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We study the nonlinear conductance G ∼ ∂2I/∂V 2|V =0 in coherent quasi-one-dimensional weakly disordered
metallic wires. Our analysis is based on the scattering approach and includes the effect of Coulomb interaction.
The nonlinear conductance correlations can be related to integrals of two fundamental correlation functions:
the correlator of functional derivatives of the conductance and the correlator of injectivities (the injectivity is
the contribution to the local density of states of eigenstates incoming from one contact). These correlators are
obtained explicitly by using diagrammatic techniques for weakly disordered metals. In a coherent wire of length
L, we obtain rms(G) � 0.006 E−1

Th (and 〈G〉 = 0), where ETh = h̄D/L2 is the Thouless energy of the wire and
D the diffusion constant; the small dimensionless factor results from screening, i.e., cannot be obtained within a
simple theory for noninteracting electrons. Electronic interactions are also responsible for an asymmetry under
magnetic field reversal; the antisymmetric part of the nonlinear conductance (at high magnetic field) being
much smaller than the symmetric one, rms(Ga) � 0.001 (gETh)−1, where g � 1 is the dimensionless (linear)
conductance of the wire. In a weakly coherent wire (i.e., Lϕ � L, where Lϕ is the phase coherence length), the
nonlinear conductance is of the same order as the result G0 of a free electron calculation (although screening
again strongly reduces the dimensionless prefactor); we get G ∼ G0 ∼ (Lϕ/L)7/2E−1

Th , while the antisymmetric
part (at high magnetic field) now behaves as Ga ∼ (Lϕ/L)11/2(gETh)−1 � G. The effect of thermal fluctuations
is studied: when the thermal length LT = √

h̄D/kBT is the smallest length scale, LT � Lϕ � L, the free
electron result G0 ∼ (LT /L)3(Lϕ/L)1/2E−1

Th is negligible and the dominant contribution is provided by screening,
G ∼ (LT /L)(Lϕ/L)7/2E−1

Th ; in this regime, the antisymmetric part is Ga ∼ (LT /L)2(Lϕ/L)7/2(gETh)−1. All the
precise dimensionless prefactors are obtained. Crossovers from zero to strong magnetic field regimes are also
analyzed.
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I. INTRODUCTION

The analysis of nonlinear electronic transport in mesoscopic
devices is a powerful tool which can provide remarkable
information. Among the most striking examples are the ex-
perimental techniques using the high nonlinearity of the trans-
port through a normal/superconducting interface: this allows
measuring the set of transmission probabilities characterizing
atomic contacts [1], or can give access to the local distribution
function for electrons in metallic wires [2].

Nonlinear transport in normal metals has also been a subject
of investigation and in particular the question of symmetries of
electronic transport in the nonlinear regime (symmetry under
the reversal of the current flow or under the magnetic field
reversal). In the simple configuration of a two-terminal con-
ductor, the current-voltage characteristic is expected to be an
antisymmetric function, I (−V ) = −I (V ), what in particular
ensures that Joule heating does not depend on the direction
of the current flow [3]. In small conductors of mesoscopic
dimensions, it was, however, shown that the lack of inversion
center symmetry, due to the geometry of the sample or to the
presence of impurities, can lead to deviations from the perfect
antisymmetry: for a coherent and weakly disordered conductor
at low temperature and low voltage kBT , eV � ETh, Alt-
shuler and Khmelnitskii obtained [4] 〈[I (V ) + I (−V )]2〉 ∼

(e2V/h)2(eV/ETh)2, where ETh is the Thouless energy (or
correlation energy). This can be reformulated by expanding the
I -V characteristic for small voltage as I (V ) = (2se

2/h) g V +
(2se

3/h)G V 2 + · · · , where g is the dimensionless (linear)
conductance and G the rescaled nonlinear conductance (2s

denotes the spin degeneracy). Despite that the nonlinear con-
ductance vanishes on average, 〈G〉 = 0, in a coherent device it
presents mesososcopic (sample to sample) fluctuations of order
G ∼ E−1

Th . Mesoscopic fluctuations of the current-voltage char-
acteristic were further studied by Khmelnitskii and Larkin [5,6]
who analyzed the role of inelastic processes (decoherence)
and thermal fluctuations on the correlations of the I (V ) curve
(some of these results are recalled in Sec. C 1). The problem
was later reconsidered in Ref. [7] where the crossover between
linear and nonlinear regimes was analyzed more precisely.
This question was studied experimentally in various types of
samples in Refs. [3,8].

A second important symmetry of electric transport is the
symmetry with respect to magnetic field reversal. In the linear
regime, the Onsager-Casimir reciprocity relations [9–11] for
the local conductivity tensor were extended to the nonlocal
four terminal resistances by Büttiker [12,13], what leads in
particular to the symmetry of the linear conductance of a
two-terminal conductor, g(B) = g(−B). Such a symmetry
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has, however, no fundamental reason to hold at the level of
nonlinear transport, I (V, − B) 	= I (V,B). Several symmetry
relations have been proposed and verified experimentally in
Ref. [14] for mesoscopic samples with spatial symmetries.
This, however, leaves open the question of the origin of the
asymmetry G(B) 	= G(−B). For example, a theory for nonin-
teracting electrons (Landauer-Büttiker scattering formalism)
predicts that nonlinear transport in a two-terminal conductor
has the same symmetry as linear transport. Sánchez and
Büttiker [15] and Spivak and Zyuzin [16] have proposed
that the asymmetry of the nonlinear transport has its origin
in the electronic interactions. The study of the nonlinear
asymmetry under magnetic field reversal was thus proposed
as a new way to probe electronic interaction in coherent
conductors [15–18].

The study of electronic interactions in weakly disordered
and coherent metals has a long history (see Refs. [19–21] for
reviews). Electronic interactions were shown to be responsible
for a small correction to the averaged current on the top
of the classical (Drude) response, controlled by the thermal
length LT = √

h̄D/kBT , where D is the diffusion constant
in the weakly disordered metal. To be specific, we consider
a weakly disordered quasi-1D metallic wire of length L

in the out-of-equilibrium situation. At small voltage V , the
quantum interaction correction to the classical result 〈I 〉class =
(2se

2V/h) g is [22,23] 〈�I (V )〉 � (2se
2V/h) (LT /L) [ −

1.57 + 0.067 (eV )2ETh/(kBT )3], where ETh = h̄D/L2 is the
Thouless energy of the wire. The first term is the well-
known Altshuler-Aronov correction [19–21,24,25], dominated
by exchange (Fock contribution) for weak screening [26].
The effect studied in the present paper, initially predicted by
Sánchez and Büttiker [15] and Spivak and Zyuzin [16], is rather
due to Hartree contributions and can be understood as follows.
Since the electrostatic potential at equilibrium is a symmetric
function of the magnetic field Ueq(
r,B) = Ueq(
r, − B) (as it is
a scalar field), in the out-of-equilibrium case, the current and
charge densities (and thus, due to interaction, the electrostatic
potential) are nonsymmetric with respect to magnetic field
reversal. The potential in the wire can be written as U (
r,B) =
Uclass(
r) + δU (
r,B), where the first classical term isUclass(
r) =
eV (1 − x/L) (x being the coordinate along the wire, cf. Fig. 1)
and the second contribution δU (
r,B) 	= δU (
r, − B) describes
the asymmetric mesoscopic (sample to sample) fluctuations,
of order δU ∼ eV/g; these fluctuations arise from quantum
interferences and are equivalent to Friedel oscillations. This
asymmetry of the potential is of order O(V 1) and therefore
affects contributions of order O(V 2) to the current, hence
the asymmetry of the nonlinear conductance. We end this
paragraph with two remarks concerning the specificity of
the mesoscopic effect studied in Refs. [15,16,28–30] and the
present paper: first, as pointed out by Deyo, Spivak, and
Zyuzin [28], this contribution to the nonlinear conductance
is of the same nature than the interaction corrections studied in
Refs. [19,20,24,31], as they both result from the renormaliza-
tion of the electrostatic potential due to electronic interactions,
however, the latter is related to the mesoscopic fluctuations
of the equilibrium potential, while the former is due to the
fluctuations of the potential out of equilibrium (Fig. 1). The
second remark concerns the existence of classical effects:
asymmetry with magnetic field in the nonlinear transport also

L

w

u (x) u1 1(x)U(x) =eV

x
0 L

eV eV /g

+ δ ][

V

FIG. 1. A weakly disordered metallic wire of length L and width
w between two large contacts. Above, we show a sketch of the
electrostatic potential U (x) in the disordered wire out of equilibrium.
At linear order in the external voltage V , the potential is controlled
by the injectivity u1(x). On the top of the expected linear behavior,
the disorder is responsible for mesoscopic fluctuations of order 1/g,
where g is the dimensionless conductance.

occurs in the classical regime in a normal metal due to the
bending of electronic trajectories in the presence of Coulomb
interaction [32] and in chiral materials [28,33,34], however,
such contributions are proportional to the inelastic electron
relaxation rate, which vanishes at low temperature, whereas
the effect discussed here is a mesoscopic effect which remains
finite in this limit.

Interaction and the magnetic field asymmetry were also
studied in another regime recently by considering Aharonov-
Bohm interferometer with a quantum dot embedded in one
arm in the Coulomb blockade regime, a problem motivated by
several experiments (see Refs. [35,36] and references therein).

Magnetic field symmetry of the electric conduction in the
nonlinear regime was addressed in several experiments: on
quantum dots [14,17,37], carbon nanotubes [38], mesoscopic
2D metallic rings [18,39–42], and monolayer graphene sheets
[43]. Motivated by the early experiments, the first theoretical
works on ballistic [15] and diffusive [16] quantum dots were
completed by investigating the role of dephasing, thermal
smearing, etc. [28–30,44]. However, all these theoretical stud-
ies describe zero-dimensional (0D) devices in the ergodic
regime. On the other hand, this regime is not always clearly
reached in the experiments; in particular, the rings analyzed in
Refs. [18,40] are weakly disordered and similar samples were
successfully analyzed by assuming diffusive regime (see, for
example, the analysis of decoherence in Ref. [45]). This raises
several questions: what is the role of the specific geometry of
the system, in particular if one does not consider the ergodic
regime but the diffusive regime when the 1D character of the
device is probed? What is the effect of dephasing in this case
and what is the dependence of the nonlinear conductance in the
phase coherence length? Are the effect of thermal fluctuations
similar in diffusive and ergodic regimes? This is the aim of this
paper to provide answers to these questions.
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The outline of the paper is the following. In Sec. II we will
introduce some of the notations and sketch the main results
of the paper. Section III presents the scattering formalism
that we have adopted. In Sec. IV, we will introduce the
two fundamental correlators on which relies the analysis,
the correlator of conductance’s functional derivatives and the
correlator of injectivities, whose symmetries are discussed.
They will be analyzed in the two rather technical Secs. V and
VI, which can be skipped for a first reading. Section VII will
combine these issues in order to derive the first part of the main
results of the paper (correlations of the nonlinear conductance
in the weakly coherent regime). The coherent regime will be
discussed in Sec. VIII, as it requires a discussion of the effect
of contacts and boundary conditions, which was ignored for
simplification in Sec. VII. In Sec. IX, we summarize all results
and close the paper by some concluding remarks.

II. MAIN RESULTS

A. Nonlinear conductance in disordered wires

In a two-terminal device (Figs. 1 and 2), the current-voltage
relation can generally be expanded in powers of the applied
voltage [46]:

I (V ) = 2se
2

h
g V + 2se

3

h
G V 2 + O(V 3), (1)

where 2s is the spin degeneracy, g the dimensionless (linear)
conductance, and G the rescaled nonlinear conductance, which
will be the subject of investigation of the present paper. It has
thus dimension [G] = [Energy]−1.

A possible starting point for the study of coherent electronic
transport is the Landauer formula,

I (V ) = 2se

h

∫
dε [f (ε − eV ) − f (ε)] g(ε), (2)

where f (ε) is the Fermi-Dirac distribution and V the voltage
drop. g(εF ) is the zero temperature linear dimensionless
conductance at Fermi energy εF . The expansion of the Lan-
dauer formula (2) gives the well-known expression of the
dimensionless conductance

g =
∫

dε

(
−∂f

∂ε

)
g(ε) (3)

and the nonlinear conductance

G0 = 1

2

∫
dε

(
−∂f

∂ε

)
g′(ε) (4)

(the subscript “ 0 ” refers to the case where interaction effects
are ignored).

We emphasize an important aspect of the present study:
our analysis of nonlinear transport concerns the properties of
the V → 0 expansion of the I -V characteristic, precisely its
second derivative, G ∼ ∂2I (V )/∂V 2|V =0. In particular, we see
that G0 provides an information on the sensitivity of the zero
temperature linear conductance to the change of Fermi energy
g′(εF ). Nonlinear transport was studied in Refs. [5–7] from the
viewpoint of the correlations of current 〈δI (V1)δI (V2)〉 and the
correlation of the differential conductance 〈δgd (V1)δgd (V2)〉:
these well established results are compared to ours in
Appendix C 2 (moreover, note that the effect of screening,

which will be shown to provide the dominant contribution here,
was not considered in Refs. [5,6]).

When electronic interactions are included in the description,
the nonlinear conductance receives other contributions:

G = G0 + G int. (5)

The distinction between the two contributions G0 and G int is,
however, purely a theoretical matter. In practice it is more
useful to split the nonlinear conductance with respect to the
symmetry under magnetic field reversal: G = Gs + Ga , where
Gs(−B) = Gs(B) and Ga(−B) = −Ga(B). As already men-
tioned, contrary toG0, which is symmetric under magnetic field
reversal, the contribution from interactions has the remarkable
property that it does not present a specific symmetry: it can split
into a symmetric and an antisymmetric part G int = G int

s + G int
a ,

so that the antisymmetric part is entirely due to the electronic
interactions:

G = Gs + Ga with

{Gs = G0 + G int
s

Ga = G int
a

. (6)

The analysis of the symmetry under magnetic field reversal
thus provides a practical way to identify the contribution from
interactions in experiments.

In this paper, we consider the case of metallic (weakly
disordered) wires (Fig. 1). We now give the main dependencies
for the three contributions in terms of the characteristic length
scales of the problem. The detailed calculation of these quan-
tities is the main purpose of the paper. In Sec. II A 3, we sketch
our new results (a more precise summary will be provided in
the concluding Sec. IX).

1. Important parameters and length scales

The study of quantum transport in a weakly disordered wire
involves several length scales: the length of the wire L, the
phase coherent length Lϕ , which sets the scale below which
quantum interferences take place. Thermal effects involve the
thermal length LT = √

h̄D/kBT (in the following, we will
set h̄ = 1 and kB = 1 for simplicity). Finally, we introduce
the localization length of the infinitely long weakly disordered
wire [49],

ξloc = αdNc	e = 2πρ0Dwd−1, (7)

where Nc is the number of conducting channels and 	e the
elastic mean free path. αd = Vd/Vd−1 is a dimensionless
constant involving the volume of a d-dimensional sphere of
unit radius (hence α3 = 4/3 for a metallic wire deposited on a
substrate and α2 = π/2 for a wire etched in a 2D electron gas
at the interface between two semiconductors). We denote ρ0

the DoS per unit volume and per spin channel and ν0 = 2sρ0

the DoS including spin degeneracy. wd−1 is the cross-section
of the wire and d the dimension. The dimensionless (Drude)
conductance of the wire may be expressed as

g = ξloc

L
= 2π

ETh

�
, (8)

where � = 1/(ρ0Lwd−1) is the mean level spacing and ETh =
D/L2 the Thouless energy. g is a large parameter of the prob-
lem, g � 1, which ensures the validity of the diagrammatic
approach [19,21].
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2. Nonlinear conductance for free electrons

For reference, we start by recalling the well-known behavior
of the linear conductance fluctuations. Universal conduc-
tance fluctuations denote (sample to sample) fluctuations of
order unity δg ∼ 1 in a coherent device (of size L � Lϕ)
[21,31,49–53]. In a long wire (L � Lϕ), we can use simple
arguments such as quantum interferences break the classical
law of addition of resistances only below the scale Lϕ . Thus
if we slice the wire in N ∼ L/Lϕ pieces, different pieces
can be considered as uncorrelated and we can add their
resistances, leading to δg ∼ N−2∑

i δgi , where δgi is a meso-
scopic fluctuation arising from quantum interferences inside
the piece i. Using 〈δgiδgj 〉 ∼ δij , we end with 〈δg2〉 ∼ N−3

i.e., δg ∼ (Lϕ/L)3/2. When thermal fluctuations become im-
portant (LT � Lϕ � L), the conductance fluctuations behave
as 〈δg2〉 ∼ (LT /L)2(Lϕ/L) (see Refs. [21,54] and references
therein).

Let us now describe the main behaviors obtained within
a theory of noninteracting electrons. In the coherent limit at
zero temperature, the correlator 〈δg(εF )δg(εF − ω)〉 decays
over a scale given by the Thouless energy [see Eq. (C7) of
Appendix C], hence 〈g′(εF )2〉 ∼ 〈δg2〉E−2

Th and we recover the
result of Ref. [4], G0 = (1/2)g′(εF ) ∼ E−1

Th (this also follows
from dimensionless analysis, as the Thouless energy is then the
only relevant energy scale). The mesoscopic fluctuation δI2 ∼
(e3/h)G0 V 2 from the nonlinear term remains small compared
to the fluctuation δI1 ∼ (e2/h) δg V from the linear term, as
long as the voltage is smaller than the Thouless energy eV �
ETh.

When dephasing becomes important, in the limit Lϕ �L,
the characteristic energy scale controlling the conduc-
tance correlator 〈δg(εF )δg(εF − ω)〉 is the dephasing rate
1/τϕ = D/L2

ϕ [see Eq. (C8) of Appendix C], hence
we have 〈G2

0 〉 = (1/4)〈g′(εF )2〉 ∼ 〈δg2〉τ 2
ϕ ∼ (Lϕ/L)3+4E−2

Th .
The regime dominated by fluctuations linear in the voltage,
δI1 � δI2, is therefore extended to eV � ETh (L/Lϕ)2.

The thermal fluctuations bring a different reduction factor
toG0 if the temperature becomes larger than the dephasing rate,
i.e., when LT � Lϕ � L; in this case, we can write 〈G2

0 〉 =
(1/4)

∫
d(ε − ε′) δT (ε − ε′) 〈g′(ε)g′(ε′)〉, where δT (ω) is a nor-

malized function of width T . Integration by parts gives 〈G2
0 〉 =

−(1/4)
∫

d(ε − ε′) δ′′
T (ε − ε′) 〈δg(ε)δg(ε′)〉 ∼ T −2〈δg2〉. Us-

ing the expression of 〈δg2〉 recalled above, we end with 〈G2
0 〉 ∼

(LT /L)4+2(Lϕ/L)E−2
Th .

