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Influence of the quantum dot geometry on p-shell transitions in differently charged quantum dots
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Absorption spectra of neutral, negatively, and positively charged semiconductor quantum dots are studied
theoretically. We provide an overview of the main energetic structure around the p-shell transitions, including the
influence of nearby nominally dark states. Based on the envelope function approximation, we treat the four-band
Luttinger theory as well as the direct and short-range exchange Coulomb interactions within a configuration
interaction approach. The quantum dot confinement is approximated by an anisotropic harmonic potential.
We present a detailed investigation of state mixing and correlations mediated by the individual interactions.
Differences and similarities between the differently charged quantum dots are highlighted. Especially large
differences between negatively and positively charged quantum dots become evident. We present a visualization
of energetic shifts and state mixtures due to changes in size, in-plane asymmetry, and aspect ratio. Thereby we
provide a better understanding of the experimentally hard to access question of quantum dot geometry effects.
Our findings show a method to determine the in-plane asymmetry from photoluminescence excitation spectra.
Furthermore, we supply basic knowledge for tailoring the strength of certain state mixtures or the energetic order
of particular excited states via changes of the shape of the quantum dot. Such knowledge builds the basis to find
the optimal QD geometry for possible applications and experiments using excited states.
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I. INTRODUCTION

Self-assembled semiconductor quantum dots (QDs) confine
electronic states within a nanometer size scale, leading to
a discrete energetic level structure. Most studies focus on
the QD ground states in the prospect of several possible
applications within the fields of quantum computing [1],
advanced photon sources [2–4], and spintronics [5]. Less is
known about the higher excited level structure, which is vital
for the understanding of time-resolved phenomena such as
relaxation and dephasing mechanisms [6–9], recombinations
of multiexcitons with more than two electrons or holes [10–20],
or resonant absorption characteristics, typically measured via
photoluminescence excitation (PLE) spectroscopy [6,21–23].

In Fig. 1 we plot typical calculated absorption spectra for
a neutral (QD0), negatively charged (QD−), and positively
charged (QD+) QD. Our focus is on transitions between the
first excited heavy-hole and electron states, which are called
p-shell transitions (marked in Fig. 1 by a red background). In
contrast to the well separated ground state transition, for the
higher excited states a complex spectrum appears depending
on the individual QD, in particular on the QD charge and
geometry. Only by a thorough analysis is it possible to identify
the corresponding transitions and also characterize them. For
the three differently charged QDs, we already find that the
p-shell transitions show different behavior.

In this paper we provide a theoretical analysis to explain
differences and similarities in the QD spectra. Therefore we
will address three main questions: First, we ask which states
can be expected in the energetic vicinity of the states that are
related to the p-shell transitions and how these states influence
each other. Second, we want to know which fundamental
differences and similarities between QD0, QD−, and QD+

exist. Third, we ask how the energetic structure, the spin, and

the spatial contributions of the different lines change within
different QD geometries. To answer these questions, we study
the influence of the Coulomb interaction, including direct and
short-range exchange contributions, as well as valence band
mixing effects via a Luttinger model. Thereby we show that
Coulomb correlations play a vital role.

Our analysis will guide experiments using higher excited
states, e.g., for quantum-optic amplification [24] or excitation
of dark excitons [25–27]. In such experiments, one optically
addresses higher excited states followed by a relaxation into
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FIG. 1. Typical energy and absorption spectra for single optical
excitations in QD0, QD−, and QD+. p-shell transitions are marked
by a red background.

2469-9950/2018/97(7)/075308(14) 075308-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.97.075308&domain=pdf&date_stamp=2018-02-23
https://doi.org/10.1103/PhysRevB.97.075308


M. HOLTKEMPER, D. E. REITER, AND T. KUHN PHYSICAL REVIEW B 97, 075308 (2018)

lower states. Therefore, a detailed understanding of both
the involved states and relaxation paths is of fundamental
importance. Typically, when designing such experiments, it
would be also desirable in the future to tailor the QD used for
experiments. Here, our paper provides guide lines for charge
and geometry with the focus on the usage of an excitation of
the p shell.

This article is structured as follows. After the introduction
in Sec. I, containing a brief overview of existing studies,
we discuss our model in Sec. II. In Sec. III, the different
interactions are studied one by one. Thereby the influence of
the correlations and the differences and similarities between the
differently charged QDs are clarified. In Sec. IV, the QD size,
asymmetry, and aspect ratio are altered and trends in absorption
spectra are discussed. A conclusion is given in Sec. V.

Overview of existing studies

Although an all-embracing study of excited states in dif-
ferent QD geometries is still missing (to the best of our
knowledge), there have been several studies highlighting par-
ticular aspects:

Some studies consider excited states, but are restricted
to exemplary, fixed QD geometries. Those studies revealed
the typical fine structure of the p-shell transitions in QD−

[28], QD0 [29], and QD+ [30]. Neighboring states are often
neglected, although they can be strongly mixed with the p-shell
transition states. Such a state mixture changes the behavior of
the p-shell transitions, e.g., their spin composition and their re-
laxation/dephasing properties. Besides, the neighboring states
become optically addressable themselves. A larger number of
those nearby states is discussed, e.g., in Refs. [21–23,31–37].

To generalize those findings of exemplary QDs, one has
to study spectra for different QD geometries systematically,
often done via variations in QD size, in-plane asymmetry, or
aspect ratio. Most of the following studies are either restricted
to the ground states or theoretical works without a rigorous
treatment of the crucial Coulomb interaction. Nevertheless,
those studies provide fundamental knowledge that is helpful for
our considerations; thus we will review them in the following.
Additionally, basic theoretical works provide some coupling
strength scaling of the Coulomb interaction.

Size. A reduction in QD size will increase the energies of all
electronic states [38,39]. The rough energetic level structure is
studied in Refs. [40–43]. Coulomb coupling strength scalings
were revealed in Refs. [44,45]. Coulomb exchange interaction
coupling strengths grow around an order of magnitude in QDs
compared to their bulk values [46]. Studies focused on QD size
effects in QD0 consider the Stokes shift of the ground states
[46–51] or the splitting of the lowest bright doublet due to
fine-structure splitting (FSS) in Refs. [51–55].

Asymmetry. Considering the in-plane asymmetry of QDs,
the energy dependence of the hole states was studied in
Refs. [56,57]. Effects on FSS (via Coulomb exchange interac-
tion coupling strength) are studied in Refs. [44,45,52–54,58].
Highly interesting findings considering our problem are given
in Ref. [59], where an overview of energy shifts in QD0 is given,
including excited states and a rigorous treatment of Coulomb
interactions.

