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In-plane nuclear field formation investigated in single self-assembled quantum dots
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We studied the formation mechanism of the in-plane nuclear field in single self-assembled
In0.75Al0.25As/Al0.3Ga0.7As quantum dots. The Hanle curves with an anomalously large width and hysteretic
behavior at the critical transverse magnetic field were observed in many single quantum dots grown in the same
sample. In order to explain the anomalies in the Hanle curve indicating the formation of a large nuclear field perpen-
dicular to the photo-injected electron spin polarization, we propose a new model based on the current phenomeno-
logical model for dynamic nuclear spin polarization. The model includes the effects of the nuclear quadrupole
interaction and the sign inversion between in-plane and out-of-plane components of nuclear g factors, and the
model calculations reproduce successfully the characteristics of the observed anomalies in the Hanle curves.
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I. INTRODUCTION

The study of nuclear spin physics in semiconductor quan-
tum dots (QDs) is an active research field currently. This
is because the role of hyperfine interaction (HFI), which is
the magnetic interaction between a localized electron and
the lattice nuclei, is drastically enhanced in QD structures
compared with those in bulks and quantum wells due to a
strong localization of the electron wave function [1–3]. Since
it is possible to transfer the angular momentum from light
onto nuclei via electron spin, a macroscopic nuclear spin
polarization (NSP) which is orders of magnitude larger than
the value in thermal equilibrium can be generated actually
at cryogenic temperatures, and in turn, the resultant nuclear
field (Overhauser field, Bn) up to a few Teslas affects the
electron spin dynamics significantly [4–10]. Because the lattice
nuclei act as a reservoir for an optically or electrically injected
electron spin, the engineering of nuclear spins such as the
optical manipulation of the NSP not only leads to the potential
applications but also opens up a new spin physics.

The dynamics of NSP is determined by the environment to
which the nuclei are exposed, such as presences of an external
magnetic field and/or an unpaired electron in a QD and dipole-
dipole interaction among the neighbor nuclei. In particular,
nuclear quadrupole interaction (QI), which originates from
the coupling of a nuclear spin with I > 1/2 to the electric
field gradients (EFG) [11], has received a lot of attention
recently. Since the lattice strain is used as a driving force
for the spontaneous formation process of self-assembled QDs
(SA-QDs), the residual strain and the resultant large EFG
arise in these QDs. Therefore, the impact of QI is expected
to gain considerably and to play key roles for various novel
phenomena observed in SA-QDs [12–15]. The QI yields the
nonequivalent energy splitting depending on the value |Iq |,
where the subscript q is a quantization axis determined by
EFG and the q axis is found to be usually close to the sample
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growth axis (z axis) in the SA-QDs [16,17]. Then, the QI can
be treated as an effective field affecting the nuclear spins, the
quadrupolar field, and it stabilizes the NSP along the q axis as
reported in an ensemble of SA-InP/InGaP QDs [18] and single
SA-InAs/GaAs QDs [19].

Recently, the formation of in-plane nuclear field was
reported in single SA-InAs/GaAs QDs under quasiresonant
excitation by Krebs et al. [15] and nonresonant excitation by
Nilsson et al. [20], and it seemed to be related also to QI. The
in-plane nuclear field was detected by observing the electron
spin depolarization curve in Voigt configuration (i.e., Hanle
curve). In their pioneering works, the Hanle curve was distorted
drastically from a normal Lorentzian shape in the following
respects: a ∼20 times larger width than the one expected from
the electron spin lifetime, and the abrupt change in the degree
of circular polarization (DCP), and thus, the anomalous Hanle
curve has a shape like a circus tent. In addition, the fact that such
anomalies in the Hanle curve have not been observed in single
droplet GaAs QDs [21] which are free from the internal strain
suggests that the strain-induced QI contributes significantly
to an anomalous Hanle curve observed in SA-QDs. However,
the origin of the anomalies in the Hanle curves has not been
revealed entirely. The knowledge of the in-plane nuclear field
formation may lead directly to an optical control of the nuclear
field direction, and therefore, it is very important.

In this paper, we study the formation mechanism of the
in-plane nuclear field via the Hanle effect measurements and
model calculations. The anomalously distorted Hanle curves
similar to Ref. [15] are observed in single InAlAs QDs, and we
show that the anomalies of the Hanle curves can be reproduced
qualitatively by a proposed model including the QI and the sign
inversion of nuclear g factors.

II. QD SAMPLE AND ANOMALOUS HANLE CURVES

SA-In0.75Al0.25As/Al0.3Ga0.7As QDs grown on a (100)-
GaAs substrate by molecular beam epitaxy were used in this
study. The QDs have a lens-shaped profile, and the typical
diameter and height were evaluated to be ∼20 nm and ∼4 nm,
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respectively, by the atomic force microscopy measurements
of a reference uncapped QD layer and the cross-section trans-
mission electron microscope observation. After the fabrication
of small mesa structures, the microphotoluminescence (μPL)
measurements under the transverse magnetic fields (Bx) up to
1 T were carried out at 6 K. The QD sample was excited by a
cw Ti:sapphire laser tuned to ∼730 nm, which corresponds to
the transition energy to the foot of the wetting layer of the QDs.