3. Contributions of interactions to the nonlinear conductance:
sketch of our main results

In this section, we sketch our new results (a more precise
summary will be provided in the concluding Sec. IX where all
precise dimensionless factors are given). The dominant effect
of the Coulomb interaction is the screening of the electrostatic
potential. If the potential at contact 1 is raised by V , one can
write the change of electrostatic potential in the wire at the low-
est order in the voltage as δU (
r) = U (
r) − Ueq(
r) � u1(
r) eV ,
where u1(
r), known as the characteristic potential, controls
the response of the potential to the increase of the voltage at
contact 1. In the diffusive wire, one has 〈u1(
r)〉 = 1 − x/L ∼ 1
where x ∈ [0,L] is the coordinate along the wire. On top

of this behavior, the characteristic potential presents meso-
scopic fluctuations of the order of the DoS fluctuations [53]:
in the coherent regime, δu1 = u1 − 〈u1〉 ∼ δν/ν0 ∼ 1/g � 1
(Fig. 1), and with other reduction factors due to decoherence
and/or thermal fluctuations in long wires. We can estimate the
fluctuations of the contribution due to electronic interaction
(screening) by writing G int ∼ G0 u1. Making use of the fact
that 〈G0〉 = 0 and 〈G0 u1〉 = 0 (Appendix A), we get two
different contributions: 〈(G int)2〉 ∼ 〈G2

0 〉〈u1〉2 + 〈G2
0 〉〈δu2

1〉. We
will see that the symmetric part is dominated by the first
contribution 〈(G int

s )2〉 ∼ 〈G2
0 〉〈u1〉2 whereas the antisymmetric

part is given by the subdominant contribution 〈(G int
a )2〉 ∼

〈G2
0 〉〈δu2

1〉. Thus Ga = G int
a � G int

s . These simple arguments
lead to the estimate 〈(G int)2〉 ∼ 〈G2

0 〉, which will be shown to
be correct as long as thermal fluctuations can be ignored, i.e.,
in the regime LT � min (L,Lϕ). When thermal fluctuations
are important, we obtain instead that 〈(G int)2〉 � 〈G2

0 〉 (this is
due to some subtle properties related to the spatial structure of
the correlators, which go beyond this simple presentation and
will be explained later). Note that 〈G2〉 = 〈(G0 + G int)2〉 also
receives the contribution of the anticorrelations 〈G intG0〉 < 0,
however, this does not affect the rough discussion given here.

(a) Zero field. In the coherent regime, we have found

〈G2〉 ∼ 〈
G2

0

〉 ∼ 〈(
G int

s

)2〉 ∼ E−2
Th for L � Lϕ,LT . (9)

In the present paper, we have also derived the precise
dimensionless factors in all regimes (cf. Secs. VIII and IX).
It will be useful for the following to characterize the subdomi-
nant contribution to 〈(G int

s )2〉 ∼ 〈G2
0 〉〈u1〉2 + 〈G2

0 〉〈δu2
1〉 related

to the mesoscopic fluctuations of the electrostatic potential,
which we denote〈(

G int, fluc
s

)2〉 ∼ 〈
G2

0

〉〈
δu2

1

〉 ∼ (gETh)−2 (10)

[it will also be denoted 〈(G int, fluc
s )2〉≡〈(G int

s )2〉corr in Sec. VII D,
for reasons that will be clear there].

In a weakly coherent wire, we have found

〈G2〉 ∼ 〈
G2

0

〉 ∼ 〈(
G int

s

)2〉 ∼ (ETh)−2(Lϕ/L)7

for Lϕ � L,LT . (11)

The fluctuations of the characteristic potential are reduced
by the same factor as the DoS or conductance fluctuations,
therefore, δu1 ∼ (1/g)(Lϕ/L)3/2. As a result〈(

G int, fluc
s

)2〉 ∼ 〈
G2

0

〉〈
δu2

1

〉 ∼ (gETh)−2(Lϕ/L)7+3. (12)

The regime where thermal fluctuations become important
(LT � Lϕ) cannot be analyzed in such simple terms: the LT

dependence is not simply related to the one of 〈G2
0 〉 ∝ L6

T

and the specific structure of the spatial correlations controlling
〈(G int

s )2〉 plays a nontrivial role. We obtain

〈G2〉 ∼ 〈(
G int

s

)2〉 ∼ E−2
Th (LT /L)2(Lϕ/L)7 � 〈

G2
0

〉
for LT � Lϕ � L, (13)

which thus decays with temperature as T −1, that is, slower
than 〈G2

0 〉 ∝ T −3 (note that Lϕ may also be responsible for
additional temperature dependence, cf. Sec. IX). The two
results (11) and (13) do not match at first sight when LT ∼ Lϕ ,
however, we will discuss how the crossover at LT ∼ Lϕ is
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TABLE I. Some of the main results obtained in the paper: the root mean square (rms) of the several contributions to the nonlinear conductance
G = G0 + G int

s + G int
a of diffusive wires (numerical constants correspond to the strong magnetic field regime). G0 is the result for free electrons.

G int
s andG int

a ≡ Ga are the contributions due to the electronic interaction, symmetric and antisymmetric under magnetic field reversal, respectively.
G int, fluc

s is the subdominant contribution to G int
s originating from the mesoscopic fluctuations of the screened electrostatic potential, with the same

physical origin as Ga ≡ G int
a . The various regimes are controlled by the length of the wire L, the phase coherence length Lϕ , and the thermal

length LT = √
D/T . The ratio ξloc/L = g � 1 is the dimensionless conductance and ETh = D/L2 is the Thouless energy. The behaviors for

the mesoscopic fluctuations of the linear conductance δg are also recalled for reference.(∗): our result agrees with the estimate G0 ∼ E−1
Th of

Ref. [4].(∗∗): LK have shown in Ref. [5] that the differential conductance is controlled by the same power gd (V ) ∼ √
eV/ETh (Lϕ/L)7/2 for high

voltage eV � 1/τϕ ; the behavior of the table, gd (V ) − gd (0) � 2eV G ∼ (eV/ETh) (Lϕ/L)7/2, describes the low-voltage regime eV � 1/τϕ

(cf. Appendix C 2).

L � Lϕ, LT Lϕ � L, LT LT � Lϕ � L

rms(δg)
√

1/15 (Ref. [21])
√

3/2
(Lϕ

L

)3/2
(Ref. [21])

√
π/3

(
LT

L

)(Lϕ

L

)1/2
(Ref. [21])

rms(G0) � 0.0178 E
−1 (∗)
Th �

√
15
4

(Lϕ

L

)7/2
E

−1 (∗∗)
Th �

√
π√
60

(
LT

L

)3(Lϕ

L

)1/2
E−1

Th

rms(G int
s ) � 0.0183 E−1

Th �
√

5
2

(Lϕ

L

)7/2
E−1

Th � 0.202
(

LT

L

)(Lϕ

L

)7/2
E−1

Th

rms(G int, fluc
s ) � 0.0029

(
L

ξloc

)
E−1

Th �
√

15
4

(
L

ξloc

)(Lϕ

L

)5
E−1

Th � 0.203
(

L

ξloc

)(
LT

L

)2(Lϕ

L

)7/2
E−1

Th

rms(Ga) � 0.0012
(

L

ξloc

)
E−1

Th �
√

27
8
√

2

(
L

ξloc

)(Lϕ

L

)11/2
E−1

Th � 0.055
(

L

ξloc

)(
LT

L

)2(Lϕ

L

)7/2
E−1

Th

rms(G) � 0.0041 E−1
Th �

√
5

4

(Lϕ

L

)7/2
E−1

Th � 0.202
(

LT

L

)(Lϕ

L

)7/2
E−1

Th

realized. The fluctuation part receives additional reduction
factors coming from the DoS fluctuations:〈(

G int, fluc
s

)2〉 ∼ (gETh)−2(LT /L)2+2(Lϕ/L)4+2+1. (14)

The exponents are split in order to identify the contributions
of the two correlators in 〈(G int, fluc

s )2〉 ∼ 〈G2
0 〉〈δu2

1〉; the last
contribution to the second exponent comes from the spatial
integration of the correlators.

(b) Antisymmetric part at high field. A remarkable property
of the nonlinear conductance, when interaction effects are
taken into account, is the existence of an antisymmetric part Ga

under magnetic field reversal. This antisymmetric contribution
arises from the absence of symmetry of the fluctuating part of
the characteristic potential δu1. Thus Ga ≡ G int

a has the same
origin as the subdominant contribution to the symmetric part
G int, fluc

s . In the coherent regime, we obtain〈
G2

a

〉 ∼ 〈(
G int, fluc

s

)2〉 ∼ (gETh)−2 for L � Lϕ,LT . (15)

In the weakly coherent wire, Ga is smaller than G int, fluc
s as the

antisymmetric part of the characteristic potential correlations is
short range (i.e., decays exponentially on the scaleLϕ) whereas
its symmetric part is long range. This produces a reduction
factor 〈

G2
a

〉 ∼ 〈(
G int, fluc

s

)2〉Lϕ

L
for Lϕ � LT , L

∼ (gETh)−2(Lϕ/L)11. (16)

In the “high-temperature” regime, the analysis is more subtle
and we have obtained〈

G2
a

〉 ∼ 〈(
G int, fluc

s

)2〉
for LT � Lϕ � L

∼ (gETh)−2(LT /L)4(Lϕ/L)7. (17)

All these behaviors are summarized in Table I. They will
be derived below by a careful analysis of conductance’s
functional derivative correlations and characteristic potential’s

correlations. All the precise numerical factors involved in the
correlators will be determined neatly.

(c) Magnetic field dependence. The antisymmetric contri-
bution Ga obviously vanishes as B → 0. We will analyze
the expressions for the correlators 〈Gs,a(B)Gs,a(B′)〉 in order
to describe the full crossover between the high-field regime
discussed so far and the low-field regime. The linear behavior

Ga(B) ∼ Ga(∞)
B
Bc

for B � Bc (18)

is generically expected, where the crossover field that separates
the two regimes is [55] Bc ∼ φ0/(Lϕw) for Lϕ � L, where w

is the width of the wire, and Bc ∼ φ0/(Lw) (rather denoted
Bc0 later) for Lϕ � L. The linear behavior (18) is obtained
in the coherent regime L � Lϕ and in the regime dominated
by thermal fluctuations LT � Lϕ � L. Quite surprisingly,
in the regime Lϕ � LT ,L where thermal fluctuations are
negligible, the linear term unexpectedly vanishes and we obtain
a quadratic behavior: Ga(B) ∼ sign(B)B2.

B. Comparison with known results for quantum dots

We compare our results with the ones previously obtained
for quantum dots. As quantum dots (Fig. 2) have more complex
geometrical properties than a simple wire (Fig. 1), the set of
characteristic parameters is richer (for a review, see Ref. [49]).

w L w

FIG. 2. A quantum dot (QD) of size L closed by two constrictions
of width w.
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TABLE II. Comparison between characteristic parameters for
ballistic QDs, diffusive QDs, and diffusive wires, in two dimensions.
The QD has a size L and is closed by constrictions of width w

(i.e., with Nc = kF w/π open channels). vF and kF are the Fermi
velocity and the Fermi wave vector, 	e the elastic mean free path, and
D = vF 	e/2 the diffusion constant.

QDs

ballistic diffusive wires

ETh vF /L D/L2 D/L2

closed
g ∼ ETh

�
kF L kF 	e

ξloc
L

∼ kF 	e
w

L

E
open
Th = 1

τdwell
Nc� ∼ ETh

w

L
ETh

w

L
ETh

open
gDrude Nc ∼ g w

L

g

ln(L/w) g

The Thouless energy, or the Thouless time τD = 1/ETh,
and the dimensionless conductance g = 2πETh/�, where �

is the mean level spacing, do not carry information about the
nature of the contacts and thus characterize a closed quantum
dot (QD). In open QDs, such as the one of Fig. 2, two other
important parameters are the two-terminal (dimensionless)
conductance, denoted here gDrude, and the dwell time τdwell.
This leads us to introduce another Thouless energy [49]
E

open
Th = 1/τdwell. In ballistic QDs, one has 1/τdwell ∼ Nc� ∼

ETh (w/L), where Nc is the number of channels at the contact
(see Refs. [49,56], for example), i.e., the escape rate is the
inverse of the Thouless time multiplied by the probability to
find the contact of width w once on the boundary of the QD; we
expect that the expression 1/τdwell ∼ ETh (w/L) also applies to
diffusive QDs. In ballistic QDs, the resistance is dominated by
the resistances of the constrictions, hence gDrude = Nc/2 (for
symmetric contacts). In the diffusive regime, the 2D dimen-
sionless conductance g = πν0D = kF 	e/2 (the conductivity
in unit 2se

2/h) characterizes the transport through a conductor
of length equal to the width of the contacts; for narrow
constrictions, the resistance between the two narrow contacts
receives an additional factor ln(L/w) (see Refs. [57,58] where
the transport through a planar device with narrow contacts was
studied). These scales are summarized in Table II.

Nonlinear transport in ballistic QDs was considered first
by Sánchez and Büttiker (SB) [15] and later by Polianski and
Büttiker (PB) [29,30,44], within a random matrix approach.
If the QD has contacts with N1 and N2 channels, at T = 0,
using 1/τdwell = N�/(2π ), we can summarize the results
for the symmetric and antisymmetric parts of the nonlinear
conductance as [30]

〈
G2

s

〉 = τ 2
dwell

4

β

N2
1 N2

2

N4

[(
1

2
− γint

N1

N

)2

+ γ 2
int

βN2

N1N2

N2

]
,

(19)

〈
G2

a

〉 = τ 2
dwell

N2

4

β

(
1 − 1

β

)
γ 2

int
N3

1 N3
2

N6
, (20)

where N = N1 + N2. Note that the second term in 〈G2
s 〉 (sub-

dominant for N � 1) corresponds to 〈(G int, fluc
s )2〉 introduced

above. We have simplified the discussion of the magnetic

field dependence by introducing the Dyson index: β = 1
describes the zero-field case and β = 2 the strong field regime
(the full dependence in B field can be found in Ref. [30]).
The parameter γint = Cμ/C is the ratio of the mesoscopic
and the geometrical capacitance. It controls the efficiency
of screening (γint = 1 for perfect screening and γint � 1 for
weak screening). For N1 = N2 ≡ Nc, we can rewrite SB’s
result as Ga ∼ (gDrudeE

open
Th )−1 in order to make connection

with (15) (see also Ref. [18]). Note, however, that screening
can suppress the dominant contribution G ∼ Gs ∼ (Eopen

Th )−1,
if γint = N/(2N1). A similar effect in diffusive wires would
require some control on the connections between the wire and
the reservoirs, what will not be considered here.

The case of QDs in the diffusive regime was consid-
ered by Spivak and Zyuzin (SZ) [16], within a diagram-
matic approach similar to our approach, although less de-
tailed. They considered the coherent limit for which they got
〈Ga(B)2〉 ∼ (ν0 Surf)−2E−4

Th (B Surf/φ0)2. We can rewrite SZ’s
result 〈Ga(B)2〉 ∼ (gETh)−2(B Surf/φ0)2 (see also Ref. [18]),
which is consistent with our result (18) with Bc → Bc0 ∼
φ0/(Lw). However, the SZ’s estimation [16,28] has not taken
into account the geometry of the QD (the presence of the
narrow contacts): the analogy with SB’s result suggests that
Ga should rather involve E

open
Th = 1/τdwell. The precise dimen-

sionless factor was not obtained either.
The temperature dependence was analyzed by PB [29,30]

who obtained a suppression of 〈G2
a 〉 by a factor (Eopen

Th /T )2

when T � E
open
Th (the τϕ dependence was only investigated by

simulations in Ref. [29]). Rewriting our Eq. (17) as 〈G2
a 〉 ∼

(τϕ/τD)7/2(gT )−2, and extrapolating to the coherent limit
(τϕ ∼ τD), we conclude that our result agrees with the one
of PB in this limit.

We can already stress some important differences between
the results obtained in 0D (quantum dots) and the results
sketched above for 1D devices (wires). In the first case,
the symmetric and antisymmetric contributions arising from
interaction were shown to be equal (in the limit of perfect
screening) [29], whereas in the wire, they are always different:
in the coherent wire, they are controlled by quite different
numerical factors and, moreover, in the incoherent limit the
Lϕ dependencies are different. With the existence of two
regimes (16), (17), which arises from the importance of the
spatial structure of the correlators, this makes the extension
of the results obtained in 0D to higher dimensions quite
nontrivial.

C. Strategy of the analysis

Having sketched the main ideas and results in Sec. II A 3, we
can now describe more precisely the strategy of the analysis.

(i) In Sec. III, we will introduce the general expressions for
the two contributions G0 and G int.

(ii) In Sec. IV, we will analyze the structure of the cor-
relator 〈G2

s,a〉 for weakly disordered metals and will show
the connection with two fundamental correlators χg and χν

(these two correlators are in correspondence with 〈G2
0 〉 and

〈δu2
1〉, respectively, introduced in the qualitative discussion,

Sec. II A 3).
(iii) The two correlators χg and χν will be computed in

detail in Secs. V and VI.
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(iv) They are combined in Sec. VII in order to obtain the
final result for 〈G2

s,a〉.
The same logic will be repeated in Sec. VIII for the

coherent regime, which, moreover, requires a careful treatment
of boundary conditions.

III. SCATTERING FORMALISM

Büttiker has developed a scattering formalism for nonlinear
transport in coherent conductors [59–61], including a Hartree
treatment of electronic interaction within the Thomas-Fermi
approximation. Our analysis will be based on this approach,
which we briefly recall in this section (the formalism for
ergodic systems has been reviewed in [30,56]). The relation
with the nonequilibrium Green’s function formalism has been
discussed in Ref. [62]. On the top of the Büttiker scattering
formalism, we will use diagrammatic techniques necessary
in order to study disordered metallic devices (next sections),
similarly as Spivak and Zyuzin [16,28].

In this section we consider the general case of multiterminal
conductors. We denote by greek letters α, β, etc., the contacts
through which currents are injected and collected. In general,
it is possible to present the relation between external applied
voltages Vβ’s and currents Iα’s as an expansion

Iα = 2se
2

h

∑
β

gαβ Vβ + 2se
3

h

∑
β, γ

gαβγ Vβ Vγ + · · · , (21)

where gαβ are the dimensionless linear conductances and gαβγ

the rescaled nonlinear conductances (with dimension of the
inverse of energy). If necessary, we impose the symmetry with
respect to voltage indices

gαβγ = gαγβ, (22)

as any nonsymmetric contribution would not contribute to the
expansion (21). Our aim in the section is to recall some general
formulas for the linear and nonlinear conductances obtained
within the scattering formalism.

A. Noninteracting electrons (Landauer-Büttiker formula)

For noninteracting electrons, the currents can be obtained
from the Landauer-Büttiker formula for a multiterminal coher-
ent conductor [63]:

Iα = 2se

h

∫
dε
∑

β

gαβ(ε) f (ε − eVβ), (23)

where f (ε) is the Fermi-Dirac distribution and Vβ the voltage
at contact β. The zero temperature dimensionless conductance
at Fermi energy ε is related to the scattering matrix S encoding
the scattering properties of an electronic wave at energy ε:

gαβ(ε) = Nα δαβ − tr{S†
αβ(ε)Sαβ(ε)}, (24)

where the trace runs over conducting channels, Nα being the
number of conducting channels in contact α. Expanding the
Landauer-Büttiker formula (23), one gets the noninteraction
nonlinear conductances

g0
αβγ = 1

2
δβγ

∫
dε

(
−∂f

∂ε

)
g′

αβ(ε). (25)

B. Characteristic potentials

Büttiker proposed a self-consistent theory describing the
effect of screening (Coulomb interaction) [59]. This theory
accounts for the fact that the modification of the external po-
tentials redefines the electron density inside the conductor, and
hence, due to Coulomb interaction, the electrostatic potential.
Electronic interactions thus make the scattering matrix and
the conductances gαβ(ε) voltage-dependent, which leads to
another contribution to the nonlinear conductance. This can
be formalized by introducing the characteristic potential uα(
r),
which measures the response of the electrostatic potential U (
r)
inside the conductor to a change of the external voltage at
contact α to linear order:

δU (
r) = U (
r) − Ueq(
r) �
∑

α

eVα uα(
r), (26)

where Ueq(
r) is the potential at equilibrium. They obey the sum
rule [59] ∑

α

uα(
r) = 1, (27)

which ensures that the potential is simply shifted by a constant
when all voltages are equal.