Aspect ratio. Considering different QD aspect ratios, calcu-
lated one-particle energies of strained pyramidal QDs have
been compared in Ref. [60]. Experimental data about the
shell-like character of the energetic structure are provided in
Ref. [16].

II. QD MODEL

Our calculations are based on a configuration interaction
(CI) approach within an envelope function approximation. Our
Hamiltonian consists of the effective mass energies (EMA)
including the QD confinement, the direct (DCI) and short-
range exchange (SRE) Coulomb interactions, as well as the
valence band mixing via the off-diagonal elements of a four-
band Luttinger model (VBM):

Ĥ = ĤEMA + ĤDCI + ĤSRE + ĤVBM.

All calculations are applied to single optical excitations in
single self-assembled CdSe QDs. In the following we will
explain the four parts of our Hamiltonian in detail.

A. EMA including QD confinement

In the envelope function approximation, the single-particle
wave functions �a,b(�r) = √

Vuc �a(�r) ub(�r) are separated into
a mesoscopic (envelope) part �a and a microscopic part ub

varying within a unit cell of volume Vuc. The index b in the
microscopic part denotes the band index and spin quantum
numbers. We consider heavy-hole (HH) and light-hole (LH)
bands as well as the lowest electron conduction bands (EL)
with their angular momentum projections ± 3

2 ( � , � ), ± 1
2 ( ⇒, ⇐),

and ± 1
2 ( →, ←), respectively. The relative phase between these

states is given in the Appendix. The envelope functions are
defined by a parabolic QD confinement, treated in Cartesian
coordinates. Hence we expand the envelope functions in terms
of Cartesian harmonic oscillator (HO) eigenfunctions with
quantum numbers a = (ax,ay,az). Due to the emerging shell-
like structure, QDs are often called artificial atoms and the
naming convention of atomic shells is imitated. Here, states
with increasing ax + ay + az = 0,1,2, . . . are called s-, p-, d-,
... like states. LH states are labeled by capital letters S, P, D, ....
If necessary, indices label the direction of the excitation, e.g.,
dxy for a = (1,1,0). One should note that there exists a similar
but different notation for a treatment in spherical coordinates
[40]. To fix the width of the HO confinement, we will specify
the QD diameters Lα (α ∈ {x,y,z}), which are related to
the HO confinement via the frequency ωb,α = 4h̄

mb,αβ2
b L2

α

. Thus
Lα denotes those points, where the electron ground state
probability density is reduced to 1

e
of its maximum. This choice

is arbitrary, limiting our model to statements about relative
changes in QD size. The effective masses mα

b can be deduced
from the Luttinger parameters [61]. For CdSe [40,43] we use
mEL = 0.13m0 and γ1 = 2.1, γ2 = γ3 = 0.55, which leads
to m

x/y

HH ≈ 0.38m0, mz
HH = m0, m

x/y

LH ≈ 0.65m0, and mz
LH ≈

0.31m0. To account for different confinement lengths between
electron and hole states [62], the QD diameter of the holes
is multiplied by a factor βHH = βLH = β. Here a value of
β = 1.15 is used. We set βEL = 1. In addition to the effective
mass energies within the HO confinement, we add half of the
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band gap (1840 meV for CdSe [40,43]) to each of the particle
energies.

Interactions between different particles are treated within a
configuration interaction approach. Therefore a proper choice
of basis states is necessary. A reasonable convergence is
achieved by considering single-particle states up to ahole =
(5,5,3) for holes and aelectron = (3,3,3) for electrons and
antisymmetric combinations of the single-particle states up to
a weighted index sum

∑
particles a

particles
x + a

particles
y + 2a

particles
z

of 7.
We should state that the HO confinement preserves inver-

sion symmetry; thus there is no mixing between states with
even/odd parity.

B. Coulomb interactions

The Coulomb interaction matrix elements are described
including DCI and SRE, following Refs. [44,45,59,63]. The
DCI is described by

V DCI =δb1,b4δb2,b3

e2

4πε0εr

×
∫

d3R

∫
d3R′ �

∗
a1

( �R)�∗
a2

( �R′)�a3 ( �R′)�a4 ( �R)

| �R − �R′| .

Here a screening by the static dielectric constant of the bulk
material εr = 9.2 for CdSe [43] is assumed. The integrals in
V DCI are evaluated in Fourier space. We want to clarify that the
DCI term contains for excitons just direct interactions, while
for trions there are also electron-electron (hole-hole) exchange
interactions included. Thus the terminology “direct” Coulomb
interaction is strictly speaking not correct for the trion case.
However, we will use the name DCI also for trions in view of
the well studied exciton case.

Electron-hole exchange interactions are included via SRE,
described by the matrix elements

V SRE = MT

∫
d3R �∗

a1
( �R) �∗

a2
( �R) �a3 ( �R) �a4 ( �R)

with

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

� ← ⇐ ← ⇒ ← � ← � → ⇐ → ⇒ → � →

0
1
3

1√
3

2
3

2
3

1 1√
3

1√
3

1
2
3

2
3

1√
3

1
3

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The parameter M is fixed at M = 576 meV nm3 in CdSe by
fitting experimental data from Ref. [9]. A more convenient
parameter MSRE, with units of energy, is defined by M =
MSRE

3π
4 a3

Bohr with the bulk Bohr radius aBohr in CdSe of around
5.5 nm [42,64]. Thereby we get MSRE ≈ 1.47 meV.

The long-range Coulomb exchange interaction (see
Refs. [14,21,45,58]) and higher order terms of SRE ∼ �J 3 �S
(see Refs. [51,65,66]), both typically associated with FSS, are
neglected in this study.

C. Valence band mixing

The off-diagonal elements of the Luttinger operator (diag-
onal elements are already included via EMA) are described in
Ref. [67] via

V VBM =

⎛
⎜⎜⎜⎜⎜⎝

� ⇐ ⇒ �

−b −c

−b∗ −c

−c∗ b

−c∗ b∗

⎞
⎟⎟⎟⎟⎟⎠

with b =
√

3h̄2

m0
γ3 kz

�

(
kx
� − i k

y

�

)
,

c =
√

3h̄2

2m0

[
γ2

(
kx
� kx

� − k
y

� k
y

�

) − 2iγ3 kx
� k

y

�

]
,

with the operator kx
� = −i ∂

∂x
(analogously for k

y

� and kz
�)

acting only on the envelope functions. The matrix elements
in the used HO basis are known analytically.