The polarization of an excitation beam was adjusted care-
fully to the circular polarization by a combination of a linear po-
larizer, a half wave plate, and a quarter wave plate (QWP). The
circularly polarized (σ+, σ−) PL components were converted
to the linearly polarized ones (πx ,πy) by another QWP inserted
into the detection path, and they were displaced spatially from
each other by a beam displacer. Each displaced PL component
was dispersed by a spectrometer and was focused on a different
area of the Si-CCD detector. Therefore, the energy splitting
between the σ+ and σ− components and the DCP of the PL
spectra can be acquired by a single exposure process. The
details of the experimental apparatus are seen in Ref. [22].
The energy resolution of our measurement system is �5 μeV
by spectral fitting.

In this paper, we focus on the PL of a positive trion
(X+), and it appears at ∼754 nm at 0 T in the typical single
QD shown in Fig. 1. The X+ ground state consists of two
holes in a spin-singlet state and one electron, and thus, the
DCP of this charge state is determined only by the electron
spin right before radiative recombination. Here, the DCP is
defined as ρc = (I− − I+)/(I− + I+), where I+(−) represents
the integrated PL intensity of the σ+(−) component. The DCP is
related directly to the projection of the averaged electron spin
onto the sample growth axis, 〈Sz〉, and the relation 〈Sz〉 = ρc/2
is held for the X+ case.

Figure 1(a) is an example of the anomalous Hanle curves
observed in the SA-InAlAs QD sample. In the figure, the red
(blue) curve represents the observed DCP with increasing
(decreasing) Bx under σ− excitation, while the dashed
curve is an expected normal Hanle curve, which is free
from the effect of Bn and has a Lorentzian shape with the
full width 2B1/2(∼130 mT). The half width B1/2 is given
by h̄/(μB|ge

x |Ts), where μB is the Bohr magneton, |ge
x | is

the in-plane electron g factor, and Ts is the electron spin
lifetime. The B1/2 is evaluated as a typical value for the
studied QD sample by using the measured |ge

x | = 0.35 (see
Appendix A) and Ts = 1/(1/τr + 1/τs) = 0.5 ns. It is known
that InAlAs/Al(Ga)As QDs have the complex band structure
depending on the Al concentration and the QD size [23].
In the studied In0.75Al0.25As/Al0.3Ga0.7As QDs, the lowest
electron level appears always in the � valley, and the resultant
direct QD exciton has a short recombination time τr ∼ 1.0 ns
as evaluated from the time-resolved PL measurements [24].
Also, the electron spin relaxation time τs is found to be ∼τr

by nuclear field fluctuation measurements [22,25].
As clearly shown, the observed curves have quite larger

widths than the expected one. Further, the DCP changes
suddenly at the critical field |Bc

x | ∼ 0.8 T, and |Bc
x | is different

depending on the sweep direction of Bx ; for the red (blue)
line, the outer Bc

x = +0.840 T (−0.790 T) and the inner
Bc

x = −0.720 T (+0.773 T) in Fig. 1(a). Such anomalous
characters were observed in not only a specific QD but also

FIG. 1. (a) The anomalous Hanle curves observed in the SA-
InAlAs QD. The red (blue) curve represents the DCP of X+ PL with
increasing (decreasing) Bx . The dotted curve is the normal Hanle
curve expected with typical values of spin lifetime and g factor of
electron. (b) The observed Overhauser shift as a function of Bx , which
is used as a measure of |Bn,z|.

all the QDs we measured in the same sample (not shown
here). In the work by Krebs et al. [15], the Hanle curves with
the similar anomalies were observed in single SA-InAs/GaAs
QDs, where the bistable behavior of a nuclear field in the
x direction Bn,x and a compensation of Bx by Bn,x were
confirmed unambiguously.

The observed energy splittings between the σ+ and σ−

PL components are plotted in Fig. 1(b). The z component
of the nuclear field, Bn,z, can be estimated by the energy
splitting detected in the (σ+, σ−) basis, which is termed the
Overhauser shift, �EOHS. As seen in the figure, the maximal
value of �EOHS of ∼10 μeV appears at Bx = 0 T, and it
corresponds to the Bn,z of −0.5 T by considering the relation
Bn,z = �EOHS/(ge

zμB), where ge
z is the electron g factor in

the z direction. �EOHS reduces gradually with increasing |Bx |
and approaches almost zero around |Bc

x |. Further, the observed
�EOHS is slightly asymmetric with respect to the sign in Bx .
The asymmetry of �EOHS does not depend on the sweep
direction of Bx , and the pattern of |�EOHS| reverses with
respect to Bx under the opposite helicity excitation (σ+ pump).
The similar asymmetry in �EOHS is observed in several single
QDs grown in the same sample, but a few QDs show the
symmetrical �EOHS. Therefore, we consider that the effect
of unintentional tilted sample mounting is not responsible for
the asymmetric �EOHS. The physical origin of the asymmetry
has not been figured out at present, and further experimental
investigations are necessary. Finally, as discussed later in
Sec. IV, the Zeeman splitting by the total magnetic field in the
outside of |Bc

x | >∼ 0.8 T should be determined dominantly
by the externally applied field Bx , and �EOHS and Bn,x should
be nearly zero. However, as shown in Fig. 1(b), �EOHS has
nonzero values in Bx < Bc

x ∼ −0.8 T. This disagreement is
considered to arise from the shortage of our energy resolution.