The characteristic potentials are determined as follows: in
the out-of-equilibrium situation, we can write the charge in
excess introduced from the leads in terms of the injectivities:

δnext(
r) �
∑

α

eVα

∫
dε

(
−∂f

∂ε

)
να(
r; ε). (28)

The injectivity να(
r; ε) measures the contribution to the local
density of states (DoS) ν(
r; ε) = 〈 
r |δ(ε − H )| 
r 〉 of the scat-
tering states describing electrons incoming from the contact α.
Obviously, the injectivities satisfy the sum rule∑

α

να(
r; ε) = ν(
r; ε). (29)

We explain below how the injectivities are determined, and in
particular their representations in terms of Green’s functions.

The electrostatic potential is related to the charge in excess
through the (static) screened interaction

δU (
r) =
∫

d
r ′ URPA(
r,
r ′) δnext(
r ′), (30)

which is obtained by solving the Coulomb equation

− 1

4πe2
�URPA(
r,
r ′) +

∫
d
r ′ �(
r,
r ′) URPA(
r,
r ′)

= δ(
r − 
r ′). (31)

The right-hand side corresponds to the external charge and
the integral term to the induced charge, where �(
r,
r ′) is the
static compressibility—Lindhard function—characterizing the
linear response (zero frequency density-density correlation)
[64]: δnind(
r) = − ∫ d
r ′ �(
r,
r ′) δU (
r ′) (the presence of the
potential in the right-hand side, and not the potential related to
δnext(
r), makes the approach self-consistent). We deduce the
expression of the characteristic potential

uα(
r) =
∫

dε

(
−∂f

∂ε

)∫
d
r ′ URPA(
r,
r ′) να(
r ′; ε) (32)
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(Refs. [59,60] gave an integro-differential equation of the form
(31) directly for uα , and hence with a source term given
by the injectivity). In a good metal with a high DoS, the
response can be considered as local: �(
r,
r ′) � ν0 δ(
r − 
r ′).
Since the Thomas-Fermi screening length 	TF = 1/

√
4πν0e2

is usually very small [65], the first term �URPA in Eq. (31)
can be neglected and we deduce the local form URPA(
r,
r ′) �
(1/ν0) δ(
r − 
r ′), which describes perfect screening (see also
Ref. [66]). As a consequence,

uα(
r) =
∫

dε

(
−∂f

∂ε

)
να(
r; ε)

ν0(ε)
. (33)

We can check that the characteristic potentials obey the sum
rule (27). In the following, we will restrict ourselves to the case
of perfect screening.

C. Nonlinear conductances

Expanding the Landauer-Büttiker formula (23) in powers
of the external potentials Vα’s, one can now account for the
dependence of the conductances on the external potentials:

Iα = 2se

h

∫
dε
∑

β

×
[
gαβ(ε) +

∫
d
r δgαβ(ε)

δU (
r)

∑
γ

uγ (
r) eVγ + · · ·
]

×
[(

−∂f

∂ε

)
eVβ + 1

2

(
∂2f

∂ε2

)
(eVβ)2 + · · ·

]
. (34)

Additionally to the noninteraction contribution (25), we obtain
a second contribution from electronic interactions:

gαβγ = g0
αβγ + gint

αβγ (35)

with

gint
αβγ = 1

2

∫
dε

(
−∂f

∂ε

)
×
∫

d
r
[
δgαβ(ε)

δU (
r)
uγ (
r) + δgαγ (ε)

δU (
r)
uβ(
r)

]
. (36)

The complete expression may be written in a symmetric form
by using g′

αβ(ε) + ∫ d
r δgαβ(ε)/δU (
r) = 0:

gαβγ = 1

2

∫
dε

(
−∂f

∂ε

)∫
d
r
[
δgαβ(ε)

δU (
r)
uγ (
r)

+ δgαγ (ε)

δU (
r)
uβ(
r) − δgαβ(ε)

δU (
r)
δβγ

]
, (37)

which is the expression given by Christen and Büttiker [60],
further symmetrized with respect to the voltage indices.

D. Few remarks and diagrammatic representation

Let us close the section with a few remarks.
(i) The most important remark concerns the symmetry under

magnetic field reversal: it is clear from (25) that both the linear
conductance gαβ and g0

αβγ present the same symmetry. On the
other hand, the contribution gint

αβγ depends on the injectances
uβ and uγ , which do not have any specific symmetry under
magnetic field reversal.

γ

+R

A

A

R

R

A A

R

αβ αβ

γ

FIG. 3. Diagram for the interaction part gint
αβγ of the nonlinear

conductance, i.e., first term of Eq. (37). The upper part represents
the injectivity νγ (
r ′; ε). The wavy line is the screened interaction
URPA(
r,
r ′) (local in good metals). Injectivity and interaction represent
the characteristic potential uγ (
r). The lower part corresponds to the
functional derivative of the conductance δgαβ/δU (
r), which gives
rise to the two diagrams as the functional derivative acts either on the
retarded or the advanced Green’s function line.

(ii) Injectivities are important ingredients of the scattering
approach. A convenient representation is given by the relation
with the S matrix [67] (see Refs. [56,58] for recent reviews)

να(
r; ε) = − 1

2iπ

(
S† δS

δU (
r)

)
αα

. (38)

Therefore all quantities involved in the nonlinear conductance
(37) can be expressed in terms of the scattering matrix.

(iii) For a 1D contact, one may write simple representations
for the injectivity. Being the contribution to the DoS of
the electrons incoming from contact α, it can be related to
the stationary scattering state ψ (α)

ε (
r) describing electrons
incoming from contact α: να(
r; ε) = 2s |ψ (α)

ε (
r)|2. This makes
clear the relation with the Green’s function [58] να(
r; ε) =
[2s/(2π )] vα |GR(
r,α; ε)|2, where the second argument of the
Green’s function is the position of the contact and vα the group
velocity in the contact wire.

(iv) Using the Fisher and Lee relation [68], Sαβ(ε) =
−δαβ + i

√
vαvβ GR(α,β; ε) (written here for 1D con-

tact wires), we can deduce the expression of the
functional derivative of the S matrix: δSαβ/δU (
r) =
i
√

vαvβ GR(α,
r; ε)GR(
r,β; ε). This will be useful later in order
to express the functional derivative of the conductance (24)
involved in the nonlinear conductance in terms of Green’s
functions.

When the contact wires are characterized by many conduct-
ing channels, these relations can be easily generalized. These
two remarks lead to the diagrammatic representation of Fig. 3,
where the first term of (36) is represented. Continuous lines
represent retarded Green’s function and dashed lines advanced
Green’s function.

(v) Finally, we come back to the question of screening
evoked above. In the paper, we will assume perfect screening.
In Refs. [29,30] (see also Ref. [56]), it has been shown that,
for quantum dots in the ergodic regime, the crossover between
perfect and weak screening can be accounted for through
an additional dimensionless factor γint = [1 + 1/(ν0EC)]−1 in
the characteristic potential, where EC = e2/C is the charging
energy of the quantum dot, C being its capacitance. Note
that when screening is not efficient enough, one must take
into account the presence of the nearby metallic gates and
in particular the response of the potential (26) to a change
of the gate voltage via an additional characteristic potential
[30,56,59] ugate.
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For the weakly disordered rings of perimeter L = 4.8 μm
studied in Refs. [18,40], the interaction parameter was found
to be γint = 0.90 ± 0.05. This justifies the consideration of the
perfect screening limit (γint = 1) [69].

IV. SYMMETRIES

The symmetry with respect to the magnetic field reversal
is of special interest here, as it is related to the renewal
of the interest for nonlinear transport in normal metals
[14–18,29,37,39,70]. Before discussing this matter, we come
back to the important question of current conservation and
gauge invariance, which introduce two types of constraints on
the nonlinear conductance.

A. Current conservation and gauge invariance

Current conservation takes the form
∑

α Iα = 0. Using the
expansion (21), we deduce the two constraints∑

α

gαβ = 0, (39)∑
α

gαβγ = 0. (40)

We feel it is useful to discuss again gauge invariance,
as the statement of Refs. [60,71] that Coulomb interaction
would be necessary in order to satisfy gauge invariance seems
at odds to us. From the second reference: “In general, for
nonlinear and nonstationary problems, current conservation
and gauge invariance are not automatically fulfilled. Indeed,
in ac-transport a direct calculation of average particle currents
does not yield a current conserving theory. Only the introduc-
tion of displacement currents, determined by the long-range
Coulomb interaction, leads to a theory which satisfies these
basic requirements.” This statement is not satisfactory as the
Landauer formula is based on a calculation of currents from
the Schrödinger equation, which, when properly written in
terms of electromagnetic potentials, is well-known to be gauge
invariant, as can be found in quantum mechanics textbooks (see
for instance the books [72,73]). We will reconciliate below the
two points of view and derive an equation expressing gauge
invariance for the theory of free electrons.

1. Gauge invariance for free electrons

Let us first recall the usual formulation of gauge invariance
in quantum mechanics. Gauge invariance of the Schrödinger
equation ih̄∂tψ(
r,t) = [−(h̄2/2m)� + U (
r,t)]ψ(
r,t) is the
invariance under transformation of the wave function
ψ(
r,t) → ψ̃(
r,t) = ψ(
r,t) e−iχ(t)/h̄, provided that the poten-
tial is changed as U (
r,t) → Ũ (
r,t) = U (
r,t) + ∂tχ (t) (we
disregard the possible spatial dependence of the phase in
order to simplify the discussion), i.e., the transformed wave
function obeys ih̄∂t ψ̃(
r,t) = [−(h̄2/2m)� + Ũ (
r,t)]ψ̃(
r,t).
In a stationary problem, only the transformation with phase
χ (t) = U0t respects the invariance under time translation; in
this case, the gauge transformation corresponds to the simple
addition of a constant potential U (
r) → Ũ (
r) = U (
r) + U0.
Accordingly, the gauge transformation of the stationary state
takes the form of a translation in energy ψε(
r) → ψ̃ε(
r) =
ψε−U0 (
r). In a scattering situation, theS-matrix, which encodes

the information on the scattering stationary states, is changed
in the same way: Sαβ(ε) → Sαβ(ε − U0).

In order to see clearly the implication of this discussion on
the Landauer formula, it is convenient to remember that the
conductance is also a functional of the potential. We rewrite
Eq. (23),

Iα = 2se

h

∫
dε
∑

β

gαβ

(
ε; Ueq(
r)

)
f (ε − eVβ ). (41)

This expression is invariant under the transformations

Ueq(
r) → Ueq(
r) + U0

Vα → Vα + U0/e. (42)

The gauge transformation of the scattering matrix discussed
above implies

gαβ(ε; Ueq(
r) + U0) = gαβ(ε − U0; Ueq(
r)). (43)

This makes the invariance of the Landauer-Büttiker formula
under these transformations completely clear. After transfor-
mation, we can also expand (41) in powers of U0 in order to
see the implications for the nonlinear conductance:

Iα = 2se
2

h

∑
β

(
gαβ + U0

∂gαβ

∂U0
+ · · ·

)(
Vβ + U0

e

)

+ 2se
3

h

∑
β, γ

(
g0

αβγ + · · · ) (Vβ + U0

e

)(
Vγ + U0

e

)
+ · · · . (44)

We now impose the vanishing of all terms depending on U0.
At linear order, we recover the well-known condition∑

β

gαβ = 0. (45)

The vanishing of quadratic terms gives∑
β

Vβ

∂gαβ

∂U0
+U0

e

∑
β

∂gαβ

∂U0
+2
∑
β,γ

Vβ g0
αβγ + U0

e

∑
β,γ

g0
αβγ

= 0 (46)

The second term cancels by virtue of (45). The three remaining
contributions must vanish ∀ Vβ and ∀ U0, therefore we deduce
the condition

∂gαβ

∂U0
+ 2

∑
γ

g0
αβγ = 0, (47)

which is the expression of gauge invariance for the theory of
free electrons. Summation over β leads to

∑
β,γ g0

αβγ = 0 and
ensures the vanishing of the last term in Eq. (46).

Using ∂gαβ (ε)/∂U0 = −∂gαβ(ε)/∂ε, we can now check that
the nonlinear conductances (25) deduced from the Landauer-
Büttiker formula fulfill gauge invariance (47), as they should.

2. Gauge invariance in the theory with Coulomb interaction

Büttiker’s theory [59,60] includes the response of the
potential to the shift of the external voltages, caused by the
Coulomb interaction. In this case, we should rewrite (23) as

Iα = 2se

h

∫
dε
∑

β

gαβ

(
ε; Ueq(
r) +

∑
γ

uγ (
r)eVγ + · · ·
)

× f (ε − eVβ). (48)
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Due to the voltage dependence of the potential, the currents
are now invariant under the shift of the voltages alone,

Vα → Vα + U0/e. (49)

As a consequence, the gauge invariance for the nonlinear
conductance now takes the simpler form∑

γ

gαβγ = 0 (50)

for the symmetrized nonlinear conductance gαβγ = gαγβ ,
which is the condition given by Büttiker in Refs. [59,60].

We now check that (35) satisfies the condition (50) (we set
T = 0 for simplicity). Using (27) and (45), we obtain that∑

γ

gint
αβγ = 1

2

∫
d
r δgαβ(εF )

δU (
r)
= −1

2
g′

αβ(εF ). (51)

Therefore this term exactly compensates
∑

γ g0
αβγ by virtue of

(47).
Illustration: two-terminal conductor. For the two-terminal

conductor we have g11 = g22 = −g12 = −g21 ≡ g. As a con-
sequence of (22), (40), and (50), we deduce that all elements are
equal, up to a sign: gαβγ = (−1)1+α+β+γ g111, where α, β, γ ∈
{1, 2}. In particular, g111 = −g222 implies that the nonlinear
conductance vanishes in a device, which is symmetric under
the exchange of the contacts 1 ↔ 2 (left/right symmetry). It
is worth emphasizing that this is a property of the theory
including the effect of interactions. In the theory for free
electrons, as g′(εF ) has no specific reason to vanish, apart for
some particular values of the Fermi energy, we deduce from
(47) that g0

111 + g0
222 = g′(εF ), which is different from zero in

general.

B. Symmetry of the correlators under magnetic field reversal

The aim of the paper is to discuss the statistical properties of
the nonlinear conductance (35) in weakly disordered metals.
As we will show below, the disordered averaged nonlinear con-
ductance vanishes, what will lead us to concentrate ourselves
on correlators. For simplicity we will consider a two-terminal
conductor: in this case, setting the two potentials as V1 = V and
V2 = 0, the nonlinearity of the current is controlled by g111 =
−g211: I2 = (2se

2/h) g21V + (2se
3/h) g211V

2 + · · · . Below,
we rather use the notations introduced in the introduction and
Sec. II: g ≡ −g21 and G ≡ −g211. The nonlinear conductance
is splitted into two contributions G = G0 + G int, where the first
term

G0 ≡ −g0
211 = −1

2

∫
dε

(
−∂f

∂ε

) ∫
d
r δg(ε)

δU (
r)
(52)

is the nonlinear conductance of the theory for free electrons
and the second term

G int ≡ −gint
211 =

∫
dε

(
−∂f

∂ε

) ∫
dε′
(

− ∂f

∂ε′

)
×
∫

d
r δg(ε)

δU (
r)

ν1(
r; ε′)
ν0

(53)

is due to electronic interactions.
Our task will be to obtain the correlations at different mag-

netic fields 〈G(B)G(B′)〉. Correlations between conductance

and injectivity can be ignored (see Appendix A), hence

〈G int(B)G int(B′)〉 =
∫

d
rd
r ′ χg(
r,
r ′) χν(
r,
r ′) (54)

with

χg(
r,
r ′) =
∫

dω δT (ω)

〈
δg(ε)

δU (
r)

δg(ε − ω)

δU (
r ′)

〉
, (55)

χν(
r,
r ′) =
∫

dω δT (ω)
〈ν1(
r; ε) ν1(
r ′; ε − ω)〉c

ν2
0

, (56)

where g(ε) is the two-terminal linear dimensionless conduc-
tance at zero temperature. δT (ω) is a function of width T

such that
∫

dω δT (ω) = 1, arising from the property (B11).
We introduce the notation 〈XY 〉c = 〈XY 〉 − 〈X〉〈Y 〉. Note
that 〈δg/δU (
r)〉 = 0 (see below). The correlations for the
noninteraction part can also be deduced from the correlator
χg: 〈

G0(B)G0(B′)
〉 = 1

4

∫
d
rd
r ′ χg(
r,
r ′). (57)

The correlator 〈G0G int〉 has the same symmetry as 〈G0G0〉 and
will be also considered.

The study of the two correlators χg(
r,
r ′) and χν(
r,
r ′) will
be the main issue of the two next sections. For the moment, we
concentrate ourselves on the magnetic field dependence. For
this reason, we ignore the spatial and energy dependencies
of the correlators until the end of this section. It will be
straightforward to reintroduce them later. As we will see in
Sec. V, the correlations of conductances in weakly disordered
metals are given by diffuson and cooperon contributions, which
leads to the magnetic field dependence:

χg(B,B′) = χ1(B − B′) + χ1(B + B′). (58)

The fact that the diffuson and cooperon contributions involve
the same function χ1 reflects the symmetry of the conductance
g(−B) = g(B), resulting into χg(−B,B′) = χg(B, − B′) =
χg(B,B′). On the other hand, the injectivity ν1(
r; ε), i.e., the
characteristic potential u1(
r), is not a symmetric function of
the magnetic field. As a result, the diffuson and cooperon
contributions to the injectivity correlator involve two different
functions χd

2 	= χc
2 :

χν(B,B′) = χd
2 (B − B′) + χc

2 (B + B′). (59)

This important difference between conductance correlations
(Fig. 4) and injectivity correlations (Fig. 8) can be related
to the structure of the diagrams. For the wire, the external
diffusons of the conductance correlation diagrams of Fig. 4
are just constant [74], so that the two diagrams only differ
by exchanging diffusons and cooperons in the loop, i.e., are
in exact correspondence provided B − B′ ↔ B + B′. On the
other hand, the external diffusons of the injectivity correlation
diagrams of Fig. 8 carry some nontrivial spatial dependence.
As a consequence, the two diagrams of Fig. 8 are not related by
a simple substitution of diffusons into cooperons in the loop,
which is the reason why χd

2 	= χc
2 .

Splitting the interaction part of the nonlinear conductance
into symmetric and antisymmetric part as G int = G int

s + G int
a ,
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0,n’

0,n L,m

L,m’

0,n L,m

0,n’

L,m’

FIG. 4. Two contributions to the conductance correlations (“diffu-
sion constant correlation diagrams”). Retarded Green’s functions are
represented by continuous lines and advanced ones by dashed lines.
The two colors (red versus green) correspond to the two conductances.
The dashed areas represent the ladder diagrams (in black, “external”
diffusons Pd and in blue the diffusons P (d)

ω and the cooperons P (c)
ω ).

The dotted line and the cross is the first (or the last) disorder interaction
line of the ladder. Two Hikami boxes ensure the branching between
diffusons/cooperons.

we introduce the corresponding correlators〈
G int

s,a(B)G int
s,a(B′)

〉 = χg(B,B′) χs,a
ν (B,B′), (60)

which presents the following structure:

χs,a
ν (B,B′) = 1

2

[
χd

2 (B − B′) ± χc
2 (B − B′)

+χc
2 (B + B′) ± χd

2 (B + B′)
]
. (61)

Spatial and energy integrations will be reintroduced below.