In this model we neglect strain (and thereby piezoelec-
tricity). Strain is typically present in self-assembled QDs,
especially at geometrical structures with sharp edges (e.g., at
the edges and tips of pyramidal QDs; see Ref. [68]). Strain
can be related to the QD geometry [37]. However, strain can
also be manipulated independently from the geometry, e.g., by
different material composition profiles [37,69] or specialized
growth methods [70]. Therefore it is useful to analyze the
effects of strain/sharper QD structures and the overall QD
geometry separately. As a natural first step, a description of the
dependence on overall geometric changes in strain-free QDs
is preferable to a study with mixed geometry+strain effects
within an exemplary strain profile.

Effects of strain would also influence the valence band
mixing (which is qualitatively already included via the off-
diagonal elements of the Luttinger model) or cause a relative
energetic shift of the LH states, whose energetic positions are
therefore just roughly described in our model and thus typically
not further discussed, but whose inclusion is important to
mediate some interactions between the heavy-hole states.
Strain and nonharmonic contributions to the QD confinement
would also lead to different single-particle wave functions
and in consequence, to modified Coulomb interaction matrix
elements. The additional numerical effort caused by that would
result in a reduction of the configuration interaction basis and
a less accurate investigation of the correlations induced by
the Coulomb interactions. We emphasize that the Coulomb
interaction plays a much larger role for the higher excited states
compared to the ground states, where strain effects become
more visible (see below). Therefore it is important to reach a
sufficiently large CI basis size for a description of the excited
states.

We further note that piezoelectricity would influence FSS
[52] (as the long-range Coulomb exchange interaction) and,
thus, quantitative statements about FSS are beyond the scope
of our model.
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D. Absorption spectra

To calculate the linear absorption spectra, we use the dipole
matrix elements

�P ∼
∫

d3R �∗
ae

( �R)�ah
( �R) · �μbe,bh

with

�μbe,bh
=

⎛
⎜⎝

� ⇐ ⇒ �

← 0
√

1
3 �eσ−

√
2
3 �eπz �eσ+

→ �eσ−

√
2
3 �eπz

√
1
3 �eσ+ 0

⎞
⎟⎠.

For β = 1, the integral reads
∫

d3R �∗
ae

( �R)�ah
( �R) = δae,ah

;
thus only transitions between the same envelope states are al-
lowed. We assume an incidence of the light in the−�ez direction;
i.e., no out-of-plane polarization is considered. For charged
QDs we present the absorption from a single ground-state
electron (0−)/heavy-hole (0+) into the corresponding trion
states. For the initial single carrier, we assume an incoherent
uniform distribution of both spin orientations. Most relevant
trion states are composed of this ground state excess carrier
and an additional optically created exciton. When we label
electronic states, we will list the hole states, followed by the
electron states. For example a trion consisting of py HH and s

and px electrons will be described by py-spx in the following.
When we want to address all exciton and trion states associated
with the same transition, e.g., py-px , py-spx , and spy-px , we
will call them py → px .

Without VBM, all transitions are unpolarized in the in-plane
direction, whereas with VBM they become linearly polarized
in QD0 and stay unpolarized in charged QDs. Note that if we
assumed a fully aligned spin of the initial particle, transitions
would be elliptically polarized. In this study we focus on the
energetic positions of the different transitions. To be able to

see all existing bright states, we study the absorption of a
circularly polarized electric field �E ∼ �eσ− . The absorption α is

obtained via Fermi’s golden rule α(ω) ∼ |�eσ− · 〈Xc| �̂P |0c〉|2 ·
δ(EXc − E0c − h̄ω) with c ∈ {0, − ,+} and the exciton/trion
states Xc. For better visibility, we widened each peak in the
absorption spectra by a Lorentzian function with a full width
at half maximum of 0.1 meV.

III. INTERACTIONS

In this section, we analyze the effects of the different
interactions by switching them on successively. The QD shape
is fixed at a flat and slightly asymmetric geometry of (5.8, 5.0,
2.0) nm3.

A. Basic shifts and splittings

To get a fundamental idea of the energetic structure within
QDs, we will consider the different spin configurations of the
most prominent transitions between envelope states, namely
the s → s, S → s, p → p, and P → p transitions. Shifts and
splittings of the associated electronic states due to DCI, SRE,
and VBM are shown for QD0, QD−, and QD+ in Fig. 2.

In QD0, there are 22 = 4 possible combinations of the two
EL and two HH/LH spin projections to excitons, respectively.
The initially fourfold-degenerate HH/LH exciton levels are
shown on the left-hand side of Fig. 2. By turning on DCI (first
gray box), all energies are shifted several tens of meV toward
lower energies, giving the main contribution to the exciton
binding energy. Within the HH excitons (s-s and p-p), SRE
introduces a splitting of several meV into a dark and a bright
doublet at lower/higher energy, as well as small couplings
between HH and LH with the same total spin projection. A
further small splitting of the doublets of typically several tens
to hundreds of μeV as well as small perturbations of the labeled
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FIG. 2. Schematic plot of energetic shifts and splittings caused by different interactions for exemplary states in QD0, QD−, and QD+.
Parameters for a CdSe QD with a shape of (5.8, 5.0, 2.0) nm3 are used. Dark states (under the assumption of a polarization ∼�eσ ) are displayed
by light gray lines. The main spin contributions are displayed by arrows at the right side of each diagram. Gray (black) arrows are used for
particles in an s (p) envelope state. In charged QDs, just one spin combination of the Kramers doublet is indicated.
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spin projections arise due to a combination of SRE and VBM
[71], also for the dark states. Interestingly, the splitting of the
dark ground states is much lower (just a few μeV) than for
the higher excited states and is on the order of experimentally
observed values [25–27]. This is caused by the large energetic
separation to the next LH states. In QDs with cylindrical
symmetry (cylindrical QD confinement and strain distribution)
the bright doublet remains degenerate. Within the LH excitons
(S-s and P -p), SRE introduces a splitting into two single states
and a doublet in between. Thereby the lowest single state is
dark, the doublet is bright, and the highest single state is dark
in our case, but would become bright under an excitation with
an electric field polarized in the z direction. The remaining
degeneracy of the doublet is then lifted by the combination of
SRE and VBM (in QDs with broken cylindrical symmetry).

In QD−, the trions have a half-integer total spin. Thus,
without a magnetic field, we expect at least a degeneracy of two
of all energetic levels reflecting the Kramers theorem. If both
electrons are in the same envelope state (s-ss and S-ss), their
spin is fixed to an antiparallel projection and just the spin of
the hole can vary. Thus two possible trion spin combinations,
or one Kramers doublet, occurs. This doublet is redshifted
several tens of meV due to DCI. SRE and VBM just cause
smaller disturbances to this energy and spin contributions. If
the electrons are in different envelope states (p-sp and P -sp),
the three particles of the trion can form 23 = 8 possible spin
combinations. In this case DCI introduces a binding energy
of several tens of meV and additionally an electron-electron-
exchange term, that causes a strong singlet-triplet splitting
(here around 15 meV). This exchange is much stronger than the
exchange via SRE between particles in different bands (also
see Ref. [72]). SRE causes a further separation of the triplet
states (comparable with the bright-dark splitting in QD0, thus
around several meV) as well as a small perturbation of the
exact separation into singlet and triplet (hole spin disturbs the
electron spin alignment). In HH trions (p-sp), the lowest triplet
is dark, whereas the others are bright. In LH trions (P -sp), all
triplet states are bright. VBM introduces energetic shifts and
deviations of the labeled spin combinations.