The set of the electron g factor of this single QD (ge
x , ge

y ,
ge

z) is described in Appendix A, and it is required for the
evaluation of the nuclear field and the model calculations in
the next section.
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III. MODEL CALCULATIONS

In this section, we propose a dynamics model of a coupled
electron-nuclear spin system in order to reproduce the observed
anomalous Hanle curves shown in the previous section.

The evolution of an electron spin polarization 〈S〉 can be
described by the Bloch equation:

d〈S〉
dt

= ḡeμB

h̄
B(e)

T × 〈S〉 − 〈S〉 − S0

Ts
, (1)

where ḡe is the electron g tensor, B(e)
T is an effective magnetic

field seen by a QD electron, and S0 = (0,0,S0) is the average
electron spin polarization in the absence of B(e)

T . The first and
the second terms in the right-hand side represent the Larmor
precession and the electron spin decay with a characteristic
time Ts, respectively. The steady state solution of Eq. (1)
gives a Hanle curve according to the relation ρc = 2〈Sz〉 (see
Appendix B). Since the nuclear field Bn (∝ 〈I〉: NSP) as
well as the externally applied field Bext contributes to B(e)

T
(≡ Bext + Bn), it is essential to consider the spin dynamics of
nuclei. In this work, the external field is applied in the sample
growth plane, and thus, it can be written as Bext = (Bx,0,0).

As widely accepted, the contact-type HFI includes the
flip-flop term between an electron and nuclear spins, i.e.,
∝(Î+Ŝ− + Î−Ŝ+), and it allows the spin transfer from the
optically-injected electron to the lattice nuclei system [1]. The
dynamics of the NSP component 〈Ik〉 (k = x,y,z) follows the
phenomenological equation [2,3]:

d〈Ik〉
dt

= 1

TNF,k

[
Q

(〈Sk〉 − 〈
S

eq
k

〉) − 〈Ik〉
] − 1

TND,k

〈Ik〉, (2)

where Q = Ĩ (Ĩ + 1)/[S(S + 1)] is a numerical constant of the
momentum conversion, 〈Seq

k 〉 is the electron spin polarization at
thermal equilibrium, and 1/TND,k is the relaxation rate of 〈Ik〉.
The NSP formation rate 1/TNF,k in the k direction depends on
〈Ik〉 itself, and it is given by

1

TNF,k

= 2feτc

(
Ãk

Nh̄

)2/{
1 + [

ge
kμB(Bext,k + Bn,k)τc/h̄

]2}
,

(3)

where fe (0 � fe � 1) is a filling factor representing the
occupation of a QD by an unpaired electron spin, τc is a
correlation time of HFI, N is the number of nuclei related
to the interaction, Ãk is the averaged coupling constant of HFI,
and Bn,k = ÃkIk/(ge

kμB) is the k component of the nuclear
field. This spin dynamics model has explained successfully
the experimental observations about 〈Iz〉 and thus the behavior
of Bn,z in the previous studies [6–10].

Moreover, it is necessary to consider the effective magnetic
field experienced by nuclear spins, B(n)

T explicitly. As is the
case with B(e)

T , B(n)
T is determined by the sum of the external

field and the Knight field Be, i.e., Bext + Be. Here, Be refers to
the effective field caused by the electron spin polarization and
is given by Be = −feÃ〈S〉/(ḡnμNN ), where ḡn is the nuclear g
tensor and μN is the nuclear magneton. The introduction of Be

explains the modifications of Hanle curves [1] which appear in
the very low magnetic field region (Bext � 0.1 T) as shown later
[Figs. 3(c) and 3(d)]. However, it is not possible to describe the
observed anomalous Hanle curve with a quite large width (e.g.,

FIG. 2. Schematics of the spin polarizations and the resultant
effective fields. Here, the isotropic electron g factor (ge

k < 0) is
assumed. For generality, the unit vector q of the QI axis is tilted
slightly from the z axis. (a) A portion of the HFI-induced I is protected
by QI and the other one is preserved by the actual effective field
ḡn B(n)

T : IQ and IB. Since gn
x < 0 and gn

z > 0 are assumed here, the
ḡn B(n)

T is depicted to be opposite in the x direction to B(n)
T while the

z component is unchanged. (b) The protected NSP 〈I〉 (= IQ + IB)
induces Bn eventually. Because of gn

x < 0, gn
z > 0, and ge

k < 0, Bn,x

is directed in parallel to 〈Ix〉 while Bn,z is antiparallel to 〈Iz〉.

|Bc
x | ∼ 0.8 T in Fig. 1(a) and the results in Ref. [15]) in this

framework. Therefore, we improve the conventional model by
introducing the effects of QI.