V. CORRELATIONS OF CONDUCTANCE’S
FUNCTIONAL DERIVATIVES (χg)

We start by considering the correlator χg(
r,
r ′), which is
the most simple to obtain as it can be deduced from the known
expression of the conductance correlator.

A. Conductance correlator and diagrammatic
rules for quasi-1D devices

1. Conductance

Conductivity correlations in weakly disordered metals have
been studied in Refs. [4,31,52,53,75] (for recent reviews, see
Refs. [21,54]), where the contributions to the conductance
correlations in multiterminal devices were studied. Here we
will give a simplified description, based on Ref. [54].

We consider the simple case of a quasi-one-dimensional
(1D) wire with Nc conducting channels. Our starting point
is the Fisher and Lee formula [68] for the dimensionless
conductance (here at zero temperature, for simplicity):

g =
Nc∑

n,m=1

vnvm GR
nm(L,0; εF ) GA

mn(0,L; εF ), (62)

where

GR,A
nm (L,0; εF ) =

∫
dydy ′ χn(y) GR,A(
r,
r ′; εF ) χm(y ′) (63)

with x = L and x ′ = 0. χn(y) is a transverse mode wave
function and vn the group velocity in channel n. The
calculation of conductance correlations thus requires to
correlate four Green’s function lines with disorder impurity
lines. In the weak disorder limit, dominant contributions arise
from ladder diagrams (diffuson and cooperon). We obtain
six diagrams: two represented in Fig. 4 (one with diffusons
and one with cooperons), interpreted as diffusion constant
correlations [21,53]. The other diagrams, represented in
Fig. 5, are interpreted as DoS correlations [21,53] (although
there are four distinct diagrams, two are simply obtained by
exchanging retarded and advanced lines).

2. Ladders

Few simple rules allow one to determine straightforwardly
the expressions of the correlator 〈g(B) g(B′)〉c from the dia-
grams. For this purpose, we will assume that the system has
a quasi-one-dimensional geometry and will perform all traces
over transverse modes in order to keep only the 1D structure
of the propagators.

An important remark illustrated by the representation of
Fig. 4 is that diagrams involve two types of ladders: the
“external” diffusons, which start from the boundaries and
correlate lines from the same conductance, and the “internal”
diffusons and cooperons, which correlate Green’s function
lines from different conductances and describe correlations.
The latter are the propagators

P (d,c)
ω (x,x ′) = 〈x | 1

γω − [∂x − 2ieA∓(x)]2
|x ′ 〉, (64)

where we assume quasi-1D limit so that the diffu-
sons/cooperons depend only on the coordinate along the wire.

γω = γ − i
ω

D
(65)

involves the phase coherence length Lϕ in γ = 1/L2
ϕ and the

energy difference ω = ε − ε′, where ε and ε′ are the energies
of the two Green’s functions. The vector potential involves the
two vector potentials associated with the two magnetic fields
A±(x) = [A(x) ± A′(x)]/2, where − is chosen for a diffuson
and + for a cooperon. In a narrow wire, we can account for
the perpendicular magnetic field through an effective phase
coherence length thanks to the substitution

γ → γd,c = 1

L2
d,c

= 1

L2
ϕ

+ 1

L2
(B∓B)/2

, (66)

where the magnetic length is [55,76]

LB =
√

3

2π

φ0

|B|w ; (67)

φ0 = h/e is the flux quantum and w the width of the wire.
The ladders starting from a boundary (x = 0 or L here)

correlate two Green’s function lines with the same Fermi
energy and same magnetic field, thus they correspond to the
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0,n L,m

0,n’ L,m’ L,m’

0,n L,m

0,n’

FIG. 5. Four diagrams contributing to the conductance correlations (“DoS correlation diagrams”).

diffuson

Pd (x,x ′) = 〈x | 1

−∂2
x

|x ′ 〉. (68)

In order to model the connection to the reservoirs, we
impose that the diffusons/cooperons vanish at the boundary:
P (d,c)

ω (0,x ′) = P (d,c)
ω (L,x ′) = Pd (0,x ′) = Pd (L,x ′) = 0 (see

Refs. [81,82] for a more precise discussion; see also Chap. 5
of Ref. [21]). In the narrow wire, we get

P (d,c)
ω (x,x ′) = 〈x | 1

γω − ∂2
x

|x ′ 〉

= sinh(
√

γωx<) sinh(
√

γω(L − x>))√
γω sinh(

√
γωL)

, (69)

where x< = min (x,x ′) and x> = max (x,x ′). Setting γω = 0
we get

Pd (x,x ′) = min(x,x ′) − xx ′

L
. (70)

In the following, we consider a weakly coherent wire, Lϕ � L

(the case of a fully coherent wire will be considered later in
Sec. VIII). This simplifies many calculations as it allows to
neglect the effect of boundaries on the γω-dependent diffu-
son/cooperon, which then takes the simple form

P (d,c)
ω (x,x ′) � e−√

γω|x−x ′ |

2
√

γω

. (71)

3. Simplified diagrammatic rules for quasi-1D systems

We now give three simple diagrammatic rules for quasi-1D
devices obtained after tracing over transverse modes. The two
first rules concern the ladders:

ε’

ε
r r’

ε’

ε
r r’

=
1

τ2
e ξloc

P
(d)
ε−ε′(x, x′)

P
(c)
ε−ε′(x, x′)

, (72)

∑
n

r0,n =
1
τe

Pd(x, �e)
�e

, (73)

where summation runs over channel index. The localization
length is given by (7). τe is the elastic mean free time and 	e

the elastic mean free path. diffusons and cooperons describe
arbitrary long sequences of scattering events on the disorder
and therefore decay over scale � 	e. In the diagrams, they are
plugged with each other through “Hikami boxes” with four
entries, which involves average Green’s functions of extension
� 	e (see Ref. [21]). Because we are here interested in large
scale properties, compared to 	e, the Hikami boxes can simply
be considered as purely local. After tracing over channels, we
obtain the 1D structure:

4

r

r

r

r

2

1 3 = τ4
e ξloc H(x1, x2, x3, x4) , (74)

with

H (x1,x2,x3,x4) �
∫

dX

(
4∏

i=1

δ(X − xi)

)
×
{

2 ∂1∂3

−∂1∂2,
(75)

where the choice between the two expressions is made such that
the gradients act on “external” diffusons (first choice is made
for diagrams of Fig. 4 and second choice for diagrams of Fig. 5).
These expressions differ from the one obtained originally in
Ref. [83] by a direct calculation of the diagram (74), which
gives ∂1∂3 + ∂2∂4 − (1/2)

∑
i ∂

2
i (see also Ref. [21]). This

expression produces divergences and leads to expressions of
the correlators which do not fulfill the requirement of cur-
rent conservation. Expressions (75) follow from a procedure
proposed by Kane, Serota, and Lee [75] allowing to relate
short-range conductivity correlation diagrams to long-range
contributions, which are related to conductance correlators
(see Ref. [82] where this point was discussed on the more
simple case of the weak localization).

4. Application to conductance correlations

As an application of the rules (72)–(74), we deduce straight-
forwardly the expression of the contribution to the conductance
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correlator corresponding to the first diagram of Fig. 4:

〈g(B) g(B′)〉(1) = 4
∫

dω δT (ω)
∫ L

0
dxdx ′

[
∂xPd (L−	e,x)

	e

]2

×P (d)
ω (x,x ′)P (d)

−ω(x,x ′)
[
∂x ′Pd (x ′,	e)

	e

]2

(76)

(see also Refs. [54,58]). The correlator receives another con-
tribution where one pair of Green’s function lines are reversed.
This leads to replace the two diffusons inside the loop by
cooperons (second diagram of Fig. 4), and exchange two
“external” diffusons:

〈g(B) g(B′)〉(2) = 4
∫

dω δT (ω)
∫ L

0
dxdx ′ ∂xPd (L − 	e,x)

	e

× ∂xPd (	e,x)

	e

P (c)
ω (x,x ′)P (c)

−ω(x ′,x)

× ∂x ′Pd (x ′,L − 	e)

	e

∂x ′Pd (x ′,	e)

	e

. (77)

The two contributions (76) and (77) are interpreted as diffusion
constant correlations. Finally, the correlator receives two other
contributions corresponding to the diagrams of Fig. 5:

〈g(B) g(B′)〉(3) = 2
∫

dω δT (ω)
∫ L

0
dxdx ′ ∂xPd (L − 	e,x)

	e

× ∂xPd (	e,x)

	e

Re
[
P (d)

ω (x,x ′)P (d)
ω (x ′,x)

]
× ∂x ′Pd (x ′,L − 	e)

	e

∂x ′Pd (x ′,	e)

	e

, (78)

〈g(B) g(B′)〉(4) = 2
∫

dω δT (ω)
∫ L

0
dxdx ′ ∂xPd (L − 	e,x)

	e

× ∂xPd (	e,x)

	e

Re
[
P (c)

ω (x,x ′)P (c)
ω (x ′,x)

]
× ∂x ′Pd (x ′,L − 	e)

	e

∂x ′Pd (x ′,	e)

	e

. (79)

The contributions (78), (79) can be interpreted as DoS
correlations [21,53] (they are similar to the DoS correlations
recalled in Sec. VI B). Compared to the diffusion constant cor-
relation terms, the DoS correlation terms are more symmetric:
they are in perfect correspondence through the substitution
P (d) ↔ P (c) in the loop, while the “external” diffusons are not
affected by this exchange, as it was the case for the diffusion
constant correlation terms (Fig. 4). This observation will play
an important role later on.

We now consider a diffusive wire of length L for which the
diffuson has the form (70). Neglecting contributions of inter-
vals of width 	e at the boundaries, like

∫ 	e

0 dx and
∫ L

L−	e
dx,

the four gradients of diffusons in (76)–(79) simply give a
factor 1/L4. The full expression with “external” diffusons
will, however, be useful for future discussions on injectivity
correlations in Sec. VI.

Two helpful remarks:
(i) the analysis can be simplified as follows: in the “low

temperature” regime, when LT = √
D/T � min (L,Lϕ), it is

legitimate to perform the substitution δT (ω) → δ(ω), thus we

have 〈δg2〉(3) = (1/2)〈δg2〉(1) and 〈δg2〉(4) = (1/2)〈δg2〉(2). In
the “high temperature,” LT = √

D/T � min (L,Lϕ), the two
contributions 〈δg2〉(3)+(4) can be neglected.

(ii) In the wire, there is a perfect symmetry between diffuson
and cooperon contributions, what allows us to deduce 〈δg2〉(2)

from 〈δg2〉(1) and 〈δg2〉(4) from 〈δg2〉(3) by performing the
simple substitution γd → γc.

Note that these two simplifications only hold for a two-
terminal device (see Ref. [54] for a discussion of the multi-
terminal case). These remarks will allow us to consider only
one contribution to the correlator and deduce the others by
these symmetry arguments. In a first step, we will discuss
the contributions (1)+(3). Restricting to these two contributions
corresponds to consider the high magnetic field limit, when
γc � γd (i.e., Lc � Ld ). The other contributions, (2)+(4), and
the full magnetic field dependence will be discussed in a second
step.

B. Action of functional derivatives

Knowing the correlations of conductance, it is now straight-
forward to obtain the correlator (55), which requires the
determination of the action of the two functional derivations
δ/δU (
r) and δ/δU (
r ′) on the diagrams of Fig. 4. We must take
care of the fact that the two functional derivatives act on two
different conductances. The functional derivation corresponds
to an interruption of a Green’s function line:

δGR,A(
r ′,
r ′′; ε)

δU (
r)
= GR,A(
r ′,
r; ε) GR,A(
r,
r ′′; ε). (80)

Thus the interruption of a ladder involves the box

1r 2r

3r
� −2iπρ0 τ2

e δ(�r1 − �r2) δ(�r1 − �r3) , (81)

or its complex conjugate, where ρ0 = ν0/2s is the DoS per spin
channel. Using (72) with this expression, we deduce

P (d,c)
ω (x ′,x ′′)

δ/δU (
r)−→ P (d,c)
ω (x ′,x)

(
∓ i

D

)
P (d,c)

ω (x,x ′′) (82)

depending whether the derivation acts on a retarded (−) or an
advanced (+) Green’s function line.

A last important remark is that the action of the functional
derivation on the “external” diffusons gives zero, which follows
from the fact that the two Green’s functions belong to the same
conductance:

(83)

as the addition of the box (81) and its conjugate vanishes. Note
that this remark also ensures the equivalence of the Landauer
approach followed here and the Kubo approach, which involves
local conductivity diagrams without external diffusons.

In conclusion, the action of the two functional derivatives
on the first diagram of Fig. 4 leads to the six diagrams of Fig. 6.
The full correlator χg(
r,
r ′) is thus given by 36 such diagrams.
Hopefully, the remaining 30 contributions will be obtained by
simple symmetry arguments.
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FIG. 6. Contributions to the correlator χg(
r,
r ′). The six diagrams obtained by action of the two functional derivatives (82) on the diagram
of the top of Fig. 4.

C. Correlator χg(�r,�r ′) for the wire

When the external diffusons are replaced by a con-
stant factor, we can simplify (76) and (77) by noticing
that the remaining integrals are the expression of the trace
tr {(γω − ∂2

x )−1(γ ∗
ω − ∂2

x )−1}. As a result, the six diagrams of
Fig. 6 give [84]

〈
δg

δU (
r)

δg

δU (
r ′)

〉(1)

= 4

D2L4

∫
dω δT (ω){

−〈x| 1

γω − ∂2
x

1

γ ∗
ω − ∂2

x

|x ′〉〈x ′| 1

γ ∗
ω − ∂2

x

1

γω − ∂2
x

|x〉

+ 〈x| 1

γω − ∂2
x

|x ′〉〈x ′| 1

γω − ∂2
x

1

γ ∗
ω − ∂2

x

1

γω − ∂2
x

|x〉

+〈x| 1

γω − ∂2
x

1

γ ∗
ω − ∂2

x

1

γω − ∂2
x

|x ′〉〈x ′| 1

γω − ∂2
x

|x〉

+ (3 similar terms with γω ↔ γ ∗
ω )

}
. (84)

The sign difference arises from the fact that the two first
diagrams of Fig. 6 involve twice the box (81), while the four
other diagrams involve the box and its complex conjugate.
Equation (84) is a central result.

1. “Low” temperature (Lϕ � LT )

We first simplify the expression of the correlator by consid-
ering the “low” temperature limit [LT � min (L,Lϕ)] when it
is justified to replace the thermal function by a Dirac function.

We deduce〈
δg

δU (
r)

δg

δU (
r ′)

〉(1)

= 4

D2L4

×
(

∂

∂γ
− ∂

∂γ ′

)2

〈x| 1

γ − ∂2
x

|x ′〉〈x ′| 1

γ ′ − ∂2
x

|x〉
∣∣∣∣
γ ′=γ

. (85)

In order to simplify the calculation, we now assume that the
wire is longer than the phase coherence length, L � Lϕ . In
this case we can use the expression of the propagator in bulk
(for an infinitely long wire) (71), for which we obtain

∂

∂γ
〈x| 1

γ − ∂2
x

|x ′〉 � −1 + √
γ |x − x ′|
2γ

〈x| 1

γ − ∂2
x

|x ′〉.

(86)

We finally end with the expression

χg(
r,
r ′)(1) =
〈

δg

δU (
r)

δg

δU (
r ′)

〉(1)

� 2
L2

D2

(
Lϕ

L

)6(
1 + |x − x ′|

2Lϕ

)
e−2|x−x ′ |/Lϕ .

(87)

We have therefore obtained that correlations are short range.
The correlator in the high magnetic field regime is simply
obtained by multiplying this expression by a factor 3/2 in
order to account for the second diffuson diagram (left diagram
of Fig. 5). The cooperon contributions can be obtained by the
symmetry arguments mentioned above.
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The integral of the correlator will be useful below (see
Ref. [84]):∫

dxdx ′
〈

δg

δU (
r)

δg

δU (
r ′)

〉(1)

= 〈g′(εF )2〉(1) � 5

2

(
Lϕ

L

)7

τ 2
D,

(88)

where τD = L2/D is the Thouless time of the diffusive
wire. This result can be compared to the linear conductance
fluctuations 〈δg2〉(1) � (Lϕ/L)3 obtained in the same regime;
hence each derivative δ/δU (r) is responsible for a factor
(Lϕ/L)2τD = τϕ , where τϕ = L2

ϕ/D is the phase coherent
time, in agreement with the heuristic argument of Sec. II.

2. “High” temperature (LT � Lϕ)

(a) Sum rule. The high temperature is more difficult to
analyze. A good starting point is to consider the integral of the
correlator, which is easy to compute, as the spatial integration
of the brackets in Eq. (84) admits the simple expression(

∂

∂γω

− ∂

∂γ ∗
ω

)2

tr

{
1

γω − ∂2
x

1

γ ∗
ω − ∂2

x

}
. (89)

Using ∂/∂γω − ∂/∂γ ∗
ω = −iD ∂/∂ω, we obtain∫

dxdx ′
〈

δg

δU (
r)

δg

δU (
r ′)

〉(1)

= − 4

L4

∫
dω δ′′

T (ω) tr

{
1

γω − ∂2
x

1

γ ∗
ω − ∂2

x

}
. (90)

This simple structure has a clear interpretation: the double
derivative arises from the fact that the noninteracting nonlinear
conductance can also be written as an integral of the correlator
∂ε∂ε′ 〈g(ε)g(ε′)〉 = −∂2

ε 〈g(ε)g(ε′)〉 weighted by Fermi func-
tions.

In the limit LT � Lϕ , we may treat the function δT (ω)
as a “broad” function (cf. Appendix B 1). We use δ′′

T (0) =
−(4/15)/(2T )3 and∫

dω

D
tr

{
1

γω − ∂2
x

1

γ ∗
ω − ∂2

x

}
= π tr

{
1

γ − ∂2
x

}
= π LP

(d)
ω=0(x,x) � π L

2
√

γ
, (91)

from which we deduce∫
dxdx ′

〈
δg

δU (
r)

δg

δU (
r ′)

〉(1)

=
∫

d(ε − ε′) δT (ε − ε′) 〈g′(ε)g′(ε′)〉(1)

� π

15

(
LT

L

)6
Lϕ

L
τ 2
D. (92)

This can be compared to the linear conductance fluctuations
〈δg2〉(1) � (π/3)(LT /L)2(Lϕ/L); each derivative δ/δU (r) is
now responsible for a factor (LT /L)2τD = 1/T .

