 200 nm, ξ = 10 nm) for different lengths. The
large number of mode limits is indicated by the blue (conductance) and red (Fano factor) dashed lines.

this ratio is small for 2ε/� ∈ N whereas 2ε/� + 1/2 ∈ N is
associated with a large resurgence of the second harmonic. It
should be noticed that the presence of intermode scattering is

expected to significantly modify the amplitude and the shape
of the Aharonov-Bohm oscillations (less harmonics content)
for rather strong disorder (g > 0.1).
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