One of the significant improvements is the NSP stabilization
due to QI. It should be noted that the HFI-induced NSP I is
not collinear with the electron spin polarization 〈S〉 as depicted
in Fig. 2(a) because of 1/TNF,x �= 1/TNF,z, while it becomes
collinear with 〈S〉 according to Eq. (2) if 1/TNF,k is isotropic.
Here, we assume that I along the principal axis of QI is
preserved partially with a ratio rQ (0 < rQ � 1). Hence the
QI-preserving component IQ is given as

IQ = rQ(I · q)q, (4)

where q is a unit vector along with the principal axis of QI.
The other component (i.e., I − IQ) is affected by the

effective magnetic field, and its projection onto ḡn B(n)
T termed

IB is also preserved as follows:

IB = (I − IQ) · ḡn B(n)
T∣∣ḡn B(n)

T

∣∣
ḡn B(n)

T∣∣ḡn B(n)
T

∣∣ . (5)

The term ḡn B(n)
T is the effective magnetic field experienced

actually by the nuclei and is convenient for the case with
anisotropic ḡn. Eventually as shown in Fig. 2(b), only the sum
of IQ and IB, 〈I〉 survives and acts as a nuclear field according
to the following relation:

Bn = Ã

ḡeμB
(IQ + IB). (6)

In the following model calculations, we assume that the
ratio rQ in Eq. (4) depends on the applied transverse field as
follows:

rQ(Bx) = r0

1 + (Bx/BQ)2
, (7)

where BQ is the quadrupolar field. Note that the BQ cannot
induce the spin precession. The parameter r0 is an amplitude
of the Lorentzian-type function, and the condition r0 = 1 is
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used in the calculations for simplicity. The efficiency of the
NSP stabilization is supposed to decrease with increasing |Bx |
if the q axis is almost perpendicular to Bx . This is because the
relative strength of QI to Bx reduces with increasing |Bx | and
the NSP component perpendicular to Bx is easy to relax. In
this single InAlAs QD, the magnitude of BQ is estimated to be
280 ± 40 mT from the independent experiments [22].

Further, we assume an anisotropic nature in nuclear g tensor,
that is, the sign of gn

x(y) is opposite to that of gn
z . Thus, the

effective field ḡn B(n)
T is opposite to B(n)

T in the x direction
[Fig. 2(a)]. Also, because Bn,k in Eq. (6) includes the HFI cou-
pling constant Ãk (∝ gn

k ) and ge
k , the direction of the resultant

Bn,k is determined by the signs of gn
k and ge

k . Therefore, Bn,x

is depicted to be parallel to 〈Ix〉 while Bn,z is antiparallel to
〈Iz〉 [Fig. 2(b)]. Such a sign inversion of the nuclear g factors
is required to achieve the compensation of the external field
Bx by Bn,x that increases by a flip-flop process of HFI.

Figure 3 highlights the impacts of the NSP stabilization by
QI and the sign inversions of g factors. The former represents
the presence or absence of IQ, i.e., rQ �= 0 or rQ = 0. The latter
includes the two types of sign inversions: the sign inversion
between the in-plane and the out-of-plane components of gn

[that is, the anisotropy in the g tensor, shown in Figs. 3(a)
and3(b)] and the one between the isotropic ge and gn [as shown
in Figs. 3(c) and3(d)]. In the figure, the relaxation times of the
NSP TND,k (k = x,y,z) are assumed to be equivalent, and all
the other parameters are identical in (a)–(d) [26].

Replacing gn
x(y) · gn

z with ge
x(y) · ge

z gives the similar cal-
culated results in Figs. 3(a) and 3(b). However, as seen in
Appendix A, the g factor of the conduction electron is isotropic
in magnitude, and ge

x(y) and ge
z should have the same sign.

In contrast, the nuclear g factor is considered to have a large
anisotropy because of QI as discussed later. Therefore, it is
likely that the requirement of the sign inversion in the in-plane
and out-of-plane g factors of this study could be attributed to the
nuclear g factors. Also, it should be noted that the possibility
of observing the anomalous Hanle curve is independent of the
sign of the electron g factor.

In Figs. 3(a) and 3(b), we set gn
z > 0 and the isotropic

electron g factors with a negative sign. In the case of (a) (rQ �= 0
and gn

x · gn
z < 0), the Hanle curve shows a much larger full

width than 2B1/2 indicated by the dotted line. The extension
of the width is induced by the compensation of Bx by Bn,x that
follows the change in Bx depicted in Fig. 2(b), and therefore,
the bistable (hysteretic) behavior appears. On the other hand,
the effect of nonzero rQ is strongly reduced in Fig. 3(b) since
Bn,x enhances the total effective field on the electron spin, and
the growth of Bn,x is terminated by high energy cost in the
flip-flop process. Therefore, only a slight broadening of the
curve occurs.