(b) Spatial structure. In order to analyze the spatial struc-
ture of the correlator we make two remarks:

〈x| 1

γω − ∂2
x

1

γ ∗
ω − ∂2

x

1

γω − ∂2
x

|x ′〉

= − ∂

∂γω

〈x| 1

γω − ∂2
x

1

γ ∗
ω − ∂2

x

|x ′〉 (93)

and

〈x| 1

γω − ∂2
x

1

γ ∗
ω − ∂2

x

|x ′〉

= 1

γ ∗
ω − γω

[
〈x| 1

γω − ∂2
x

|x ′〉 − 〈x| 1

γ ∗
ω − ∂2

x

|x ′〉
]
, (94)

hence all contributions in Eq. (84) may be expressed in
terms of the two propagators P (d)

ω (x,x ′) = 〈x |(γω − ∂2
x )−1|x ′ 〉

and P
(d)
−ω(x,x ′) = 〈x |(γ ∗

ω − ∂2
x )−1|x ′ 〉. After some algebra, we

obtain that the bracket in Eq. (84) is

{· · · } = −4

(
P (d)

ω (x,x ′) − P
(d)
−ω(x,x ′)

γω − γ ∗
ω

)2

+ 1

γω − γ ∗
ω

[
∂P (d)

ω (x,x ′)2

∂γω

− ∂P
(d)
−ω(x,x ′)2

∂γ ∗
ω

]
. (95)

An important observation is that the result of integration
over frequency leads to a behavior ∼ 1/T , different from
the 1/T 3 obtained for the spatial integral of the correlator,
Eq. (92). Precisely, we obtain that the correlator at the coin-
ciding point behaves as χg(
r,
r) ∼ (τD/L)2(LT /L)2(Lϕ/L)4.
The origin of this observation can be understood by writ-
ing formally the correlator as χg(
r,
r) = ∫

dω δT (ω) �(|x −
x ′|; ω), where the function �(|x − x ′|; ω), proportional to
the bracket (95) has a width ∼ Lϕ in space and a width
∼ 1/τϕ in frequency. The sum rule discussed above has
revealed that the spatial integral of this function can be
written as the second derivative of a function of the frequency:∫∞

0 dX �(X; ω) = f ′′(ω), which is responsible for
∫

d(x −
x ′) χg(
r,
r ′) = ∫

dω δT (ω) f ′′(ω) ∼ 1/T 3. In order to simplify
the analysis of the limit LT � Lϕ , we split the correlator into
two contributions as χg(
r,
r ′) = δT (0)

∫
dω �(|x − x ′|; ω) +∫

dω [δT (ω) − δT (0)] �(|x − x ′|; ω). The first term vanishes
after spatial integration whereas the second term ensures the
sum rule (92). In order to simplify the calculations, we assume
that we can decouple the temperature dependence and the
spatial decay over Lϕ in the second term, leading to the
structure

χg(
r,
r ′) � 2

3

τ 2
D

L2

(
LT

L

)2(
Lϕ

L

)4

×
[
φ

( |x − x ′|
Lϕ

)
+
(

LT

Lϕ

)4

ϒ

( |x − x ′|
Lϕ

)]
,

(96)

where φ and ϒ are two dimensionless narrow functions of
order unity, with the important property∫ ∞

0
du φ(u) = 0. (97)
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FIG. 7. Function (99) controlling the correlator χg in the limit
LT � Lϕ .

The sum rule (92) corresponds to∫ ∞

0
duϒ(u) = π

20
. (98)

Let us now study more precisely the dimensionless function
φ(u), defined by

φ(u) =
∫ +∞

−∞
dθ

{
− 4

(
Qθ (u) − Q∗

θ (u)

�θ − �∗
θ

)2

− 1

�θ − �∗
θ

[
1 + √

�θ u

�θ

Qθ (u)2 − c.c.

]}
, (99)

where �θ = 1 − iθ and Qθ (u) = e−√
�θ u/(2

√
�θ ). The value

at the origin can be computed explicitly:

φ(0) =
∫ ∞

0

dθ

1 + θ2

(
1

1 + θ2
−

√
1 + θ2 − 1

θ2

)
= 1 − π

4
.

(100)

The function is represented in Fig. 7.

VI. CORRELATIONS OF INJECTIVITIES (χν)

The analysis of the injectivity correlator (56) is quite similar
to the analysis of the conductance correlations, as the injectivity
can be expressed in terms of Green’s functions as

ν1(
r; ε) = 2s

Nc∑
n=1

vn

2π

∣∣∣∣∫ dy ′ χn(y ′) GR(
r,
r ′; ε)

∣∣∣∣2, (101)

where x ′ = 0 and vn is the group velocity in channel n. The
injectivity thus involves a pair of Green’s functions starting
from the boundary, as the conductance in the Fisher and Lee
relation (62).

A. Preliminary: averaged injectivity

As a first simple illustration, we analyze the mean injectiv-
ity. We use the rule (73) and take into account the additional

factor 2s/(2π ):

〈ν1(�r; ε)〉 =
2s

2π

∑
n

r
0,n (102)

= 2s

2π

1

τe

Pd (x,	e)

	e

2πρ0τe = ν0
Pd (x,	e)

	e

, (103)

where the termination has involved the box

rr 21 � 2πρ0τe δ(�r1 − �r2) . (104)

In the wire, using (70), we recover the expression given in
Ref. [85]:

〈ν1(
r; ε)〉 = ν0

(
1 − x

L

)
. (105)

A similar analysis gives the second injectivity 〈ν2(
r; ε)〉 =
ν0 Pd (x,L − 	e)/	e = ν0 x/L. We can check the sum rule (29).

B. DoS correlations

Before going to the more complicated matter of injectivity
correlations, let us recall the expression of the DoS correlator.
Considering only long-range diagrams, we have [21]

〈ν(�r; ε) ν(�r ′; ε′)〉c
ν2
0

= r’r + c.c. +
(
P (d) → P (c)

)

= 2
(

2π

ξloc

)2

Re
[
P (d)

ω (x, x′)2 + P (c)
ω (x, x′)2

]
,

(106)

where ω = ε − ε′ and ξloc is the localisation length, Eq. (7).
The box with three corners was given above, Eq. (81). In a co-
herent wire of length L, we estimate P (d)

ω (x,x ′) → Pd (x,x ′) ∼
L, thus

〈ν(
r; ε) ν(
r ′; ε′)〉c
ν2

0

∼
(

L

ξloc

)2

= 1

g2
� 1. (107)

These correlations are small as the validity of the diagram-
matic approach describes the diffusive regime L � ξloc. In
the weakly coherent wire, Lϕ � L, the correlations decay
exponentially over the scale Lϕ .

C. General expression of the injectivity correlator

The injectivity correlator 〈ν1(
r; ε)ν1(
r ′; ε′)〉c is given by the
diagrams shown in Fig. 8 (note that the two injectivities could
also be correlated with only one Hikami box, however, this
leads to a contribution reduced by a factor 	e/L) [86]. Hence
the analysis is quite similar to the conductance correlator, with,
however, two differences: (i) the termination of the Green’s
functions line is a specific coordinate and not a contact (Fig. 8).
(ii) One must take into account the additional factor 2s/(2π )
per injectivity, see Eq. (101). As the question of symmetrization
with respect to magnetic field reversal will be of importance
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n’

n0,

0,

r’
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0,

0,

n’

n

r’

r

FIG. 8. The two contributions to the injectivity correlations which produce the antisymmetry in magnetic field.

here, we consider the two first contributions arising from diffuson and cooperon at the same time (two diagrams of Fig. 8). The
application of the simple rules (72)–(74) with the additional factor [2s/(2π )]2 for the pair of injectivities gives

χν(
r,
r ′)(1)+(2) = 4

ξ 2
loc

∫
dω δT (ω)

∫
dξdξ ′

[
∂ξPd (x,ξ ) ∂ξPd (x ′,ξ )

(
∂ξ ′Pd (ξ ′,	e)

	e

)2∣∣P (d)
ω (ξ,ξ ′)

∣∣2
+ ∂ξPd (x,ξ ) ∂ξ ′Pd (x ′,ξ ′)

∂ξPd (ξ,	e)

	e

∂ξ ′Pd (ξ ′,	e)

	e

∣∣P (c)
ω (ξ,ξ ′)

∣∣2], (108)

where the localization length ξloc was defined above, see Eq. (7). We use that ξ, ξ ′ > 	e and now consider the case of a diffusive
wire characterized by Eq. (70). Thus we can simplify the expression in brackets by making use of ∂ξPd (ξ,	e)/	e = −1/L.

Symmetrization/antisymmetrization with respect to magnetic field reversal follows from the discussion of Sec. IV B. We recall
that P (d)

ω is a function of B − B′ and P (c)
ω a function of B + B′. Thus the change B′ ↔ −B′ implies P (d)

ω ↔ P (c)
ω . Some algebra

eventually gives

χs,a
ν (
r,
r ′)(1)+(2) = 4

ξ 2
loc

∫
dω δT (ω)

∫
dξdξ ′

L2

∂ξPd (x,ξ ) ± ∂ξ ′Pd (x,ξ ′)
2

∂ξPd (x ′,ξ ) ± ∂ξ ′Pd (x ′,ξ ′)
2

×(∣∣P (d)
ω (ξ,ξ ′)

∣∣2 ± ∣∣P (c)
ω (ξ,ξ ′)

∣∣2). (109)

We emphasize that the existence of a nonzero antisymmetric part χa
ν crucially depends on the fact that the “external” diffusons

have different configurations in the two diagrams of Fig. 8: in the first case, the two diffusons starting from the boundary x = 0
reach the same Hikami box, whereas in the second case they end at two different Hikami boxes. The expression allows one
to discuss the order of magnitude of the injectivity correlations: setting T = 0 and considering the coherent limit, we estimate
χs,a

ν (
r,
r ′) ∼ ξ−2
loc (Pd )2 ∼ (L/ξloc)2 ∼ 1/g2, like the DoS fluctuations (107), as expected.

We now consider the other contributions, which are similar to the diagrams of Fig. 5 (with terminations on the right now
corresponding to the two coordinates 
r and 
r ′):

χν(
r,
r ′)(3)+(4) = 2

ξ 2
loc

∫
dω δT (ω)

∫
dξdξ ′ ∂ξPd (x,ξ ) ∂ξ ′Pd (x ′,ξ ′)

∂ξPd (ξ,	e)

	e

∂ξ ′Pd (ξ ′,	e)

	e

×(Re
[
P (d)

ω (ξ,ξ ′)2]+ Re
[
P (c)

ω (ξ,ξ ′)2]). (110)

We use again the expression of the diffuson in the wire,
Eq. (70), in order to simplify the expression as

χν(
r,
r ′)(3)+(4) = 2

ξ 2
loc

∫
dω δT (ω)

∫
dξdξ ′

L2

× ∂ξPd (x,ξ ) ∂ξ ′Pd (x ′,ξ ′)(
Re
[
P (d)

ω (ξ,ξ ′)2
]+ Re

[
P (c)

ω (ξ,ξ ′)2
])

.

(111)

Equations (109) and (111) are central results. An important
difference with the two first contributions is that the “external”
diffusons now factorize. This has important consequences for
the symmetrization as

χs
ν (
r,
r ′)(3)+(4) = χν(
r,
r ′)(3)+(4), (112)

χa
ν (
r,
r ′)(3)+(4) = 0. (113)

Remark. In order to avoid the spurious divergences produced
by using the expression of the box (74) originally derived
by Hikami [83], the derivation of conductance correlations
(Figs. 4 and 5) has involved the procedure proposed by
Kane, Serota, and Lee (KSL) [75], which relies on the
current conservation condition for the nonlocal conductivity
tensor (we refer to Ref. [82] for a discussion of the weak
localization case). The origin of these unphysical divergences
comes from the fact that the organization of the perturbation
theory with diffusons/cooperons and Hikami boxes does not
automatically fulfill elementary conservation laws such as
current conservation, which should be imposed through Ward
identities (see also Ref. [81] where the set of current conserving
diagrams is constructed for the weak localization). Using the
similarity between conductance correlation diagrams (Fig. 4)
and injectivity correlation diagrams (Fig. 8), we have used
the same prescription in this latter case. This point, however,
deserves a more rigorous justification.
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D. Symmetric part

In order to calculate the spatial integrals in (109), we use
the decoupling between the long-range diffuson Pd (·,·) and
the short-range diffuson P (d)

ω (ξ,ξ ′), which constraints ξ ≈ ξ ′.
Therefore we may rewrite the diffuson contribution of (109) as

χs
ν (
r,
r ′)(1) � 4

ξ 2
loc

∫
dω δT (ω)

×
∫ L

0

dξ

L2
∂ξPd (x,ξ ) ∂ξPd (x ′,ξ )

×
∫

d(ξ − ξ ′)
∣∣P (d)

ω (ξ,ξ ′)
∣∣2. (114)

We now introduce the useful property∫ L

0
dξ ∂ξPd (x,ξ ) ∂ξPd (ξ,x ′) = Pd (x,x ′) (115)

whose proof simply follows from an integration by parts.
Using (115), we find

χs
ν (
r,
r ′)(1) �

(
L

ξloc

)2
Pd (x,x ′)

L

× 1

L3

∫
dω δT (ω)

2

|γω|(√γω + √
γ ∗

ω )
. (116)

Performing the same approximation in (111), we obtain

χν(
r,
r ′)(3) � 1

2

(
L

ξloc

)2
Pd (x,x ′)

L

× 1

L3

∫
dω δT (ω) Re

[
γ −3/2

ω

]
. (117)

The injectivity correlations are thus long range.

1. Limit Lϕ � LT , L

When one can neglect the effect of thermal broadening, one
simply performs the substitution δT (ω) → δ(ω) in the previous
integral. One gets

χs
ν (
r,
r ′)(1) �

(
L

ξloc

)2(
Lϕ

L

)3
Pd (x,x ′)

L
. (118)

The second diffuson contribution (117) obviously leads to the
same result, up to a factor 1/2, therefore the correlator in the
high magnetic field regime is

χs
ν (
r,
r ′)(1)+(3) = 3

2 χs
ν (
r,
r ′)(1). (119)

In the coherent limit L ∼ Lϕ , we see that the injectivity
correlations are of the same order as the DoS correlations,
Eq. (107), as expected.

2. Limit LT � Lϕ � L

In this case, we treat δT (ω) as a “broad” function. We per-
form the substitution δT (ω) → δT (0) = 1/(6T ) = L2

T /(6D) in
Eq. (116). The remaining integral over frequency is∫

dω

D

1

|γω|(√γω + √
γ ∗

ω )

= Lϕ

∫
dω√

2(ω2 + 1)(1 + √
ω2 + 1)

= Lϕπ. (120)

In conclusion we get

χs
ν (
r,
r ′)(1) � π

3

(
L

ξloc

)2(
LT

L

)2
Lϕ

L

Pd (x,x ′)
L

. (121)

The two regimes therefore lead to the same behavior, (118)
and (121), up to the substitution (Lϕ/L)2 → (LT /L)2. In this
regime, the contribution (117) is much smaller [it vanishes
within the same approximation δT (ω) → δT (0)] and we simply
have

χs
ν (
r,
r ′)(3) � 0. (122)

E. Antisymmetric part

The study of the antisymmetric part of the injectivity
correlator requires a more precise analysis. We repeat that the
existence of a finite χa

ν crucially relies on the spatial structure of
the “external” diffusons in the correlator of injectance (Fig. 8).
We can use that the weight in (109) is

∂ξPd (x,ξ ) − ∂ξ ′Pd (x,ξ ′)
2

= θH(x − ξ ) − θH(x − ξ ′)
2

, (123)

where θH(x) is the Heaviside function. For the antisymmmetric
part, this constraints the integral (109) as

χa
ν (
r,
r ′)(1)+(2) = 2

ξ 2
loc

∫
dω δT (ω)

×
∫ x<

0

dξ

L

∫ L

x>

dξ ′

L

(∣∣P (d)
ω (ξ,ξ ′)

∣∣2−∣∣P (c)
ω (ξ,ξ ′)

∣∣2), (124)

where x< = min (x,x ′) and x> = max (x,x ′). Equation (124)
is one of the key results of the paper. We now restrict ourselves
to the contribution of the diffuson. Using (71) one gets

χa
ν (
r,
r ′)(1) � 2

(
L

ξloc

)2 1

L4

∫
dω δT (ω)

∣∣P (d)
ω (x,x ′)

∣∣2
(
√

γω + √
γ ∗

ω )2
.

(125)

We recall that χa
ν (
r,
r ′)(3)+(4) = 0.

1. Lϕ � L, LT

Neglecting thermal broadening, i.e., performing δT (ω) →
δ(ω), one gets

χa
ν (
r,
r ′)(1) � 1

8

(
L

ξloc

)2(
Lϕ

L

)4

e−2|x−x ′ |/Lϕ . (126)

In contrast with the symmetric part (118), which is long range,
the antisymmetric part of the injectivity correlator is short
range.

2. LT � Lϕ � L

In this regime, we can perform the substitution δT (ω) →
δT (0) = 1/(6T ) = L2

T /(6D) in (125), which leads to the struc-
ture

χa
ν (
r,
r ′)(1) � 1

3

(
L

ξloc

)2(
LT

L

)2(
Lϕ

L

)2

ψ

( |x − x ′|
Lϕ

)
, (127)
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where the dimensionless function is

ψ(u) =
∫ +∞

−∞
dθ

|Qθ (u)|2
(
√

�θ +√�∗
θ )2

, (128)

with �θ = 1 − iθ and Qθ (u) = e−√
�θ u/(2

√
�θ ). A change of

variable leads to the convenient integral representation

ψ(u) = 1

8

∫ ∞

1
dy

e−2uy

y2
√

y2 − 1
(129)

ψ(u)

⎧⎪⎪⎨⎪⎪⎩
= 1

8
if u = 0

� 1

16

√
π

u
e−2u if u � 1

. (130)

VII. CORRELATIONS OF THE NONLINEAR
CONDUCTANCE

We can now combine the results of Secs. V and VI in order
to derive the correlations of the nonlinear conductance for
weakly disordered wires. We refer to the notation introduced
in Sec. IV B.

We first remark that due to (83), we have 〈δg/δU (
r)〉 = 0
and therefore

〈G0〉 = 〈G int〉 = 0, (131)

thus 〈Gs,a〉 = 0. As a consequence, the nonlinear conductance
can only be characterized through its correlator and we will be
interested below in 〈G2

s,a〉.

A. Preliminary: coherent QD

We briefly come back to the case of coherent quantum dots,
which will be helpful in order to clarify the future calculations
in diffusive wires. In the ergodic regime, a great simplification
used in Refs. [15,29,30] is to neglect all spatial dependencies.
In particular, at T = 0, Eq. (37) is simplified as [29,30]
gαβγ = (1/2)[g′

αβ(εF )δβγ − g′
αβ(εF ) uγ − g′

αγ (εF ) uβ]. In the
two-terminal configuration, we write g = −g21 and G = Gs +
Ga = −g211 and get

Gs = g′(εF )
(
us

1 − 1
2

)
and Ga = g′(εF ) ua

1, (132)

where u
s,a
1 = [u1(B) ± u1(−B)]/2. As a result, using that

〈g′(εF ) u1〉 = 0 and 〈ua
1〉 = 0, the fluctuations are〈

G2
s

〉 = 〈g′(εF )2〉[( 1
2 − 〈u1〉

)2 + 〈(δus
1

)2〉]
, (133)〈

G2
a

〉 = 〈g′(εF )2〉〈(ua
1

)2〉
. (134)

Starting from these formulas, Büttiker, Polianski, and Sánchez
[15,29,30] have obtained the results recalled in Introduction,
Eqs. (19) and (20). DoS correlations are small, 〈δu2

1〉 ∼ 1/g2,
hence the symmetric part is dominated by the first term,
〈(Gs)

2〉 � 〈g′(εF )2〉(1/2 − 〈u1〉)2. The presence of the char-
acteristic potential encodes the strong renormalization of the
potential inside the QD due to screening, as u1 ∼ 1 (free
electron result is recovered by setting u1 = 0). If the QD
has contacts characterized by N1 and N2 channels, we have
〈u1〉 = γint N1/N (see, for example, Refs. [30,56]); this shows
that the dominant term vanishes for perfect screening (γint = 1)
and symmetric contacts N1 = N2.