In QD+, the fundamental shifts and splittings of trions
containing two HH (ss-s and sp-p) are the same as for the
corresponding trions in QD− (s-ss and p-sp), which are also
associated with the s → s and p → p transitions. A special
case occurs in positive trions consisting of EL+HH+LH (sS-s
and sP -p). In those states there is no singlet-triplet splitting
via DCI, because all particles are in different bands. Here SRE
introduces a separation into four doublets. The energetically
lowest and next to last doublets are bright, whereas the others
are dark in our case, but would become bright by using an �ez

polarization.
There are two relevant conclusions which we obtain from

this analysis:
(1) In this simplified picture, there are no differences

between HH transitions in QD− and QD+ (see also Ref. [73]).
(2) The energetic shifts of the different interactions differ

by one order of magnitude. This allows us to study the effects
of DCI (∼10 meV), SRE (∼1 meV), and VBM (∼0.1 meV)
in the following successively, while the weaker interaction
typically does not change the overall findings of the stronger
one.

Though we presented typical shifts and splittings in our
full model, we skipped an explicit consideration of mixtures
between different envelope states. Such a reduced description
of QD states is widely used, because first, the above described
basic level structure is in good agreement with some findings
concerning energetically well separated envelope states (like
s → s states) and second, one can use simple theoretical
models [51], just considering the few possible spin states
and an effective treatment of the interactions to achieve the
above energetic level structure. However, when envelope states
come energetically close, the interplay between them can
become important. They can become strongly mixed, which
leads to significant changes in optical activity, problems with
the unique assigning of the states, strong deviations of the
above described energetic level structure, or larger deviations
from the labeled spin contributions. In the following, we will
analyze these mixtures between different envelope states in
detail and clarify their importance. We will do this by a detailed
study of the absorption spectra, while turning on the different
interactions.

B. QD confinement

To start with, we look at the absorption spectra in Fig. 3 that
are labeled by 1

εr
= 0. In these spectra just EMA energies are

considered, whereas DCI, SRE, and VBM are neglected. The
main transitions are between holes and electrons that are both
in the same envelope state, namely transitions from HH to EL
both in the ground state (s → s, black solid line) or both in the
first excited states (px → px , py → py , reddish solid lines;
pz → pz are energetically far above due to the flat QD shape)
and from LH to electron both in the ground state (S → s, black
dashed line). Therefore we see four corresponding lines in the
associated spectra.

With β �= 1, also transitions with an even envelope quan-
tum number difference in each direction (|ahole

α − aelectron
α | ∈

{0,2,4, . . .} with α ∈ {x,y,z}) are allowed in principle, but
their oscillator strength is negligible here. In the considered
energetic range mainly dxx → s, dyy → s, dzz → s (blue solid
lines), gxxxx → s, gxxyy → s, gyyyy → s (green lines), LH
Dxx → s, Dyy → s (blue dashed lines), and LH Gxxxx → s,
Gxxyy → s, Gyyyy → s (green dashed lines) transitions are
technically allowed.

Without further interactions between the particles, it does
not make a difference whether there is an additional carrier
in the QD or not. Thus the absorption lines in the differently
charged QDs just differ by the oscillator strengths of some
peaks, caused by different degeneracies of the associated states.

We remark that we find highly excited HH g → s transi-
tions energetically close to p → p transitions. This becomes
obvious when we recall that the in-plane effective mass of
the HH is approximately three times larger than the effective
mass of the electron. Thus an increase of the electron in-plane
quantum number aelectron

x/y by 1 needs about the same energy as
an increase of the HH in-plane quantum number aHH

x/y by 3.

C. Direct Coulomb interaction

In the following, we analyze the influence of DCI in detail.
To this extent, we plot the absorption spectra for increasing
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FIG. 3. Absorption spectra labeled with 1
εr

= 0 belong to cal-
culations in EMA without further interactions. Other spectra take
additionally DCI into account, at which an increasing 1

εr
corresponds

to an increasing DCI coupling strength. Colored lines connect the
associated peaks of the plotted and eight intermediate, not explicitly
plotted spectra (see text).

coupling strengths of DCI (∼ 1
εr

) in Fig. 3. For all spectra (also
in the forthcoming sections) we connect peaks of the same type
with colored lines indicating the evolution of the transition.
The lines are obtained by calculations via intermediate values
(typically eight), which are not shown explicitly. When too
many states become close, colored areas mark the average
position of important groups of peaks.

The variation in DCI coupling strength is not just a theo-
retical illustration, but could be achieved experimentally by a
change of the QD material or, without extensive side effects
as changes in effective masses, by a change of the QD size
(see Sec. IV A). In Fig. 3, we plot the spectra for the values
1
εr

= 0.00, 0.11, and 0.22. A realistic value for CdSe is 1
εr

≈

0.11. At the positions of anticrossings (e.g., between px-px

and gxxxx-s in QD0 at 1
εr

≈ 0.08), the particular auxiliary lines
should (continuously) change their color without touching each
other. To improve clarity, we let the lines cross each other
abruptly. One can identify five main features with increasing
DCI:

(1) As expected from our basic considerations, a redshift
with higher DCI coupling strength occurs. Additionally, a
singlet-triplet splitting of the p → p states arises just in
charged QDs (reddish lines).

(2) Some peaks seem to appear with increasing DCI
coupling strength, clearly visible at, e.g., the first two blue
labeled lines in QD0 or QD−. With DCI, state mixtures are
introduced between states fulfilling the quantum number dif-
ferences (

∑
particle a

particle
α ) ∈ {0,2,4, . . .}. The most relevant

admixtures are those of the bright s → s, p → p into some
nearly dark states reached by d → s, g → s, D → s, or
G → s transitions, leading to increased oscillator strengths
of those states, that have been optically allowed in principle
already without DCI due to β �= 1. We should state that not
the dipole transition probability, like with β �= 1, but the
states themselves are changed here. Fortunately these state
admixtures are often sufficiently small; thus we will still label
our peaks by the mainly contributing one-particle combination.
Next to the increasing DCI coupling strength, the extent of
these mixtures strongly depends on the energetic distance to
their coupling partners (see, e.g., crossing of px-px and gxxxx-s
in QD0 at 1

εr
≈ 0.08 with highly increased amplitude of the

gxxxx-s transition).
(3) The intensity of the s → s peaks increases with higher

DCI coupling strength. This is due to constructive admixtures
with higher optically allowed states. The same effect occurs
in p → p states, but losses of intensity to nearby states (as
described in the previous paragraph) often compensate the
increase.