In the case of rQ = 0 [(c) and (d)], the Hanle curves are
classified by the sign of ge

k · gn
k since gn

k should be isotropic
in the QI-free system. As clearly shown, the effect of tilting
Bn by the applied field Bx is reproduced as discussed in
Ref. [1], where the sign of the amplification factor κ (∝ ge

k · gn
k )

determines whether the compensation or the enhancement of
Bx by Bn,x occurs, as depicted in (c) and (d), respectively. The
W-shaped dip (i.e., recovery of 〈Sz〉) in (c) may correspond to
the actual observations in GaAlAs bulk [1] and single droplet
GaAs/AlGaAs QDs [21]. Since an emerged Bn,x is small and

FIG. 3. The typical calculated 〈Sz〉 depending on QI and the sign
of gn

x . Here, the isotropic ge
k is assumed, and gn

z is set to be positive
(gn

z > 0). (a) rQ �= 0, gn
x < 0, ge

k < 0, (b) rQ �= 0, gn
x > 0, ge

k < 0. The
principal axis of QI is set along the z axis. In the case of rQ = 0 [(c)
and (d)], gn

k should be isotropic, and the Hanle curves are classified by
the sign of ge

k · gn
k : (c) ge

k · gn
k > 0, (d) ge

k · gn
k < 0. Other parameters

are the same in all cases [26]. The dotted line represents a Lorentzian
Hanle curve with the typical InAlAs QD parameters.

nearly constant, the modification of Hanle curve occurs within
a low Bx region (�0.1 T), and therefore, the depolarization is
converging quickly to the tails of a normal Lorentzian curve
regardless of the sweep direction of Bx .

IV. DISCUSSION

First, we discuss the effect of QI and anisotropic nature of
nuclear g factor. Figure 4 shows the energy splitting of the
states for a single As nucleus (I = 3/2), for example, under
the (a) longitudinal and (b) transverse magnetic fields. The
vertical and horizontal axes are normalized by h̄ωQ and BQ,
respectively, and the q axis lies along the z axis for simplicity.
Here, h̄ωQ is a quadrupolar splitting and appears as an energy
separation between the doublets labeled |±1/2〉q and |±3/2〉q
at 0 T. The QI and Zeeman Hamiltonians are described in
Appendix C.

The Zeeman-split states in the absence of QI depicted by
the dashed lines evolve linearly on the magnetic field, and
the splitting is always equivalent and is independent of the
applied direction of the field, i.e., gn of each state is isotropic.
In contrast, in the presence of QI, the orthogonal setting of
the q axis and Bx in Voigt geometry causes some states to be
mixed as the system evolves while a simple energy shift by the
quadrupolar splitting occurs in Faraday geometry [27]. The
effect of the quadrupolar splitting is reducing with increasing
Bx and each state labeled |n〉 (n = 1–4) is converging to the
Zeeman-split pure states |m〉x (m = ±1/2,±3/2) in the x

basis. However, due to the quadrupolar effect, the states |4〉 and
|3〉 are insensitive to Bx until a large Bx . Similar insensitivity
to Bx is seen in the states with |mq | � 3/2 of In (I = 9/2) and
Al (I = 5/2) nuclei, and the state with a large |mq | becomes
more insensitive to Bx .

075309-4



In-PLANE NUCLEAR FIELD FORMATION INVESTIGATED … PHYSICAL REVIEW B 97, 075309 (2018)

FIG. 4. The eigenstates of a single As nucleus (I = 3/2) under QI
and Zeeman interaction in (a) Faraday and (b) Voigt geometries. The
principal axis q is assumed to be along the growth axis. The dashed
lines indicate the Zeeman-split states under no QI.

This effect by the quadrupolar splitting induces an
anisotropic property to the nuclear g factor. For the states with
|mq | = 3/2, the nuclear g factor perpendicular to the q axis
(gn

⊥) is reduced to be nearly zero in a low Bx region while
the parallel component (gn

‖ ) has a finite value although the
nuclear g factor of the states with |mq | = 1/2 is isotropic. Such
a nuclear g factor anisotropy induced by QI is discussed in
Ga0.76Al0.24As bulk [1]. In GaAlAs bulk, the EFG, hence the
QI arises from the random alloying (the partial replacement
of Ga atoms in the GaAs lattice by Al) and affects the shape
of the Hanle curve. Since the principal axes of QI lie along
the Al-As bonds (the third-order axes 〈111〉), the shape of
the Hanle curve depends strongly on the azimuth angle of
Bx from the crystallographic [110] axis. In contrast, a drastic
deformation of Hanle curve in a SA-InAlAs QD as seen in
Fig. 1 is insensitive to the azimuth angle of Bx (not shown
here). This suggests that the residual strain in SA-InAlAs QDs
has a larger contribution to QI than the random alloying, and
the resultant principal axis of QI is nearly along the z axis.