B. Metal in the diffusive regime

In the diffusive devices, the fluctuations present structures
analogous to (133) and (134) with additional spatial integra-
tions:

〈
G2

s

〉 = ∫
d
rd
r ′

〈
δg

δU (
r)

δg

δU (
r ′)

〉
×
[(

1

2
−〈u1(
r)〉

)(
1

2
−〈u1(
r ′)〉

)
+〈δus

1(
r)δus
1(
r ′)

〉]
,

(135)

〈
G2

a

〉 = ∫
d
rd
r ′

〈
δg

δU (
r)

δg

δU (
r ′)

〉 〈
ua

1(
r) ua
1(
r ′)

〉
, (136)

where u
s,a
1 (
r) denotes the symmetric and antisymmetric parts

of the injectivity with respect to magnetic field reversal
and δu1(
r) = u1(
r) − 〈u1(
r)〉 the fluctuating part (sample to
sample fluctuations). Our purpose is now to analyze the two
correlators (135) and (136) in the different regimes, which will
require a detailed analysis of the several contributions.

C. Without interaction

We first consider the noninteracting part of the nonlinear
conductance, which is symmetric with respect to magnetic field
reversal: this corresponds to the term (1/2)2 of the bracket
[· · · ] in Eq. (135). As pointed out above, the fluctuations can
be written in terms of the correlator studied in Sec. V:〈

G2
0

〉 = 1

4

∫
dxdx ′ χg(
r,
r ′). (137)

1. Lϕ � L, LT

Integration of the correlator (87) gives

〈
G2

0

〉(1) � 5

8

(
Lϕ

L

)7

τ 2
D, (138)

where τD = L2/D is the Thouless time. We obtain the high
magnetic field result by multiplying the expression by 3/2:

〈
G2

0

〉(1)+(3) � 15

16

(
Lϕ

L

)7

τ 2
D. (139)

Note that this result, which also characterizes the behav-
ior of the differential conductance 〈[gd (V ) − gd (0)]2〉 �
(2eV )2〈G2〉 for low voltage, eV � 1/τϕ , presents the same
power of Lϕ as the differential conductance at high
voltage, eV � 1/τϕ , obtained by LK [5,6] 〈δgd (V )2〉 ∼
(eV/ETh)(Lϕ/L)7 (see also Ref. [7] and Sec. C 2).

2. LT � Lϕ � L

Using (137) and (92) we can immediately write〈
G2

0

〉(1) � π

60

(
LT

L

)6
Lϕ

L
τ 2
D, (140)

which is therefore the high-field result as 〈G2
0 〉(3) is negligible

in this case.
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FIG. 9. One contribution to the nonlinear conductance correla-
tions 〈(G int)2〉uncorr , Eq. (143).

3. Correlations at different Fermi energies

Note that the correlations at different Fermi energies can be
simply characterized: we simply have 〈G0(εF )G0(εF − ω)〉 =
−(1/4) C ′′(ω), where the conductance correlator C (ω) is given
by Eqs. (C7) and (C8). The correlator thus changes in sign and
presents a negative tail

〈G0(εF )G0(εF − ω)〉 � −(45
√

2/16)E3/2
Th |ω|−7/2 (141)

for ω � max(1/τϕ,1/τD).

D. With interaction

The interaction part of the nonlinear conductance involves
a product of δg/δU (
r) by an injectivity. Considering 〈(G int)2〉,
the two conductance’s functional derivatives must necessarily
be correlated because 〈δg/δU (
r)〉 = 0, which follows from
(83). On the other hand, the possibility to correlate or not the
two injectivities give rise to two contributions:

〈(G int)2〉 = 〈(G int)2〉uncorr + 〈(G int)2〉corr, (142)

corresponding to the case of uncorrelated (Fig. 9) and cor-
related injectivities (Fig. 10), respectively (in Sec. II, we
have used the notation 〈(G int)2〉corr ≡ 〈(G int, fluc)2〉). Because
the asymmetry in magnetic field arises from the injectivity, we
have 〈G2

a 〉uncorr = 0. The first contribution reads (Fig. 9)〈(
G int

s

)2〉
uncorr =

∫
d
rd
r ′ χg(
r,
r ′)

〈ν1(
r; εF )〉〈ν1(
r ′; εF )〉
ν2

0

(143)

(we have disregarded the Fermi functions associated to the
injectivities as the average injectivity has a smooth energy
dependence). Equation (143) corresponds to diagrams of the
type represented in Fig. 9. We clearly identify this contribution
in (135). It is equivalent to the term 〈g′(εF )2〉〈u1〉2 of Eq. (133)
for QDs.

The second contribution involves the correlator of conduc-
tance’s functional derivatives and the correlator of injectivities:

〈(
G int

s,a

)2〉
corr =

∫
d
rd
r ′ χg(
r,
r ′) χs,a

ν (
r,
r ′), (144)

where the structure was discussed in Sec. IV B; note that
(144) corresponds to the last term of (135) and (136). This

FIG. 10. One contribution to the nonlinear conductance correla-
tions 〈(G int)2〉corr , Eq. (144), among the 6×36 = 216 diagrams.

corresponds to diagrams of the type represented in Fig. 10. We
recall that δg/δU (
r) and the injectivityν1(
r; ε) are uncorrelated
(see Appendix A).

Finally, we also have to discuss the correlation 〈G int
s G0〉,

which will be needed in order to analyze the fluctuations of the
symmetric part of the conductance 〈(G int

s )2〉 = 〈(G0 + G int
s )2〉.

This corresponds to the terms −(1/2)[〈u1(
r)〉 + 〈u1(
r ′)〉] in
the bracket [· · · ] of Eq. (135), and has the same origin as the
term −〈g′(εF )2〉〈u1〉 of Eq. (133) for QDs. This contribution
is similar to the diagram of Fig. 9, with one injectivity less:

〈
G int

s G0
〉 = −1

2

∫
d
rd
r ′ χg(
r,
r ′)

〈ν1(
r; εF )〉
ν0

, (145)

where the 1/2 arises from (25). Since ν1(
r; εF )/ν0 ∼ 1, this
contribution is of the same order as 〈G2

0 〉. The minus sign,
i.e., the fact that G int

s and G0 are anticorrelated, expresses
that screening strongly renormalizes the electrostatic potential
inside the wire; this point was emphasized in the case of
QDs in Sec. VII A. In the next sections, we analyze the three
contributions (143), (144), and (145) in the different regimes.
In a first step, we will derive the high magnetic field expressions
of the correlator, when cooperon contributions, labeled (2) and
(4) above, are suppressed. The full magnetic field dependence,
i.e., the correlators 〈Gs,a(B)Gs,a(B′)〉, will be discussed in a
second step.

1. Symmetric part Gs

(a) Lϕ � L, LT . We start by considering the contribution
(143), which is computed by using that the average injectivity
(105) has a smooth spatial dependence while the correlator χg

is short range, thus〈(
G int

s

)2〉uncorr

�
∫ L

0
dx

( 〈ν1(
r; εF )〉
ν0

)2 ∫
d(x − x ′) χg(
r,
r ′). (146)
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Using (88) and adding a factor 3/2 in order to take into account
the contribution (3), we get〈(

G int
s

)2〉(1)+(3)
uncorr � 5

4

(
Lϕ

L

)7

τ 2
D. (147)

The calculation of the contribution (145) is quite similar,
we get 〈

G int
s G0

〉(1)+(3) � −15

16

(
Lϕ

L

)7

τ 2
D. (148)

This term exactly coincides with (139), up to the sign, which is
due to the fact that averaging the injectivity provides the factor
1/2, which is missing in front of (145) compared to (137).

The contribution (144) is given by combining (87) and
(118). By using that χg(x,x ′) is short range and χs

ν (x,x ′) is
long range, we can simplify the double integral as〈(

G int
s

)2〉(1)
corr �

∫ L

0
dx χs

ν (x,x)(1)
∫

d(x − x ′) χg(x,x ′)(1)

� 5

12

(
L

ξloc

)2(
Lϕ

L

)10

τ 2
D. (149)

Finally, we add a factor (3/2)2 (one for each correlator) in order
to account for the second diffuson contribution:〈(

G int
s

)2〉(1)+(3)
corr � 15

16

(
L

ξloc

)2(
Lϕ

L

)10

τ 2
D. (150)

Compared to the result without interaction (139), the
contribution from interaction is reduced, by a factor
(L/ξloc)2(Lϕ/L)3 � 1 originating from the correlations of the
characteristic potential.

Gathering all results, we finally get〈
G2

s

〉 = 〈(
G0 + G int

s

)2〉
= 〈

G2
0

〉+ 2
〈
G int

s G0
〉+ 〈(G int

s

)2〉
uncorr + 〈(G int

s

)2〉
corr (151)

� 5

16

[
1 + 3

(
L

ξloc

)2(
Lϕ

L

)3](
Lϕ

L

)7

τ 2
D (152)

in the regime of high magnetic field, much larger than Bc ∼
φ0/(Lϕw) (cf. Sec. VII E 2 below). The second subdominant

term corresponds to 〈(G int
s )2〉corr.

(b) LT � Lϕ � L. We now have to use (96), leading to〈(
G int

s

)2〉(1)
uncorr � 2

3
τ 2
D

(
LT

L

)2(
Lϕ

L

)4

×
∫ L

0

dx

L

∫ L

0

dx ′

L

(
1 − x

L

)(
1 − x ′

L

)
×
[
φ

( |x−x ′|
Lϕ

)
+
(

LT

Lϕ

)4

ϒ

( |x − x ′|
Lϕ

)]
.

(153)

The spatial integrals can be calculated by changing the vari-
ables as x = R + ρ/2 and x ′ = R − ρ/2, leading to

− 1

2L3

∫ ∞

0
dρ ρ2 φ

(
ρ

Lϕ

)
+ 2

L

(
LT

Lϕ

)4 ∫ L

0

dR

L

(
1 − R

L

)2 ∫ ∞

0
dρ ϒ

(
ρ

Lϕ

)
, (154)

where we made use of (97). We obtain numerically∫∞
0 du u2 φ(u) � −0.122718. Using (98) we get〈(

G int
s

)2〉(1)
uncorr

� C0

(
LT

L

)2(
Lϕ

L

)7

τ 2
D + π

45

(
LT

L

)6
Lϕ

L
τ 2
D, (155)

where C0 � 0.0409 (with 〈(G int
s )2〉(3)

uncorr negligible). Although
we expect that the first term dominates as LT � Lϕ � L,
the second term would be important if LT and Lϕ would
get closer, and ensures the crossover towards (147) when we
simply set LT ∼ Lϕ in Eq. (155). When LT � Lϕ , the term

〈(G int
s )2〉uncorr gives therefore the dominant contribution to the

nonlinear conductance; the calculation has shown that this
observation crucially relies on the nontrivial spatial structure
of the correlator χg(
r,
r ′).

The correlation is determined by using similar arguments.
Introducing the decomposition (96) in Eq. (145), we obtain

〈
G int

s G0
〉(1) � −1

3

(
LT

L

)6 ∫ L

0

dR

L

(
1 − R

L

)
×
∫ +∞

−∞

dρ

L
ϒ

( |ρ|
Lϕ

)
. (156)

As a result 〈
G int

s G0
〉(1) � − π

60

(
LT

L

)6
Lϕ

L
τ 2
D, (157)

which now coincides with (140), up to the sign, for a similar
reason that (148) coincides with (139).

We analyze the last contribution (144). The starting point
of the analysis are the expressions of the two correlators (96)
and (121). The calculation of the double integral (144) is
conveniently performed by setting x = R + ρ/2 and x ′ = R −
ρ/2. The diffuson, which controls the injectivity correlator,
takes the form

Pd (x,x ′) = R

(
1 − R

L

)
− |ρ|

2

(
1 − |ρ|

2L

)
. (158)

This leads to〈(
G int

s

)2〉(1)
corr � 2π

9

τ 2
D

L2

(
L

ξloc

)2(
LT

L

)4(
Lϕ

L

)5

×
∫ L

0

dR

L

∫ +∞

−∞
dρ

[
R

(
1 − R

L

)
− |ρ|

2

]
×
[
φ

( |ρ|
Lϕ

)
+
(

LT

Lϕ

)4

ϒ

( |ρ|
Lϕ

)]
(159)

where we have dropped the last term ∼ ρ2/L of (158),
which brings a negligible contribution as ρ � Lϕ . Due to the
properties (97), the double spatial integral simplifies as

−
∫ ∞

0
dρ ρ φ

(
ρ

Lϕ

)
+ 2

(
LT

Lϕ

)4 ∫ L

0

dR

L
R

(
1 − R

L

)∫ ∞

0
dρ ϒ

(
ρ

Lϕ

)
. (160)
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Finally, we deduce

〈(
G int

s

)2〉(1)
corr � τ 2

D

(
L

ξloc

)2(
LT

L

)4(
Lϕ

L

)2

×
[
Cs

(
Lϕ

L

)5

+ π2

270

(
LT

L

)4]
, (161)

where Cs = −(2π/9)
∫∞

0 du uφ(u) � 0.0414. Although the
first term〈(

G int
s

)2〉
corr � Cs

(
L

ξloc

)2(
LT

L

)4(
Lϕ

L

)7

τ 2
D (162)

dominates, the full expression (161) shows that the fluctuations
cross over towards the result (150) when LT ∼ Lϕ , thanks to
the second term.

Interestingly, we have obtained that the LT dependence of
the noninteracting and interacting parts differ: L6

T versus L4
T .

We recall that the origin of the difference lies in the property
(97).

Gathering once again all the contributions, we deduce the
nonlinear conductance in the high-field regime (for B � Bc):

〈
G2

s

〉 � [
π

180

(
LT

L

)6
Lϕ

L
+ C0

(
LT

L

)2(
Lϕ

L

)7

+Cs

(
L

ξloc

)2(
LT

L

)4(
Lϕ

L

)7]
τ 2
D. (163)

The last subdominant term corresponds to 〈(G int
s )2〉corr.

2. Antisymmetric part Ga

Calculations follow the same lines.
(a) Lϕ � L, LT . We now combine the two correlators (87)

and (126), which are both short range. We deduce

〈
G2

a

〉(1) � 9

64

(
L

ξloc

)2(
Lϕ

L

)11

τ 2
D. (164)

We multiply this result by a factor (3/2) to account for the
contribution (3) of the correlator χg (we recall that χa

ν
(3) = 0).

We obtain 〈
G2

a

〉(1)+(3) � 27

128

(
L

ξloc

)2(
Lϕ

L

)11

τ 2
D, (165)

which is the high-field result. The antisymmetric part is there-
fore reduced compared to the equivalent contribution to the
symmetric part: using the notation 〈(G int)2〉corr ≡ 〈(G int, fluc

s )2〉
of Sec. II for Eq. (150), we can write

Ga ∼ G int, fluc
s

√
Lϕ

L
� G int, fluc

s

(we recall that Ga ≡ G int
a ).

(b) LT � Lϕ � L. The determination of the fluctuations
requires to combine the two short-range correlators (96) and
(127), leading to

〈
G2

a

〉(1) � 4

9
τ 2
D

(
L

ξloc

)2(
LT

L

)4(
Lϕ

L

)7 ∫ ∞

0
du φ(u) ψ(u),

(166)

where the two dimensionless functions were defined above,
see Eqs. (99) and (129). The remaining integrals are more
conveniently computed by integrating first over u, as the
integrants behave exponentially, and then over the dimension-
less frequencies θ in the two remaining integrals. We obtain
numerically

∫∞
0 du φ(u) ψ(u) � 0.006733. As a result,

〈
G2

a

〉 � Ca

(
L

ξloc

)2(
LT

L

)4(
Lϕ

L

)7

τ 2
D, (167)

where Ca � 0.00299. Quite remarkably, we have obtained that
the term (162) in the symmetric part and the antisymmetric part
are of the same order in this regime,

Ga ∼ G int, fluc
s ,

contrary to what was observed when Lϕ � LT . The ra-
tio between the two contributions is, however, quite small√

〈G2
a 〉/〈(G int, fluc

s )2〉 � √
Ca/Cs � 0.27.

E. Magnetic field dependence

The field dependence can be easily obtained by using the
symmetry between the diffuson and cooperon contributions.
The two correlators are related to the high-field correlators as

χg(
r,
r ′)

= χg(
r,
r ′)(1)+(3)|Lϕ→Ld
+ χg(
r,
r ′)(1)+(3)|Lϕ→Lc

, (168)

χs,a
ν (
r,
r ′)

= χs,a
ν (
r,
r ′)(1)+(3)|Lϕ→Ld

± χs,a
ν (
r,
r ′)(1)+(3)|Lϕ→Lc

, (169)

where the two lengths were defined above, Eq. (66).

1. Symmetric part

(a) Lϕ � L, LT . As the calculation of (137) has involved
a single correlation function, we may simply perform in
Eq. (139) the substitution Lϕ → Ld in 〈G2

0 〉(1)+(3), then, per-
forming Lϕ → Lc, we deduce 〈G2

0 〉(2)+(4):

〈G0(B)G0(B′)〉 � 15

16

[(
Ld

L

)7

+
(

Lc

L

)7]
τ 2
D, (170)

where the two lengths were defined above, Eq. (66). The cor-
relation term also coincides with this result 〈G int

s (B)G0(B′)〉 =
−〈G0(B)G0(B′)〉.

The contribution (143) can be obtained by a similar argu-
ment. The simple substitutions in (147) lead to〈

G int
s (B)G int

s (B′)
〉
uncorr � 5

4

[(
Ld

L

)7

+
(

Lc

L

)7]
τ 2
D. (171)

The contribution 〈G int
s (B)G int

s (B′)〉corr can also be straightfor-
wardly obtained thanks to the decoupling between the short-
range correlations of conductance’s functional derivatives and
the long-range correlations of the injectivities. Using (149), we
obtain〈

G int
s (B)G int

s (B′)
〉
corr � 15

16

(
L

ξloc

)2[(
Ld

L

)7

+
(

Lc

L

)7]
×
[(

Ld

L

)3

+
(

Lc

L

)3]
τ 2
D. (172)
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(b) LT � Lϕ � L. The study of the other regime follows
the same lines. We deduce from (140)

〈G0(B)G0(B′)〉 � π

60

(
LT

L

)6
Ld + Lc

L
τ 2
D. (173)

Similarly, the first interaction contribution is deduced from
(155) 〈

G int
s (B)G int

s (B′)
〉
uncorr

� C0

(
LT

L

)2[(
Ld

L

)7

+
(

Lc

L

)7]
τ 2
D

+ π

45

(
LT

L

)6[(
Ld

L

)
+
(

Lc

L

)]
τ 2
D. (174)

Finally, we only consider the dominant term in (161):〈
G int

s (B)G int
s (B′)

〉
corr

� Cs

(
L

ξloc

)2(
LT

L

)4[(
Ld

L

)6

+
(

Lc

L

)6]
×
[
Ld

L
+ Lc

L

]
τ 2
D. (175)

2. Antisymmetric part

(a) Preliminary: antisymmetric part of the injectance corre-
lations. As the asymmetry of the nonlinear conductance under
magnetic field reversal is due to the asymmetry of the injec-
tivity, a good preliminary exercise is to characterize this latter.
In order to simplify the discussion, we analyze the integral of
the injectivity, denoted the injectance, ν1(ε) = ∫

d
r ν1(
r; ε),
whose correlator is given by integration of the correlator
(126): 〈δν2

1〉(1)
a /(L2ν2

0 ) � (1/8)(L/ξloc)2(Lϕ/L)5. Using the
substitution (169), we obtain that the antisymmetric part of
the injectance fluctuations is〈

δν2
1

〉
a

L2ν2
0

� 1

8

(
L

ξloc

)2[(
Ld

L

)5

−
(

Lc

L

)5]
(176)

�
B→0

5

16

(
L

ξloc

)2(
Lϕ

L

)5( B
Bc

)2

, (177)

where Bc = [
√

3/(2π )] φ0/(Lϕw). Therefore
√

〈δν2
1〉a ∝ B

and we expect a similar behavior for the conductance Ga ∝ B.
However, we will see that, surprisingly, the linear behavior is
not always obtained.