(4) There are many more transitions around the p → p

transitions in QD+ than in the other QDs. There are two
reasons for this: Considering g → s transitions, we have four
energy quanta in the g-like hole. In QD0 and QD− these energy
quanta are attributed to the one hole (the energy quanta can be
disposed in the different in-plane directions to gxxxx , gxxxy ,
gxxyy , gxyyy , or gyyyy ; 3 of these are bright already, 2 become
slightly bright with VBM), and we get five possible transitions.
In QD+, we can separate the four energy quanta on the two
holes (g + s, f + p, or d + d, all strongly coupled, each with
different x and y combinations), giving 19 possible transitions.
It should be noticed that fp-s trions that contain no HH ground
state become bright due to admixtures of sg-s and thereby
bright sp-p. Similar effects occur in nearby transitions such
as d → s. Because the hole energies are much lower than the
electron energies, these effects occur in QD− only for very high
energies (e.g., s → g transitions are far above the considered
energies). Second, there are more possible spin combinations in
g → s states with an additional ground-state hole than with an
additional ground-state electron. This is because the two holes
in QD+ are in different envelope states enabling eight possible
trion-spin combinations, whereas the two electrons in QD−

are in the same envelope state, just enabling two trion-spin
combinations. Concerning DCI, we therefore also observe a
singlet-triplet splitting of the sd-s, sg-s, fp-s, and LH sD-s
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FIG. 4. Sketch of s → s (p → p) binding energy contributions
for β > 1.

states in QD+, but not in the corresponding d-ss, g-ss, and LH
D-ss states in QD−.

(5) Each state shifts in energy, when the DCI coupling
strength is changed. These shifts are typically different, if we
compare either different envelope states in one QD or the same
envelope state in differently charged QDs. To understand the
underlying mechanisms of these shifts in detail, one should
consider the different transitions separately:

s → s (p → p). To understand the different binding ener-
gies of s → s (p → p analogously) states, we have to consider
two mechanisms (also see Refs. [74,75]). Both lead to energy
shifts of the same order of magnitude: First, there are different
contributions of the diagonal DCI elements. In all QDs we have
at least an exciton with a certain electron-hole attraction energy.
In charged QDs, the additional carrier introduces an additional
electron-hole attraction but also a repulsion between the doubly
occurring carriers. These additional attractions and repulsions
do not cancel completely, because the confinement length of
holes and electrons is typically different, leading to larger con-
tributions of diagonal DCI elements for the stronger confined
particle. In our case (β > 1) we obtain |Vhhhh| < |Vheeh| <

|Veeee|; thus in QD+ the additional electron-hole attraction
overweights the hole-hole repulsion and in QD− the electron-
electron repulsion overweights the additional attraction, lead-
ing to Es→s(QD+) < Es→s(QD0) < Es→s(QD−) (see Fig. 4).
Second, all considered states are shifted to lower energies by
couplings with energetically higher states. This “CI energy” is
closely related to the correlation energy, though it is also caused
by couplings between configurations with just one particle
in a different envelope. In charged QDs, there are more CI
basis states that cause a larger CI energy than in QD0. Caused
by β > 1 the CI energies are smaller in QD+ than in QD−,
because the coupling strengths are larger between stronger
confined states. Thus the CI energy shifts the relative energetic
position of the QD− ground state towards lower energies,
possibly lower than the QD0 ground state or even the QD+

ground state. For β < 1 the role of QD+ and QD− in this
argumentation would switch. For β = 1 an otherwise small
effect becomes important: The larger effective masses of the
holes cause a slightly larger CI energy of the QD− ground states
[76]. In our explicit calculations for CdSe (Fig. 3), we see a
similar energetic position of the charged QDs, both noticeably
below the QD0 ground state. Similar energies were measured
in Refs. [16,71,77] for CdTe QDs. For p → p transitions,

the same mechanisms are important. Caused by stronger CI
energies, the energetic distance between charged QD states and
QD0 states is larger than for s → s transitions (in agreement
with experimental results in Ref. [23]) and QD− states are
energetically lower than QD+ states.

d → s (g → s). Considering d → s (g → s analogously)
transitions, we observe the energetic order

Ed→s(QD+) < Ed→s(QD0) < Ed→s(QD−).

This can be understood by comparing the diagonal energy
contributions of DCI. With a much stronger coupling between
two particles within the same envelope state, compared with
a coupling between two different envelope states (V ss > V ds),
we get the energy contributions for the differently charged QDs
via

−V ds
heeh−(V ss

heeh−V ds
hhhh)︸ ︷︷ ︸

QD+

< −V ds
heeh︸ ︷︷ ︸

QD0

< −V ds
heeh+(V ss

eeee−V ds
heeh)︸ ︷︷ ︸

QD−

.

In other words, the two repulsive electrons in QD− are in the
same envelope state, leading to a reduced binding energy in
contrast to QD+, where the two repulsive holes are in different
envelope states. A special trend occurs in QD− d-ss transitions,
which have a strong bending due to the strongly increasing
correlation with the energetically fast approaching p-sp with
larger DCI (see Fig. 3).

Putting the different shifts of s → s, p → p and d → s,
g → s together, we find for the surrounding of the px →
px transitions in the present QD geometry and material the
following: In QD−, p-sp states have a much stronger binding
energy than d-ss and g-ss states, what means they shift faster
towards lower energies with increasing DCI. Thus just for very
small DCI, g-ss become important (energetically close and
strongly correlated with the bright p-sp states). d-ss become
important for a relatively small interval of higher DCI coupling
strength. In large regions of DCI coupling strength, p-sp stays
energetically clear-cut and weakly correlated to other states. In
QD+, sd-s and sg-s have a much stronger binding energy than
in QD−, similar to the binding energy of sp-p states. Thus we
observe sg-s to be energetically close and strongly mixed with
sp-p over the whole range of DCI coupling strength. In QD0

we have an intermediate situation. g-s slowly shifts away from
p-p with increasing DCI.

D. Short-range exchange Coulomb interaction

Now we analyze the effects of SRE. Therefore we fix DCI
at an appropriate value for CdSe (εr = 9.2; see Sec. II B) and
turn on SRE by increasing MSRE in Fig. 5. Thereby mainly
different spin states within the multiplets become separated,
as discussed in Fig. 2. Related to the bright states visible in
absorption (see Fig. 5), an overall shift to higher energies can
be observed, independently of the QD charge.