One of smart modeling taking into account a anisotropic
nature of nuclear g factors is a divided treatment of the nuclear
field originated from the states with ±1/2 (dipolar component)
and |mq | � 3/2 (quadrupolar component). Kuznetsova et al.
used the method in the analysis of the deformation of W-shaped
Hanle curves in InGaAs QD ensemble and revealed that the
dipolar component contributed to form the W-shaped structure
at the center of the Hanle curve and the quadrupolar component
made the wing shapes of the curves [28].

In order to maintain the high DCP under large |Bx | (<
|Bc

x | ∼ 0.8 T), the in-plane nuclear field has to grow up with
compensating Bx . Under this condition, many nuclear spin
states with |mq | � 3/2 of the quadrupolar nuclei contribute
to achieve the high NSP corresponding to the large Bn,x . As
seen in Fig. 4, it should be pointed out that each splitting has
a different field dependence, and thus, each state is considered
to have a different effective g factor. Therefore, the divided
treatment of the contributions from many nuclear spin states
with different mq is difficult to be taken into our present model.
Although the rigorous modeling requires us to consider the
distribution of effective nuclear g factors, the incorporation to
our phenomenological model is beyond our scope at current
stage. As mentioned above, the QI with a (nearly) longitudinal
axis brings the anisotropic gn and the insensitivity to the
transverse field. Since the component 〈Iz〉 relaxes quickly

FIG. 5. (a) The calculated 〈Sz〉 (thick lines) and 〈Sx〉 (thin lines)
in the upper panel, and Bn,z (thick lines) and Bn,x (thin lines) in
the lower panel under the conditions rQ �= 0 and gn

x · gn
z < 0. The

solid (dashed) lines represent the results with increasing (decreasing)
Bx . 〈Sy〉 and Bn,y are not shown here for an easy view [26]. (b)
Schematics of 〈S〉 and Bn in the x-z plane corresponding to the
case |Bx | � |Bc

x | (upper panel) and |Bx | > |Bc
x | (lower panel). The

complete cancellation relation Bn,x = −Bx is indicated by a dotted
line.

without the insensitivity to Bx , this effect can be treated simply
by rQ [Eqs. (4) and (7)] at present avoiding the complexity of
the effective nuclear g factor distribution.

Next, we compare the calculated results with the experi-
mental ones. Figure 5(a) shows the calculated results about the
components of 〈S〉 and Bn with the same condition in Fig. 3(a).
In the figure, 〈Sy〉 and Bn,y are not shown for an easy view
because of their small magnitudes within |Bx | < |Bc

x |.
The calculations reproduce well the experimental results in

Fig. 1 at the following characteristic points:
(1) a large value of 〈Sz〉 is preserved even under a large

|Bx | until the critical field Bc
x ,

(2) 〈Sz〉 changes abruptly at Bc
x and shows the hysteretic

(thus, bistable) behavior,
(3) 〈Sz〉 curve is symmetric with respect to the sweep

direction of Bx ,
(4) |Bn,z| reduces gradually with increasing |Bx |.
The schematics of the electron spin polarization and the

nuclear field are summarized in Fig. 5(b); the upper (lower)
panel corresponds to the case |Bx | � |Bc

x | (|Bx | > |Bc
x |). In the

small-Bx region, the in-plane component of Bn compensates
the applied field, and the effective field B(e)

T is almost parallel
to the z direction. Therefore, a large value of 〈Sz〉 is kept under
the condition |Bx | � |Bc

x |. In the large-Bx region, on the other
hand, since the induced Bn is quite small, the vector 〈S〉 feels
a large transverse field and 〈Sz〉 relaxes quickly.

Note that the Bx dependence of rQ [as shown in Eq. (7)] is
necessary to reproduce the gradual reduction in Bn,z; if rQ is
independent of Bx and has a constant value, the calculated
Bn,z shows a similar shape with 〈Sz〉 and abrupt changes
occur at |Bc

x |. As shown in the lower panel of Fig. 5(a), small
discontinuities at |Bc

x | arise in the model calculations, while
the experimental results change continuously [Fig. 6(c)]. We
guess tentatively that the step in Overhauser shift might be so
small that we failed to detect it. Further, the tilting of q from
the z direction induces the horizontal shift of the Hanle curve.
The outer |Bc

x | in Fig. 6(a) is slightly different depending on
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FIG. 6. (a) The observed 〈Sz〉(= ρc/2), (b) the expected 〈Sx〉, (c)
the observed Bn,z, and (d) the expected Bn,x . Red (blue) line represents
the result with increasing (decreasing) Bx . (b) and (d) are obtained
by substituting the observed 〈Sz〉 and Bn,z to Eqs. (B2) and (B3). The
complete cancellation relation Bn,x = −Bx is indicated by a dotted
line.

the sweep direction: | − 0.790| T and 0.840 T in the blue and
red curves, respectively. It may support the tilting of the q axis
although further experimental investigations are required to
deduce the tilting angle from the z axis.