(b) RegimeLϕ � LT ,L. As the correlations 〈Ga(B)Ga(B′)〉
involve the integration of two short-range correlators, one has
this time to calculate the integrals by using the substitutions
(168) and (169). Some algebra gives

〈Ga(B)Ga(B′)〉

� 3

8

(
L

ξloc

)2

τ 2
D

{
9

16

[(
Ld

L

)11

+
(

Lc

L

)11]
−
(

LdLc

L2

)4
Ld‖c
L

×
[(

Ld

L

)2(
1 + Ld‖c

4Ld

)
+
(

Lc

L

)2(
1 + Ld‖c

4Lc

)]}
,

(178)

where 1/Ld‖c = 1/Ld + 1/Lc.

The low-field expansion shows that the quadratic term B2

vanishes and we obtain

〈Ga(B)2〉 �
B→0

1599

1024

(
L

ξloc

)2(
Lϕ

L

)11

τ 2
D

( B
Bc

)4

. (179)

This characterizes a quadratic behavior of the nonlinear con-
ductance

Ga(B) ∼
B→0

Ga(∞) sign(B) (B/Bc)2 (180)

in the low-field regime. As it is shown below, the vanishing
of the linear term seems rather accidental as it will not be
obtained for LT � Lϕ , neither in the coherent limit when L �
Lϕ . In these two other situations the linear behavior is obtained
Ga(B) ∼ B.

(c) Regime LT � Lϕ � L. The calculation is more com-
plicated in this regime, hence we will only analyze the B → 0
limit. The starting point combines the two correlators (96) and
(127) leading to

〈Ga(B)Ga(B′)〉 � 4

9
τ 2
D

(
L

ξloc

)2(
LT

L

)4

×
∫ ∞

0

dρ

L

[(
Ld

L

)4

φ

(
ρ

Ld

)
+(Ld → Lc)

]
×
[(

Ld

L

)2

ψ

(
ρ

Ld

)
− (Ld → Lc)

]
.

(181)

The calculation of the integral is a little bit complicated,
however, the expansion as B = B′ → 0 leads to trackable cal-
culations. We write Ld = Lϕ and Lc � Lϕ [1 − (B/Bc)2/2],
leading to

〈Ga(B)2〉 � Ka

(
L

ξloc

)2(
LT

L

)4(
Lϕ

L

)7( B
Bc

)2

τ 2
D (182)

for B � Bc, where

Ka = 8

9

∫ ∞

0
du φ(u)

[
ψ(u) − 1

2
uψ ′(u)

]
� 0.00642. (183)

Thus we have obtained the expected linear behavior

Ga(B) ∼
B→0

Ga(∞) (B/Bc). (184)

VIII. COHERENT REGIME

In the coherent limit, L � Lϕ , we cannot anymore use the
translation invariant property inside the wire and the effect
of the boundaries must be treated properly. We have thus to
reconsider the analysis of the two main correlators in this
regime.

A. Correlators

A convenient starting point for the determination of the
correlators in this case is to expand the propagator (69) for
ω = 0 as

P
(d)
0 (x,x ′)

=
γ→0

Pd (x,x ′)[1 + γ A1(x,x ′) + γ 2 A2(x,x ′) + O(γ 3)]

(185)
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FIG. 11. Correlator χg(
r,
r ′) for x ′/L = 0.2, 0.4, 0.6, and 0.8.
The dotted line is the envelope χg(
r,
r).

with

A1(x,x ′) = x2
< + (L − x>)2 − L2

6
(186)

and

A2(x,x ′) = 1
360 {7 L4 − 10 L2 [x2

< + (L − x>)2]

+ 3 x4
< + 10 x2

< (L − x>)2 + 3 (L − x>)4}.
(187)

1. Correlator χg

We now deduce from (85) χg(
r,
r ′)(1) =
[4/(D2L4)] 2 Pd (x,x ′)2 [2A2(x,x ′) − A1(x,x ′)2], i.e.,

χg(
r,
r ′)(1) = 4τ 2
D

45L2

(
Pd (x,x ′)

L

)2(
1 − x4

< + (L − x>)4

L4

)
.

(188)

The correlator is plotted in Fig. 11.

2. Correlator χ s
ν

The symmetric part of the injectivity correlator may be
calculated from (109). Some algebra gives

χs
ν (
r,
r ′)(1) = 2

45

(
L

ξloc

)2
Pd (x,x ′)

L

×
{

6 [x4
< + (L − x>)4] − 10 x2

<(L − x>)2

L4

− 15
x3

< + (L − x>)3

L3
+ 10

x2
< + (L − x>)2

L2
− 1

}
,

(189)

which can change in sign as shown by Fig. 12.

3. Correlator χ a
ν

The antisymmetric part is more easy to determine thanks to
(124).

(a) High magnetic field. In the high-field regime, the
cooperon contributions are suppressed, hence, replacing P (d)

ω

by Pd in (124) we obtain straightforwardly the simple

FIG. 12. Correlator χs
ν (
r,
r ′) for x ′/L = 0.2, 0.4, 0.6, and 0.8.

The dotted line is the envelope χs
ν (
r,
r).

expression

χa
ν (
r,
r ′)(1) = 2

9

(
L

ξloc

)2[
Pd (x,x ′)

L

]3

. (190)

(b) Low magnetic field. A nontrivial result is obtained by
keeping the first-order term in γ in the expansion of the
propagator, hence

χa
ν (
r,
r ′)(1)+(2)

� 4

ξ 2
loc

(γd − γc)

L2

∫ x<

0
dξ

∫ L

x>

dξ ′ Pd (ξ,ξ ′)2 A1(ξ,ξ ′). (191)

As a result we obtain

χa
ν (
r,
r ′)(1)+(2) � 2

135

(
L

ξloc

)2

(γc − γd )L2

×
(

Pd (x,x ′)
L

)3(
5 − 3

x2
< + (L − x>)2

L2

)
.

(192)

The spatial dependence is plotted in Fig. 13.

B. Nonlinear conductance

1. Weak magnetic field

The symmetric part of the nonlinear conductance depends
weakly on the magnetic field. We determine the zero-field
value. Equation (137) with (188) gives 〈G2

0 〉(1) = τ 2
D/4725. As

FIG. 13. Correlator χa
ν (
r,
r ′) in the low magnetic field regime for

x ′/L = 0.2, 0.4, 0.6, and 0.8. The dotted line is the envelope χa
ν (
r,
r).

075306-24



NONLINEAR CONDUCTANCE IN WEAKLY DISORDERED … PHYSICAL REVIEW B 97, 075306 (2018)

all terms contribute the same in this limit, the result must be
multiplied by 2×(3/2): 〈

G2
0

〉 = τ 2
D

1575
. (193)

Now we analyze the symmetric part of the interaction
contribution. The first term (143) is〈(

G int
s

)2〉
uncorr = 139

207 900
τ 2
D. (194)

The correlation is 〈
G0G int

s

〉 = − τ 2
D

1575
. (195)

The contribution from interaction combines (188) and (189).
We find 〈(G int

s )2〉(1)
corr = (8/452)(19/38 610) (L/ξloc)2τ 2

D . As
each correlator χg and χs

ν receives a factor 3 in order to account
for other contributions, the result must be multiplied by a
factor 9: 〈(

G int
s

)2〉
corr = 76

4 343 625

(
L

ξloc

)2

τ 2
D. (196)

Gathering all contributions, we obtain〈
G2

s

〉 = 〈
G2

0

〉+ 2
〈
G0G int

s

〉+ 〈(G int
s

)2〉
uncorr + 〈(G int

s

)2〉
corr

=
[

1

29 700
+ 76

4 343 625

(
L

ξloc

)2]
τ 2
D (197)

in the zero-field limit. It is worth stressing that the small
dimensionless prefactor 〈G2

s 〉 � 3.3×10−5 τ 2
D has its origin

in the compensation between the free electron result, with
much larger prefactor 1/1575 � 6.3×10−4, and negative con-
tributions from screening, which renormalizes the disordered
potential.

Finally, we analyze the weak magnetic field behavior of the
antisymmetric part by combining (188) and (192). We now
include the factor 3 in the correlator χg and get

〈Ga(B)Ga(B′)〉

� 38

51 121 125

(
L

ξloc

)2[(
L

Lc

)2

−
(

L

Ld

)2]
τ 2
D. (198)

In particular, for Lϕ = ∞, we have Ld = ∞ and Lc = LB,
hence

〈Ga(B)2〉 �
B→0

38

51 121 125

(
L

ξloc

)2( B
Bc0

)2

τ 2
D, (199)

where the crossover field is now Bc0 = [
√

3/(2π )] [φ0/(Lw)].

2. High magnetic field

We now discuss the high-field result, B � Bc0. The domi-
nant contributions to the symmetric part of the nonlinear con-
ductance all involve a single correlator χg , hence Eqs. (193)–
(195) should all be divided by a factor of 2 in the high-field
regime in order to account for the suppression of the cooperon
contribution (while the negligible contribution (196) should
be divided by a factor 4 as it involves the product of two
correlators), so that 〈

G2
s

〉 � τ 2
D

59 400
. (200)

Combining (188) and (190) we deduce 〈G2
a 〉(1) =

(8/7 818 525)(L/ξloc)2τ 2
D . The result must be multiplied by

a factor (3/2) in order to account for the second diffuson
contribution χg

(3) (recall that χa
ν

(3) = 0):

〈
G2

a

〉(1)+(3) = 4

2 606 175

(
L

ξloc

)2

τ 2
D. (201)

IX. CONCLUSION

We have studied the nonlinear conductance of weakly disor-
dered wires and have analyzed the effect of Coulomb interac-
tion by combining the scattering formalism introduced by Büt-
tiker and diagrammatic techniques. We have derived general
formulas for injectivity correlators χs,a

ν (
r,
r ′), Eqs. (109) and
(111), and the correlators χg(
r,
r ′) of conductance’s functional
derivatives, Eq. (84) (although some of the external diffusons
were simplified in these general expressions, assuming the
wire geometry, the external diffusons can be reintroduced
straightforwardly). We recall that the existence of a nonzero
antisymmetric part, χa

ν 	= 0, crucially relies on the external dif-
fusons in the injectivity correlator (108), i.e., on the asymmetry
between the two diagrams of Fig. 8.

Although we have applied our formalism to the simple
geometry of a wire connected at two-terminals (Fig. 1), it can
in principle be applied to more complex geometries, like it
was done for other physical quantities in Refs. [54,57,82]. The
calculation in the general case would, however, become quite
heavy as the main formulas are given under the form of multiple
integrals (six spatial integrals and two energy integrals, as
we have seen).

The correlator 〈G2〉 for a wire has been split into different
contributions which have been analyzed separately. From the
experimental point of view, it is only possible to distinguish
contributions from their symmetry under magnetic field rever-
sal, i.e.,Gs,a(B) = [G(B) ± G(−B)]/2. We now summarize the
new results obtained in the paper.

A. Coherent regime

In the coherent regime L � Lϕ and in absence of magnetic
field, we have obtained in Sec. VIII that

〈Gs(0)2〉 =
(

1

29 700
+ 76

4 343 625
g−2

)
E−2

Th , (202)

where g = ξloc/L is the dimensionless (Drude) conductance.
The first term thus mixes the noninteraction term G0 and
some of the contributions to G int

s . The value obtained for free
electrons, 〈G2

0 〉 = E−2
Th /1575, is compensated by terms of the

same order, leading to a result smaller by a factor∼ 1/20; this is
due to screening, which strongly renormalizes the electrostatic
potential inside the wire. This reminds us that Coulomb inter-
action has a strong effect and brings contributions of the same
order as the one given by the free electron (Landauer-Büttiker)
theory. The last contribution 〈(G int

s )2〉corr ≡ 〈(G int, fluc
s )2〉 ∼

(gETh)−2 originating from the mesoscopic fluctuations of the
electrostatic potential is negligible due to the factor g−2 � 1
(note that 76/4 343 625 � 1.7×10−5 is approximatively one
half of 1/29 700 � 3.4×10−5). In the high-field regime
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(B � Bc0), the fluctuations are twice smaller:

〈Gs(∞)2〉 � 1

59 400
E−2

Th , (203)

whereas the antisymmetric part is

〈Ga(∞)2〉 � 4

2 606 175
(gETh)−2. (204)

Varying the magnetic field, the magnetic field dependence
is linear at low field, Ga(B) ∼ Ga(∞) (B/Bc0), where the
crossover field Bc0 ∼ φ0/(Lw) corresponds to one quantum
flux in the wire.

B. Weakly coherent regime

In the weakly coherent regime Lϕ � LT , L we have ob-
tained in Sec. VII that

〈Gs(∞)2〉 � 5

16

[
1 + 3

g2

(
Lϕ

L

)3](
Lϕ

L

)7

E−2
Th (205)

in the high-field regime B � Bc ∼ φ0/(Lϕw). In practice,
we can expect that the crossover between the coherent (203)
and incoherent (205) results occurs by equating the two
expressions, i.e., for Lϕ/L � 5.7. The antisymmetric part is
given in this regime by

〈Ga(∞)2〉 � 27

128

(
Lϕ

L

)11

(gETh)−2. (206)

Crossover with (204) occurs for Lϕ/L � 0.341. We have also
shown that, surprisingly, the B → 0 behavior is quadratic
Ga(B) ∼ Ga(∞) sign(B) (B/Bc)2, where Bc ∼ φ0/(Lϕw).

C. Thermal fluctuations

In the regime LT � Lϕ � L, we derived (for B � Bc):

〈Gs(∞)2〉 �
[

π

180

(
LT

L

)6
Lϕ

L
+ C0

(
LT

L

)2(
Lϕ

L

)7

+ Cs

g2

(
LT

L

)4(
Lϕ

L

)7]
E−2

Th , (207)

where C0 � 0.0409 and Cs � 0.0414. The dominant term is
produced by the contribution 〈(G int

s )2〉uncorr and the result of
a calculation for free electrons is negligible, underlying once
more the importance of screening. This observation, which
has led in particular to the behavior G ∝ T −1/2, compared to
G0 ∝ T −3/2, crucially relies on the nontrivial spatial structure
of the correlator χg(
r,
r ′). The first term in (207) allows one to
understand how the matching with the dominant term of (205)
is realized at LT ∼ Lϕ . However, for LT /Lϕ sufficiently small,
we can neglect it, leading to

〈Gs(∞)2〉 � C0

(
LT

L

)2(
Lϕ

L

)7

E−2
Th . (208)

The antisymmetric part is

〈Ga(∞)2〉 � Ca

g2

(
LT

L

)4(
Lϕ

L

)7

E−2
Th , (209)

where Ca � 0.00299, i.e., of the same order as the last term of
(207).

The behavior for B → 0 was also obtained:

〈Ga(B)2〉 � Ka

g2

(
LT

L

)4(
Lϕ

L

)7( B
Bc

)2

E−2
Th , (210)

where Ka � 0.00642.
In all regimes, the contribution 〈(G int

s )2〉corr ≡ 〈(G int, fluc
s )2〉 is

negligible. However, the contribution 〈G2
a 〉, with same physical

origin, can in principle be identified from its magnetic field
dependence.

D. Decoherence by electronic interaction

At low temperature (T � 1 K), decoherence is dominated
by electronic interactions, which leads to the following tem-
perature dependence of the phase coherence length,

Lϕ =
√

2
(
ξlocL

2
T

/
π
)1/3 ∝ T −1/3, (211)

valid for LT � Lϕ (thus Lϕ � ξloc); the main behavior
was first derived in the seminal paper of Ref. [87], al-
though the prefactor given in this reference is incorrect (see
Refs. [21,57,88,89] and references therein) [90]. As a result, if
(211) is substituted in (208) and (209) we obtain the behaviors
(at high field B � Bc)

〈Gs(∞)2〉 � 8
√

2C0

π7/3
g7/3

(
LT

L

)20/3

E−2
Th , (212)

〈Ga(∞)2〉 � 8
√

2Ca

π7/3
g1/3

(
LT

L

)26/3

E−2
Th . (213)

It is also interesting to rewrite the low-field behavior (182)
or (210). In order to identify the Lϕ dependence, we write
B/Bc = (Lϕ/L)(B/Bc0), where Bc0 = [

√
3/(2π )] [φ0/(Lw)]

is the correlation field for the coherent wire. As a result, for
B � Bc we find

〈Ga(B)2〉 � 16
√

2Ka

π3
g

(
LT

L

)10( B
Bc0

)2

E−2
Th . (214)

All these results show that, as the temperature is increased,
the nonlinear conductance decays quite fast since it involves
high powers of the phase coherence length. Measurement
should be favored by considering small coherent devices,
with not to large conductance (i.e., wires etched in a two-
dimensional electron gas).

E. Open questions

In the coherent limit, the simple description of contacts,
which we have adopted (absorbing boundary conditions for
the diffusion propagators) might not be fully appropriate as
the contacts have usually a two-dimensional character. This
problem was considered for the weak localization in Ref. [92]
(see also Ref. [93]). A study of this effect would therefore
be useful in order to provide more accurate predictions to be
confronted with experiments in the coherent regime.

As we discussed, the sign of the nonlinear conductance
is fluctuating, which implies 〈G〉 = 0 and is reflected by
the change in sign of the zero temperature correlator (see
Sec. VII C 3). Deyo, Spivak, and Zuyzin [28] argued that
this is related to the nonmonotonous dependence with the
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temperature. We have not considered this problem in the paper,
which would therefore deserve further investigation in the
diffusive regime.

We come back on our assumption of perfect screening
(Sec. III B). In this regime, it is expected that Hartree and
Fock contributions to low-temperature properties of weakly
disordered metals are equally important. For several well
studied quantities, this can be accounted for through interaction
constants, without changing the functional dependence in
the characteristic scales (like the thermal length, etc): this
is the case for the DoS anomaly and the Altshuler-Aronov
correction to the conductivity [19,21]. For the nonlinear
conductance in zero-dimension (quantum dots), as studied in
Refs. [15,16,28–30], the nature of screening was accounted
for through a global dimensionless constant, denoted γint =
Cμ/C in Refs. [15,18,29,30] and β in Refs. [16,28]. In these
last references, the possibility of introducing an interaction
constant for the nonlinear transport can be related to the local
nature of the response of the electrostatic density to the density
of injected charge carriers, in other terms, following Ref. [28],
one would have to add a dimensionless interaction constant in
our Eq. (33), which would have very simple consequences on
the calculations of the present paper. The precise justification
of such a simple prescription seems, however, not obvious,
in particular beyond the zero-dimensional limit where spatial
structures or correlation functions are important, as we have
seen. This point should therefore be further studied.

In the experiment [18,40], measurements were performed
in a different geometry (ring). It would thus be interesting
to extend our calculations for the wire to more complex
geometries, starting from the general expression (54) and (57)
[the correlator χg in the general case can be obtained by using
(82) on (76)–(79) while the general expression of χν is given
by (109) and (110)] and with the help of the formalism of
Refs. [54,57,82] (note that the nonlinear response of a ring
made of strictly 1D wire was analyzed in Ref. [94]).
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APPENDIX A: ABSENCE OF CORRELATION BETWEEN
INJECTIVITY AND FUNCTIONAL DERIVATIVE

OF THE CONDUCTANCE

We briefly consider the correlation between the injectivity
ν1(
r; ε) and the functional derivative δg(ε′)/δU (
r ′), which was
not considered in the paper. The key observation is that this
requires to correlate a single injectivity diagram

(A1)

with a pair of conductance lines

+ (A2)

FIG. 14. Correlation 〈ν1(
r; ε) δg(ε′)/δU (
r ′)〉 vanishes.