Perceivable correlation effects due to SRE are rare. The
symmetry concerning quantum number differences of possible
correlations is equal to the one described with DCI; thus the
smaller effects of SRE are overlain. But SRE also mixes
different spin configurations with the same total spin, here
bright LH and HH states. Due to the weak interaction strength,
this is just important when interacting states would (anti)cross
in their energetic positions. In our case this is visible for
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FIG. 5. Absorption spectra in EMA+DCI and different coupling
strengths of SRE (spectra labeled by MSRE in meV).

example in QD0 betweenDy-s andpx-px ,gx-s aroundMSRE ≈
1.7 meV (look closely at right blue dashed line). There the
otherwise negligible oscillator strength of the Dy-s transition
increases drastically, caused by mixing effects with the bright
px-px , gx-s state.

E. Valence band mixing

Finally we discuss the effects of VBM. Therefore we
fix DCI and SRE at appropriate values for CdSe (εr = 9.2,
MSRE ≈ 1.47 meV; see Sec. II) and turn on VBM by varying
the coupling strength by a factor fVBM between 0 and 1
in Fig. 6. As expected from the above considerations, the
remaining twofold degeneracy in QD0 is slightly lifted, causing
a small splitting of the doublets into two lines each with
approximately half of the intensity of the original line. This
tiny splitting is badly resolved in Fig. 6 and should not be
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d-ss QD-
g-ss

s-ss

S-ss G-ss

FIG. 6. Absorption spectra in EMA+DCI+SRE and different
coupling strengths of VBM. Lines containing dotted sections label
transitions that become bright due to VBM.

mistaken for a reduction of the peak intensity. In charged QDs,
the twofold degeneracy is not lifted. VBM contains interactions
between HH and LH states. In our case of flat QDs, the
lower excited transitions are mainly HH like and the occurring
couplings are mainly between HH states due to a second-order
mechanism, mediated by LH states. An important effect of
VBM is the reduction of the symmetry rules for couplings to
(

∑
particle,α a

particle
α ) ∈ {0,2,4, . . .}. Therefore VBM enables,

within the considered energy range, the py → px , px → py ,
pz → px , pz → py and dxy → s, dxz → s, dyz → s as well
as several g → s and LH D → s and G → s states to be
coupled to the bright s → s or p → p states and therefore to
become slightly bright. As a clear example one could follow the
transition line appearing between the two solid blue dxx → s

and dyy → s lines, namely the dxy → s line (clearly visible in
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QD0 and QD−). In QD+, the large number of lines prohibit an
individual labeling; therefore we use colored areas to mark the
average positions of the groups of peaks.

If we consider the pure effects of VBM without DCI or SRE
(not shown), we find equal transition energies in QD0 and QD−,
while the lines in QD+ are insignificantly blueshifted and some
are split by a few μeV, caused by a VBM-induced hole-hole-
exchange term. This underlines that the differences between
the differently charged QDs arise mainly due to Coulomb
interactions and are just enhanced by VBM in combination
with Coulomb interactions.

F. Full model

Within our full model, we consider DCI, SRE, and
VBM with appropriate values for CdSe (εr = 9.2, MSRE ≈
1.47 meV, fVBM = 1). Thereby around half of the existing
states are optically allowed in principle, although some will
have a negligible oscillator strength. The other half, those with
an uneven quantum number sum

∑
particle,α a

particle
α , e.g., p → s

transitions, will stay dark within our model, due to the assumed
inversion symmetry.

The basic energetic splittings (Fig. 2) within QD− and QD+

let us presume a similar energetic structure for the trions. We
find larger differences between p-shell transitions in QD−

and QD+. These differences are caused by mixtures between
bright and nominally dark neighboring states and mainly enter
due to DCI. The extent of these mixtures strongly depends
on the number of neighboring states as well as the energetic
distance between these neighboring states and the bright p-
shell transitions. Compared to QD−, we find in QD+ a larger
number of nominally dark states as well as a smaller distance
of these states to the p-shell transition lines. Thus the chance
to find the p-shell transitions energetically clear-cut with well
defined spin configurations and high oscillator strength is much
smaller in QD+ than in QD−.

IV. GEOMETRY

In this section we study the influence of the geometry on
the absorption. For this purpose, we vary the size, the in-plane
asymmetry, and the aspect ratio of the QD. We will use the full
model.

A. Size

In the following, we vary the QD size by a factor l3

and fix the shape via (l × 5.8, l × 5.0, l × 2.0) nm3. The
coupling strength scaling of the different interactions treated
in this paper is known analytically for a HO confinement: By
increasing the size, the single-particle energies decrease by a
factor ∼l−2. Matrix elements of DCI have a smaller ∼l−1 and
matrix elements of SRE a larger ∼l−3 dependence on l. In real
systems, there may be slight deviations from these idealized
dependencies: The single-particle energies scale slower than
∼l−2 due to band nonparabolicity effects [78]. The dielectric
constant in smaller QDs is reduced compared to its bulk value
[43,79–81], leading to a larger DCI scaling than ∼l−1. On
the other hand, Ref. [78] found a smaller scaling of DCI. The
SRE scaling is found to be slower than ∼l−3 (see Ref. [54]).
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FIG. 7. Absorption spectra for different QD sizes at fixed shape
via (l × 5.8, l × 5.0, l × 2.0) nm3. Energies (without band gap) are
rescaled by a factor l−2.

However, here these deviations are supposed to be small
enough to preserve the following results.

In larger QDs, a well known strong redshift of all states
appears. The average distance between the levels decreases
with the single-particle energy spacings ∼l−2. To visualize
changes of the relative energetic distances (e.g., whether d →
s or p → p is closer to s → s), we rescale the energies for each
absorption spectrum by l−2 and plot the spectra for different
l in Fig. 7. With increasing QD size, one observes a larger
relative singlet-triplet splitting in QD− and QD+, an increasing
relative binding energy, and the same relative energy shifts
and intensity changes as with increasing DCI (compare Figs. 3
and 7; most noticeable for QD−). In fact, by increasing the QD
size, we can directly affect the relative strength of DCI and
therefore observe the same phenomena as with an increasing
DCI coupling strength. This provides a good opportunity to
study nearly pure impacts of DCI. Especially the correlations
between p-sp and d-ss, g-ss in QD− can be tailored by
changing the QD size. In QD+ and QD0 one observes more
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clear-cut and more intermixed p → p transitions, depending
on the size, or more precisely on the question of how exactly the
different single-particle energies of g → s and p → p match.
These resonance effects in QD+ and QD0 on the absorption
seem to be far beyond a possible technical control.