Finally, we provide the Bx dependence of 〈Sx〉 and Bn,x

expected from experimental data of 〈Sz〉 and Bn,z in Fig. 6.
They are obtained from the steady state solutions of the Bloch
equation (see Appendix B) by substituting the observed 〈Sz〉 =
ρc/2 and Bn,z = �EOHS/(ge

zμB) and solving for 〈Sx〉 and
Bn,x . Comparing the experimentally expected |〈Sx〉| [Fig. 6(b)]
with the computed |〈Sx〉| [Fig. 5(a)], the expected one has
the maximal value and shows saturation or decay while the
computed |〈Sx〉| increases monotonically with increasing |Bx |.
Asymmetry in the expected |〈Sx〉| with respect to Bx is
originated from the asymmetry of Bn,z, which has small but
finite value in a large negative Bx region.

As a whole, the proposed model can reproduce the observed
results qualitatively. However, the quantitative disagreement
of the hysteresis width of |Bc

x | between the calculated and
observed results could not be resolved at present in the range
of the parameters we changed. Despite such a disagreement,
Bn,x agrees well with the computed results. These suggest that
there is a possibility that another mechanism for the in-plane
nuclear field formation may work in a relatively large |Bx |
region. One plausible candidate is a noncollinear HFI process
[29], which is not included in our proposed model. Although
the main origin of the growth of Ix is a flip-flop process between
the finite Sx and Ix , the cooperation of the noncollinear HFI
(i.e., ∝IxSz) contributes to the formation of Ix from Sz, and it
may improve the qualitative agreement in the relatively large
Bx region. In addition, the introduction of the Bx-dependent
TND may improve the quantitative features.

V. CONCLUSIONS

We investigated the in-plane nuclear field formation via
Hanle effect measurements of X+ in single self-assembled

InAlAs quantum dots. The observed Hanle curves showed
anomalously large full width and hysteretic behavior which
cannot be explained by an existing model. To reproduce
the measured anomalies, we proposed a phenomenological
model including the nuclear quadrupolar effect and the sign
inversion between the in-plane and out-of-plane nuclear g
factors, which induced the compensation of Bx by Bn,x . The
quadrupolar splitting allows a part of NSP to be preserved
nearly along the z axis, which induced the 〈Sx〉 that can change
Ix via collinear HFI. The proposed model reproduces well
the characteristic points of the observed anomalous Hanle
curve, and consequently it has the good qualitative agreement.
Therefore, we conclude that the collinear HFI is a dominant
mechanism for the in-plane nuclear field formation although
the noncollinear HFI may contribute to the in-plane field
formation in relatively large externally applied field.
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APPENDIX A: IN-PLANE ELECTRON G FACTORS

Here, we evaluate the in-plane electron g factor, which is
one of the key parameters to describe the Hanle curves and
coupled electron-nuclear spin dynamics. Figure 7(a) shows the
polarization-resolved PL spectra under nonpolarized excita-
tion at 6 K and 0 T of a single InAlAs QD used in this study. The
spectra indicate three emissions: the neutral biexciton (XX0),
neutral exciton (X0), and positive trion (X+) from the low
energy side. Each charge state is assigned by considering the
fine structure splitting (FSS) and the binding energy. The FSS
of ∼73 μeV, the inverse pattern of FSS in the X0 and XX0

peaks, and no splitting in the X+ peak are observed clearly.
As shown in Fig. 7(b), a transverse magnetic field Bx mixes

the spin-up and spin-down states for the electron of X+ and
hole, respectively, and the four transitions (E1, E2, E3, E4)
with linearly polarized emissions and absorptions become
optically active. The Zeeman splittings of the outer peaks
�Eout = |E1 − E4| with πx polarization and of the inner
peaks �Ein = |E2 − E3| with πy polarization are given by
�Eout = (|ge

x | + |gh
x |)μBBx and �Ein = (|ge

x | − |gh
x |)μBBx ,

respectively. Here, gh
x is the in-plane hole g factor. Figure 7(c)

shows the polarization-resolved X+ PL spectra at 5 T under
nonpolarized excitation. In this QD, there is no splitting in
πy PLs within our spectral resolution, and it indicates that the
magnitude of ge

x is very close to gh
x . Figure 7(d) shows the

observed energy splitting of πx PLs in a range of 2–5 T. The
observed �Eout increases with Bx , and from the line fitting,
the magnitudes of the electron and hole g factors are deduced
to be |ge

x | 
 |gh
x | = 0.35 ± 0.01. Moreover, the anisotropy of

the in-plane electron g factor |ge
⊥| was investigated by rotating

the QD sample around the z axis. Figure 7(e) is a polar plot
of |ge

⊥|, and it indicates that the in-plane g factor anisotropy
is negligible. In addition to the in-plane g factors, the electron
and hole g factors in the z direction of this QD were evaluated
independently to be ge

z = −0.34 ± 0.02 and gh
z = 2.57 ± 0.01
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FIG. 7. (a) Polarization-resolved PL spectra of a typical SA-
InAlAs QD under nonpolarized excitation at 6 K and 0 T. The
horizontal axis is replotted from the midpoint of the X0 doublet
(1.6419 eV). (b) A level diagram of the hole (open arrows) and electron
(solid arrows) states under a transverse magnetic field Bx . (c) The X+