On the other side, the influence of SRE becomes relatively
reduced in larger QDs (see coupling strength scaling). This
is a much weaker effect and causes mainly a smaller relative
distance between the two p → p triplet lines in larger charged
QDs and a reduced relative bright-dark splitting in QD0. As
stated above, these effects of SRE might be even smaller than
described here.

At this point, we discuss the often used classification of
QDs into the strong and weak confinement, with respect to
excited states. In a strong confinement, the Coulomb cor-
relations become small and ultimately negligible compared
to the subband energy spacings; thus the carriers can be
described as single particles [82]. In contrast, the particles
build a strongly correlated complex in the limit of the weak
confinement. Typically one considers the ground states for the
definition of the strong and weak confinement and relates the
cases descriptively with the ratio between QD diameter and
bulk Bohr radius. The ground states have in general a large
subband energy spacing to the next higher states, whereas
excited states are typically much closer to other states. Thus
even if we can neglect the correlations of the ground states in
good approximation and would define the QD to be in the
strong confinement regime, it does not follow that we can
neglect correlations for the excited states. This can also be
seen in our calculations, where the ground states, labeled as
s → s, consist in small QDs (l = 0.4) of around 95% s → s CI
basis states, whereas higher excited states like p → p (d → s)
consist of just around 56% p → p (52% d → s) CI basis
states. In larger QDs (l = 2.0) these ratios decrease as expected
and correlations become stronger. In the s → s we find just
around 76% and in the p → p (d → s) around 38% (33%) of
the respectively labeled CI basis states.

B. In-plane asymmetry

We study the influence of the in-plane asymmetry by fixing
the size and aspect ratio of the QD and change the in-plane
diameters via (

√
f

√
5.8 × 5.0, 1√

f

√
5.8 × 5.0, 2.0) nm3. The

previously used standard value for the QD in-plane asymmetry
has been f = 1.16. Absorption spectra for different asymme-
try parameters f are shown in Fig. 8.

With increasing asymmetry, the main observation in all QDs
is an increasing energetic separation between some lines, e.g.,
between dxx → s and dyy → s or between the different px →
px and py → py lines (as an example, follow the px/y-px/y

lines in QD0). This separation is caused by the increasing dif-
ference between the confinement lengths in x and y direction,
leading to a larger separation of the single-particle energies of
states excited in different in-plane directions (SEDIDs). With-
out correlations, the energies of SEDIDs would meet at zero
asymmetry. However, mainly DCI causes a coupling between
those SEDIDs, resulting in one bright and one dark state [in
our example (px-px) ± (py-py)] at lower/higher energy. With
increasing in-plane asymmetry, the energetic distance between
the single-particle energies increases, reducing the effective
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FIG. 8. Absorption spectra for different in-plane asymmetry at
fixed QD size and aspect ratio via (

√
f

√
5.8 × 5.0, 1√

f

√
5.8 × 5.0,

2.0) nm3.

coupling until, at large asymmetries, the SEDIDs are mainly
uncoupled (in our example uncoupled px-px and py-py) and
have nearly the same absorption intensity.

Another noticeable feature is the different gradient of the
different SEDIDs; e.g., there is a much smaller separation of the
d → s than of thep → p SEDIDs in all QDs. To clarify the ori-
gin of this finding, one should consider the single-particle en-
ergy distance between SEDID ∼ ( e

me
+ h

β2mh
)( 1

L2
x

− 1
L2

y
) with

e (h) being the envelope quantum number difference ax-ay

of the electron (hole) in the x/y direction and me (mh) the
effective masses in the in-plane direction. Because me is around
three times smaller than in-plane mh, p → p SEDIDs shift
faster than d → s SEDIDs. Higher excited hole states (like
g → s compared to d → s) have a faster splitting caused by
the larger e/h.
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Besides, an overall slight blueshift in higher asymmetries
is observed in all QDs. This is caused by the ∼ 1

L2 dependency
of the single-particle energies on the confinement length L.
Thus states excited in the direction of the narrower confinement
(here the y direction) have a larger energetic increase with a
confinement length reduction, than the energetic decrease of
states excited in the direction of the broader confinement (here
the x direction).

SRE effects seem to be stable related to anisotropy changes.
There are two possible profits from these findings:
(1) The relative shifts between p → p and d → s, g → s

transitions in all QD charges enable a broad control of the
mixtures and correlation strengths and the energetic order of
several transitions.

(2) In principle, it is possible to determine the otherwise
hard to assess in-plane asymmetry of a QD via the splitting
of any particular pair of SEDIDs, measured, e.g., in PLE. In
practice, the single-particle energies are influenced by several
interactions, here mainly the QD confinement and DCI; thus
sophisticated calculations are necessary to gain information
about the asymmetry. A rough estimate of the asymmetry might
be possible by comparing experimental data with Figs. 7, 8,
and 9. Fortunately, the most prominent and easy to identify
peaks are the px → px , py → py transitions, which undergo
very similar effects under DCI as s → s (see binding energies
in Fig. 3), which allows us to extinguish the influences of
DCI in good approximation. Therefore, we can propose a very
easy formula, deduced from single-particle energies in the QD
confinement, to determine the in-plane asymmetry parameter
f just via the energetic distance between the energy of the
s → s transition (Es→s) and the different p → p transitions
(Epx/y→px/y

) via

f = Lx

Ly

≈
√

Epy→py
− Es→s

Epx→px
− Es→s

. (1)

This is a very handy equation, because all the complicated
correlation and state mixture effects studied in this paper are
suppressed for the calculation of the above defined energetic
distances. We emphasize that the above formula is independent
of the QD size, aspect ratio, β, material, or charge and therefore
offers an attractive alternative to measure the in-plane asym-
metry of QDs, next to measurements by magnetoluminescence
spectroscopy [83]. Deviations from Eq. (1) indicate additional
effects influencing the spectra, e.g., by strain or confinement,
in a convenient way. The equation holds for a wide range of
intermediate dot asymmetries, where the differences between
the f , used in our full model (see Fig. 8), and predictions by
the above easy formula are in the region of just a few percent.
For very small asymmetries (f � 1.04), this method cannot be
used because the above described interaction via DCI between
px → px andpy → py at small asymmetries introduces strong
deviations from the single-particle energies and shade away
the visibility of the py → py lines. For very large asymmetries
(f � 1.8), the energy spacing between px → px and py → py

is so large that couplings to the very different surrounding
states lead to larger deviations (� 10%) in the prediction of
f . In QD+ it might be demanding to identify the px → px

and py → py peaks, because of the plenitude of surrounding
peaks.
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FIG. 9. Absorption spectra for different QD aspect ratios at fixed
in-plane asymmetry and size via ( 1√

h
× 5.8, 1√

h
× 5.0, h × 2.0) nm3.

Energy is shifted respectively to EMA energies.

In neutral QDs, the FSS of the bright ground states is
caused by in-plane asymmetry. Thus FSS measurements could
in general also reveal the asymmetry, especially useful to find
QDs with nearly zero asymmetry [44,84]. However, FSS seems
to depend crucially on the coupling parameters of valence band
mixing [52,68] or long-range Coulomb exchange [45,58], thus
on the material, strain, size, β, and probably on the charge,
making this method more complicated.

C. Aspect ratio

In the following we study the changes in the electronic
system caused by different QD aspect ratios. Therefore, we fix
the QD size and in-plane asymmetry and vary the aspect ratio
via ( 1√

h
× 5.8, 1√

h
× 5.0, h × 2.0) nm3. In flat QDs, the energy
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contribution of the confinement in the z direction dominates.
These contributions cause an overall strong redshift at larger
h. To visualize the changes in level spacing and ordering, we
shift (not rescale, as above) the spectra by the single-particle
energies of the s → s transitions towards lower energies. These
shifted absorption spectra are plotted in Fig. 9 for different
aspect ratio parameters h.

It can be seen that in higher QDs the LH states (short dashed
lines) shift quickly toward lower energies, compared to the HH
lines. In fact, if the QD height were larger than its in-plane
diameter, the LH S → s transition states would become the
QD’s ground states [70,85]. These shifts are caused by the
different effective masses of LH and HH in the z direction:
The energetic contribution in the z direction is ∼ 1

mz
LH/HH

. With
1

mz
LH

> 1
mz

HH
the LH states have a larger dependence on the

confinement length in the z direction, thus a faster redshift
in higher QDs. In the shifted spectra just the relative redshift
of the LH transitions compared to the HH transitions is visible.
We see that anticrossings between the HH states around the p

shell and (at least) the LH ground states are at realistic aspect
ratios. At these anticrossings large LH contributions to the
p-shell HHs are expectable. In contrast, the ground states are
very pure HH-like.

A stronger redshift with increasing h is also visible in states
excited in the z direction (such as the dz → s states, right solid
blue line), where the dominant term in the z direction is larger
than in the other HH states, caused by the excitation in the z

direction.
These different relative shifts enable an additional mech-

anism to tailor the correlations and mixtures, in this case
between LH and HH states or states excited in the in-plane
and z direction. Especially the possibility to change the LH
contribution and therefore the spin state of a certain HH
level might be interesting to control relaxation processes or
oscillator strengths.

Another visible effect is the larger separation between states
with different excitations in in-plane directions with larger h,
thus between most states discussed in this paper, such as s → s,
dxx/xy/yy → s, px/y → px/y , and gxxxx/xxxy/xxyy/xyyy/yyyy →
s. To fix the size, we decreased the in-plane diameter in higher
QDs and consequently enhanced the in-plane single-particle
energy contributions. This has a larger effect on, e.g., the
px/y → px/y states than on the dx/y → s states, because of
the smaller effective mass of the electron than of the hole. This
effect of energetic spacing between different shells is in good
agreement with measurements in Ref. [16]. Also the splitting
between px → px and py → py becomes enhanced in higher
QDs, preserving the proportion to the distance between excited
and ground states.

Finally, we observe an enhancement of the Coulomb bind-
ing energy (redshift) of the s → s transitions with increasing h.
To understand this aspect, we studied the geometry dependence
of some important (s-shell, p-shell, and d → s) diagonal DCI
matrix elements in detail. The values of these matrix elements
show a peaked characteristic centered close to the spherical
shape. We exemplarily show the normalized diagonal DCI ma-
trix elements between HH s → s envelopes for modifications
of the in-plane asymmetry and the aspect ratio in Fig. 10. For
asymmetries close to the sphere, like the in-plane asymmetry
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FIG. 10. Diagonal DCI matrix element between ground-state
heavy holes for different in-plane asymmetry parameters ∼f and
aspect ratio parameters ∼ 1

h
. Note different scales. For the height

parameter h ≈ 2 the QD has a nearly spherical shape. Red areas depict
typically relevant values for self-assembled QDs.

changes in Sec. IV B, the reduction of DCI is not noticeable.
For the high differences between the QD elongation in the
in-plane and z direction that appear in this section, we get a
strong alteration of DCI, visible, e.g., in the mentioned larger
binding energies of the s → s transitions.

V. CONCLUSION

We have provided a detailed picture of the electronic
energy structure of differently charged QDs focused on p-shell
transitions by studying different correlations and energetic
trends in absorption spectra. The individual and combined
effects of DCI, SRE, and VBM are described, highlighting
the underlying processes behind energetic splittings and shifts
as well as the reason for the appearance of additional lines
in the absorption spectra and mixtures between different spin
or spatial contributions to the absorption lines. The results
of our study are valuable for understanding and designing
experiments using p-shell excitation for optical amplification
or state preparation.

Our calculations predict larger differences in the absorption
of negatively and positively charged QDs, where the chance to
find clear-cut and well defined p → p transitions is larger in
negatively charged QDs than in positively charged QDs. We
attribute these findings to a large number of nominally dark
states close around the bright p-shell transitions in positively
charged QDs. We further studied changes of the absorption
spectra with a modification of the QD’s size and shape.
Thereby we provide the knowledge to tailor the energetic
structure, spin or spatial configuration, or optical activity of
excited states in a wide range. We clarify the classification of
the strong and weak confinement regime with respect to excited
states, which provides basic knowledge for future modeling of
the excited level structure. We describe a simple method to
gain information about the QD asymmetry from its absorption
spectrum.
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APPENDIX: PHASE CONVENTION

In the literature, there are several definitions of the rel-
ative phases between the Bloch functions. With VBM and
SRE we use two interactions that mix Bloch states; thus
we have to take special care of a consistent definition. The

Bloch functions used in this paper are defined in terms
of the spin states � and � as well as the spherical har-
monics Ym

l in the Condon-Shortley phase convention or
the real-valued cubic harmonics S, Px , Py , and Pz via the
following:

← = Y 0
0 � = S �

→ = Y 0
0 � = S �

� = Y 1
1 � = −

√
1

2
(Px + iPy) �

⇐ =
√

1

3
Y 1

1 � +
√

2

3
Y 0

1 � = −
√

1

6
(Px + iPy) � +

√
2

3
Pz �

⇒ =
√

1

3
Y−1

1 � +
√

2

3
Y 0

1 � =
√

1

6
(Px − iPy) � +

√
2

3
Pz �

� = Y−1
1 � =

√
1

2
(Px − iPy) �
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