PL spectra at Bx = 5 T detected in the (πx, πy) basis. The origin of
the horizontal axis is set to the energy of the inner PL peaks. (d) The
observed Zeeman splitting of the outer peaks as a function of Bx . The
solid line is a fitting curve. (e) Polar plot of the magnitude of in-plane
electron g factor, |ge

⊥|.

by the method canceling an optically-induced nuclear magnetic
field in the z direction by a longitudinal field [22]. The obtained
set of the electron g factor (ge

x , ge
y , ge

z) is used in the section of
model calculations.

APPENDIX B: BLOCH EQUATION

The steady state solutions of the Bloch equation [Eq. (1)]
are written as

〈S〉 = S0

B2
1/2 + (Bx + Bn,x)2 + B2

n,y + B2
n,z

×
⎡
⎣B1/2Bn,y + Bn,z(Bx + Bn,x)

Bn,yBn,z − B1/2(Bx + Bn,x)
B2

1/2 + B2
n,z

⎤
⎦. (B1)

Omitting the component Bn,y which is very small in the
simulated results, the x and z components of 〈S〉 can be
represented analytically as

〈Sx〉 = S0
(Bx + Bn,x)Bn,z

B2
1/2 + (Bx + Bn,x)2 + B2

n,z

, (B2)

〈Sz〉 = S0

B2
1/2 + B2

n,z

B2
1/2 + (Bx + Bn,x)2 + B2

n,z

, (B3)

where B1/2 (= h̄/(|ge
⊥|μBTs)) is a half width of the normal

Lorentzian curve. Equations (B2) and (B3) were used to obtain

the expected 〈Sx〉 and Bn,x from the observed 〈Sz〉 and Bn,z in
Fig. 6.

APPENDIX C: NUCLEAR QUADRUPOLE INTERACTION
AND ZEEMAN INTERACTION FOR THE NUCLEI

WITH I = 3/2

Assuming the axial symmetry, the nuclear quadrupole
interaction Hamiltonian HQ = h̄ωQ[I 2

q − I (I + 1)/3]/2 [11]
can be transformed to

HQ = h̄ωQ

2

[
I 2
z cos2 θQ − I (I + 1)

3

+ (IzIx + IxIz) sin θQ cos θQ + I 2
x sin2 θQ

]
(C1)

by using Iq = Iz cos θQ + Ix sin θQ, where θQ is a tilting angle
of the principal axis q from the growth axis (z). Using a ladder
operator Ix = (I+ + I−)/2, Eq. (C1) can be written as

HQ = h̄ωQ

2
(A + B + C) , (C2)

where

A = I 2
z cos2 θQ − I (I + 1)

3
+ 1

4
(I+I− + I−I+) sin2 θQ

B = 1

2
(IzI

+ + IzI
− + I+Iz + I−Iz) sin θQ cos θQ

C = 1

4
[(I+)2 + (I−)2] sin2 θQ . (C3)

The A, B, and C contribute to the diagonal term,
transitions with �mz = ±1, and transitions with �mz = ±2,
respectively.

In the case of the nuclei with I = 3/2, the above Hamil-
tonian can be written as follows with the bases |I,mz〉 =
{|3/2,+3/2〉,|3/2,+1/2〉,|3/2,−1/2〉,|3/2,−3/2〉},

HQ = h̄ωQ

2

⎛
⎜⎝

A3/2 B3/2 C3/2 0
B3/2 D3/2 0 C3/2

C3/2 0 D3/2 −B3/2

0 C3/2 −B3/2 A3/2

⎞
⎟⎠. (C4)

Here

A3/2 = 9

4
cos2 θQ − 5

4
+ 3

4
sin2 θQ,

B3/2 =
√

3 sin θQ cos θQ, C3/2 =
√

3

2
sin2 θQ, (C5)

D3/2 = 1

4
cos2 θQ − 5

4
+ 7

4
sin2 θQ.

Similarly, assuming the axial symmetry, Zeeman interaction
Hamiltonian can be given by

HZ = h̄ωZ

2
(Iz cos θB + Ix sin θB)

= h̄ωZ

2

[
Iz cos θB + (I+ + I−)

sin θB

2

]
, (C6)

where θB is the angle of the applied field direction from the z

axis and h̄ωZ is the Zeeman energy. The matrix representation
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is

HZ = h̄ωZ

2

⎛
⎜⎝

a3/2 b3/2 0 0
b3/2 c3/2 d3/2 0

0 d3/2 −c3/2 b3/2

0 0 b3/2 −a3/2

⎞
⎟⎠, (C7)

where

a3/2 = 3

2
cos θB, b3/2 =

√
3

2
sin θB,

c3/2 = 1

2
cos θB, d3/2 = sin θB. (C8)
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