(see Fig. 3). As a result, a diagram contributing to the corre-
lator 〈ν1(
r; ε) δg(ε′)/δU (
r ′)〉 is always paired with a similar
diagram in which retarded and advanced lines are exchanged,
like in Fig. 14, which vanishes by virtue of Eq. (83).

Therefore, in the weak disorder limit and within the dif-
fusion approximation, the injectivity and the conductance’s
functional derivative are uncorrelated:〈

ν1(
r; ε)
δg(ε′)
δU (
r ′)

〉
= 0. (A3)

APPENDIX B: THERMAL FUNCTIONS

Finite temperature calculations involve the thermal function

�V (ε) = f (ε − eV/2) − f (ε + eV/2), (B1)

for eV > 0, where f (ε) is the Fermi-Dirac distribution. It is
convenient to introduce the Fourier transform

�̂V (t) =
∫

dε

2π
�V (ε) e−iεt (B2)

in order to express the function

F (ω; V,T ) =
∫

dε �V (ε) �V (ε − ω) (B3)

= 2π

∫
dt �̂V (t) �̂V (−t) eiωt , (B4)

which has a width max(T ,eV ). Using the property∫
dω F (ω; V,T ) =

[∫
dε �V (ε)

]2

= (eV )2 (B5)

we deduce that the function has height eV min(1,eV/T ). This
function is useful to express integrals of the form∫

dεdε′ �V (ε) �V (ε′) �(ε − ε′) =
∫

dω F (ω; V,T ) �(ω),

(B6)

where �(ω) is a known function. The function

G(ω; V,T ) = 2π

∫
dt

∂�̂V (t)

∂(eV )

∂�̂V (−t)

∂(eV )
eiωt . (B7)

will also be useful.

075306-27



CHRISTOPHE TEXIER AND JOHANNES MITSCHERLING PHYSICAL REVIEW B 97, 075306 (2018)

1. Linear regime V → 0

In the small voltage regime, we have

lim
V →0

1

eV
�̂V (t) = 1

2π

(
πT t

sinh πT t

)
, (B8)

from which we deduce that

lim
V →0

1

(eV )2
F (ω; V,T ) = δT (ω) (B9)

is a normalized function of width T . Explicitly,

δT (ω) = 1

2T
h(ω/(2T )) with h(x) = x coth x − 1

sinh2 x
. (B10)

In other terms, we have the useful property∫
dεdε′ ∂f (ε)

∂ε

∂f (ε′)
∂ε′ �(ε − ε′) =

∫
dω δT (ω) �(ω).

(B11)

2. Nonlinear regime at T = 0

The zero temperature limit is also easy to discuss as
�V (ε) = θH(eV/2 − |ε|) (where the Fermi energy is at zero
for simplicity). As a result

F (ω; V,0) =
{
eV − |ω| for ω ∈ [−eV, + eV ]
0 otherwise . (B12)

We also deduce easily the function (B7)

G(ω; V,0) = 1
2 δ(ω) + 1

4 δ(ω − eV ) + 1
4 δ(ω + eV ). (B13)

APPENDIX C: RELATION WITH THE RESULTS
OF KHMELNITSKII AND LARKIN

Although the scattering approach was criticized in Ref. [28]
when applied to problems with electronic interactions, the
equivalence of the scattering formalism of Büttiker [59,60]
with the result of a similar calculation (Hartree within Thomas-
Fermi approximation) within the nonequilibrium Green’s func-
tion (Keldysh) method was established by Hernández and
Lewenkopf [63]. In this appendix, we would like to discuss
this equivalence specifically for the case of disordered metals.
In the present paper, we have used the scattering formalism of
Büttiker [59,60] describing nonlinear transport and including
the effect of interaction in a Thomas-Fermi approximation. The
general formulas of this formalism were used as a starting point
to apply the standard diagrammatic techniques for weakly dis-
ordered metals. We propose here another equivalent approach,
which starts from the main result of Khmelnitskii and Larkin
[5,6] I -V characteristic in disordered metals, and we show how
we can include the effect of electronic interactions on top of this
theory in order to establish the correspondence with the results
obtained from the scattering formalism applied to weakly
disordered metals. Before establishing this correspondence, we
first recall the main formula of Refs. [5,6] and briefly discuss
few outcomes which are useful for the paper.

1. Mesoscopic fluctuations of the I-V characteristic

Khmelnistskii and Larkin (KL) used the nonequilibrium
Green’s function method, which allows to deal directly with

the observable (the current) in the nonequilibrium situation,
which is simpler than the correlation functions (conductivity)
that appear in the linear response theory. Denoting by I (V )
the current-voltage relation, one obtains the formula for the
current correlations in a disordered wire [95]:

〈δI (V1) δI (V2)〉=
(

2se

h

)2∫
dεdε′[f (ε−eV1L)−f (ε−eV1R)]

× [f (ε′−eV2L)−f (ε′−eV2R)]

×
∫

dxdx ′

L4

{
4
∣∣P (d)

ε−ε′ (x,x ′)
∣∣2+2 Re

[
P

(d)
ε−ε′ (x,x ′)2]

+ (P (d)
ω → P (c)

ω

)}
, (C1)

where V1L and V1R are the potentials at the two contacts in
the configuration 1, etc. We emphasize that (C1) describes the
mesoscopic (sample to sample) fluctuations of the averaged
current, where averaging is made over quantum and thermal
fluctuations (this should not to be confused with the current
noise). The diffuson and cooperon solve the equation[

1

L2
ϕ

− i
ω − U1(
r) + U2(
r)

D
− ( 
∇ − 2ie 
A∓)2

]
P (d,c)

ω (
r,
r ′)

= δ(
r − 
r ′), (C2)

where U1,2(
r) = eV1,2 (1 − x/L) is the potential inside the
wire for a voltage V1,2. The vector potentials 
A± are defined
in Sec. V A 2.

Case V1 = V2: Current fluctuations and linear conductance

The fluctuations 〈δI (V )2〉 are easy to compute as the
solution of (C2) is simply obtained in this case. Let us briefly
recall this analysis. We introduce the correlator of the zero
temperature dimensionless conductance

C (ω) = 〈δg(εF )δg(εF − ω)〉. (C3)

The first contribution is

C (ω)(1) = 4
∫

dxdx ′

L4

∣∣P (d)
ω (x,x ′)

∣∣2, (C4)

to which one should add the other diffuson contribution C (ω)(3)

and the two cooperon contributions, C (ω)(2) and C (ω)(4), cf.
Eq. (C1). As a result, C (ω) = C (ω)(1) + C (ω)(2) + C (ω)(3) +
C (ω)(4) and

〈δI (V )2〉 =
(

2se

h

)2 ∫
dω F (ω; V,T ) C (ω), (C5)

where the thermal function F (ω; V,T ) was defined in
Appendix B.

The most efficient method furnishing the correlator C (ω)
is to introduce the spectral determinant:

C (ω)(1) = 4

L4
tr

{
1

γω − ∂2
x

1

γ ∗
ω − ∂2

x

}
= 4

L4

1

γ ∗
ω − γω

(
∂

∂γω

ln S(γω) − c.c.

)
, (C6)

where γω = 1/L2
ϕ − iω/D. The functional determinant

S(γω) = det(γω − ∂2
x ) can be efficiently computed for arbi-

trary network geometries [96–100]. For a wire with Dirichlet
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boundary conditions, we have S(γ ) = sinh(
√

γL)/
√

γ . In the
coherent limit (Lϕ = ∞) and for B = 0, we deduce

C (ω) = 3

2x3

(
sinh 2x + sin 2x

cosh 2x − cos 2x
− 1

x

)
, (C7)

where x = √
ωτD/2 and τD = L2/D is the Thouless time. The

low-frequency expansion reads C (ω) = (2/15)[1 − (ωτD)2/

105 + O(ω4)]. The first term corresponds to universal conduc-
tance fluctuations of the coherent wire, C (0) = 〈δg2〉 = 2/15.

Below, we simplify the analysis by considering the limit
L � Lϕ , when boundary conditions can be neglected. We get
(at B = 0)

C (ω) � 3
√

2 (Lϕ/L)3√
(1 + (ωτϕ)2)(

√
1 + (ωτϕ)2 + 1)

. (C8)

The conductance fluctuations are now 〈δg2〉 � 3(Lϕ/L)3.
We check that the expressions (C7) for ωτD � 1 and (C8)

for ωτϕ � 1, present the same large frequency behavior

C (ω) � 3
√

2 |ωτD|−3/2, (C9)

as it should.
We consider the case max(T ,eV ) � 1/τϕ , when C (ω) is

a narrow function compared to F (ω; V,T ), which can be
replaced by F (0; V,T ) in Eq. (C5). We define the length
scale LV = √

D/(eV ) similar to the thermal length LT =√
D/T . For convenience we introduce the rescaled current

Ĩ = [h/(2se)] I (with dimension [Ĩ ] = [Energy]). We now
apply (C5): the function F (ω; T ,V ) can be considered as a
narrow function of width ∼ T in the linear regime eV � T

(i.e., LT � LV , Lϕ) or of width ∼ eV in the nonlinear regime
eV � T (i.e., LV � LT , Lϕ). As a result

〈δĨ (V )2〉 � 2π

β

⎧⎪⎨⎪⎩
(eV )2 L2

T Lϕ

3L3
∝ V 2 for eV � T

(eV )2 2L2
V Lϕ

L3
∝ V for eV � T

, (C10)

where we have simplified the discussion of the B dependence
by introducing the Dyson index β, which describes the two
limiting cases: zero field (β = 1) or strong field (β = 2). If we
introduce the dimensionless conductance

g(V ) = Ĩ (V )

eV
, (C11)

we can rewrite the second line of (C10) as

〈δg(V )2〉 ∼ ETh

eV

√
EThτϕ. (C12)

The fluctuations of the conductance decay with V (Fig. 15).
Correspondingly, the fluctuations of the current grow as
〈δI (V )2〉 ∼ V (Fig. 16).

2. Fluctuations of the differential conductance

KL also analyzed in Refs. [5,6] the correlations of the
differential conductance

gd (V ) = 1

e

dĨ (V )

dV
= g(V ) + V

dg(V )

dV
, (C13)

cV

~1/ V

>>1g

~1

g(V)

0 V

FIG. 15. Typical structure expected for the linear conductance
g(V ) = Ĩ (V )/(eV ) of a coherent wire L � Lϕ at T � ETh, eV .
Correlations occur on scale Vc = ETh/e, which is also the scale for
the crossover between linear and nonlinear regimes.

which requires the knowledge of the correlations (C1) for
V1 	= V2 as 〈δgd (V1)δgd (V2)〉 = (∂2/∂V1∂V2)〈δĨ (V1) δĨ (V2)〉.
The analysis is more complicated as we must also account for
the dependence of the correlator C (ω) in the voltage difference
�V = V1 − V2, cf. Eq. (C2). From (C5), we get

〈δgd (V )2〉 =
∫

dω

[
G(ω; V,T ) C (ω)

−F (ω; V,T )
∂2C (ω)

∂(e�V )2

∣∣∣∣
�V =0

]
, (C14)

where the two thermal functions were defined above, Eqs. (B3)
and (B7). For T = 0, using (B13), we get

〈δgd (V )2〉 = C (0) + C (eV ) − 2C (0) + C (−eV )

4

−
∫

dω F (ω; V,0)
∂2C (ω)

∂(e�V )2

∣∣∣∣
�V =0

, (C15)

where the first term is the conductance fluctuations 〈δg2〉 =
C (0) at zero voltage.

a. Coherent regime

We consider first the coherent regime L � Lϕ , when the
correlator (C7) has height C (0) ∼ 1 and width ∼ ETh. For
low voltage eV � ETh, we can treat the thermal function
F (ω; V,0) as a narrow function, which leads to rewrite (C15)

∼ √
V

V

I(V )I(V )

VV

slope: gd(V )

slope: g(V )

curvature: G
0
0 V

slope: g(0) = gd(0)

FIG. 16. Difference between the conductance g = I/V and the
differential conductance gd = dI/dV of a coherent wire. For V �
Vc = ETh/e, the current fluctuations grow as ∼ √

V and correlations
of the I (V ) curve decay over the scale Vc. The nonlinear conductance
G studied in the paper corresponds to the curvature of the I (V ) curve
at origin.
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as

〈δgd (V )2〉 � 〈δg2〉 + (eV )2

[
C ′′(0)

4
− ∂2C (0)

∂(e�V )2

∣∣∣∣
�V =0

]
.

(C16)

Simple dimensional analysis shows that the correction to
〈δgd (0)2〉 = 〈δg2〉 is a small correction:

〈
δgd (V )2

〉− 〈δg2
〉 ∼ (

eV

ETh

)2

. (C17)

It is important to stress one point: while (C17) provides
information about the low-voltage behavior of 〈δgd (V )2〉 −
〈δgd (0)2〉, we have studied in our paper the fluctuations of the
nonlinear conductance 〈[gd (V ) − gd (0)]2〉 = (2eV )2〈G2

0 〉 +
O(V 4), which carries the genuine information about the
magnetic field asymmetry. Although the two quantities present
similar behaviors, cf. Sec. VIII where 〈G2

0 〉 for eV � ETh was
derived, they do not coincide exactly.

In the high-voltage regime eV � ETh, the thermal function
in Eq. (C15) can be treated as a broad function, and thus
replaced by F (0; V,0) = eV . This shows that the last term of
(C15) dominates as it grows with the voltage, while C (±eV )
decays with V , cf. Eq. (C9), thus

〈δgd (V )2〉 � −eV

∫
dω

∂2C (ω)

∂(e�V )2

∣∣∣∣
�V =0

. (C18)

By dimensional analysis, we recover the LK prediction [5]

〈δgd (V )2〉 ∼ eV

ETh
for eV � ETh; (C19)

see also Ref. [7], where it was argued that this result is not
relevant from the experimental point of view, as it only occurs
for very large ratio eV/ETh in practice.

The linear growth 〈δgd (V )2〉 ∼ eV /ETh, which is related
to the existence of regions of negative differential conduc-
tance (Fig. 16), can be confronted with the decay of the
linear conductance’s fluctuations 〈δg(V )2〉 ∼ ETh/(eV ). Let
us show that the two behaviors are simply related: given
that the correlation function 〈δg(V1)δg(V2)〉 is a function of
height 〈δg(V )2〉 ∼ ETh/(eV ) and width (correlation scale)
Vc = ETh/e, we can deduce the correlations of the differential
conductance gd = g + V dg/dV . Fluctuations are dominated
by the second term 〈δg2

d〉 ∼ V 2〈(dg/dV )2〉. The derivative
〈(dg/dV )2〉 ∼ 〈δg2〉/V 2

c therefore 〈δg2
d〉 ∼ (V/Vc)2〈δg2〉 ∼

eV/ETh.

b. Weakly coherent regime

In the regime Lϕ � L, the analysis is similar to the one in
the previous paragraph, with the difference that the correlator
(C8) is now a function of small height C (0) ∼ (Lϕ/L)3

and width 1/τϕ . The weakly coherent regime now involves
three energy scales (ETh, eV and 1/τϕ), thus one must be
careful with scaling arguments. The diffusion propagators are
translationally invariant when Lϕ � L, hence all quantities
can be rescaled by Lϕ . Inspection of the diffuson

P (d)
ω (x,x ′) = 〈x| 1

1/L2
ϕ − i(ω − eE x)/D − ∂2

x

|x ′〉,

where E = �V/L, makes clear that, when all physical quan-
tities are rescaled by Lϕ , the electric field should be rescaled
as E ∼ 1/L3

ϕ , and thus the potential scales as �V ∼ L/L3
ϕ .

In the low-voltage regime eV � 1/τϕ , we can start again
from (C16). Following the scaling argument, we can replace
the derivative by ∂/∂(e�V ) −→ L3

ϕ/(DL). This shows that
the last term of (C16) is negligible compare to C ′′(0) ∼ τ 2

ϕC (0)
and leads to

〈δgd (V )2〉 − 〈δg2〉 ∼
(

eV

ETh

)2(
Lϕ

L

)7

eV τϕ � 1. (C20)

Note that C ′′(0) < 0 (see above), thus 〈δgd (V )2〉 decays with
V at low voltage.

In the high-voltage regime eV � 1/τϕ , we start in-
stead from (C18). The scaling argument gives 〈δg2

d〉 ∼
eV (1/τϕ) (L3

ϕ/DL)2 C (0), hence

〈δgd (V )2〉 ∼ eV

ETh

(
Lϕ

L

)7

for eV τϕ � 1. (C21)

We have recovered the result of LK [5,6] (cf. also the in-
troduction of Ref. [7]). Interestingly, we have obtained the
same power L7

ϕ for 〈G2
0 〉 (regime eV τϕ � 1) and 〈δg2

d〉 (regime
eV τϕ � 1), however, we have seen that exponent 7 arises from
different combinations in the two cases. Finally, we recall LK’s
result for the correlations (Eq. (27) of Refs. [5,6]):

〈δgd (V1)δgd (V2)〉 ∼ eV

ETh

(
Lϕ

L

)7

Q

(
e�V

DL
L3

ϕ

)
(C22)

withV = (V1 + V2)/2 and�V = V1 − V2. The dimensionless
function is Q(0) ∼ 1 and decays as Q(x) ∼ x−7/3 [5]. It
involves the scaling variable identified above.

3. Relation with the formalism of the paper

We now add the same physical ingredients as the one
exposed in Sec. III in order to show how the main expressions
obtained within the scattering formalism can be recovered.
As explained in Sec. II, the contribution of electronic inter-
actions to the nonlinear conductance is due to the fact that
the electrostatic potential presents mesoscopic fluctuations.
Hence, if we consider the correlator (C1) for V1 = V2, the
mesoscopic potential fluctuations could be accounted for by
considering the two potentials in the diffusion equation (C2)
as two mesoscopic fluctuations δU1(
r) and δU2(
r) charac-
terizing the two configurations. That is, the potentials are
U1,2(
r) = eV (1 − x/L) + δU1,2(
r) with the same average but
with different mesoscopic fluctuations δU1,2 ∼ V/g.

We treat these fluctuations in perturbation theory, thus
we write the perturbative correction to the propagator
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as

δP (d,c)
ω (
r,
r ′) = − i

D

∫
d
r ′′ P (d,c)

ω (
r,
r ′′)

× [δU1(
r ′′)−δU2(
r ′′)] P (d,c)
ω (
r ′′,
r ′) + · · · .

(C23)

Starting from Eq. (76), either we consider the first-order correc-
tion for each diffuson or a second-order correction in one of the
diffusons. Up the potentials, this produces the six contributions
represented by the diagrams of Fig. 6. We now average all
pairs of potentials 〈δU1(
r) δU2(
r ′)〉. One must be careful of
the fact that we have considered the first-order correction
in the interaction for each nonlinear conductance, therefore
each conductance must be interrupted by an interaction line
once only, like in Fig. 10, which corresponds to retaining the

terms 〈δU1(
r) δU2(
r ′)〉 (a term with 〈δU1(
r) δU1(
r ′)〉 would
correspond to two interactions for one of the conductance).
For example, one contribution obtained from (76) is

4

L4

∫
dxdx ′Pω(x,ξ ) Pω(ξ,x ′) P−ω(x ′,ξ ′) P−ω(ξ ′,x)

×
(

i

D

)2

〈δU1(ξ ) δU2(ξ ′)〉. (C24)

We now use that the potential in the wire is related to
the characteristic potential by U (x) � u1(x) eV in order to
recover the structure (144) where the previous equation exactly
corresponds to the first term of (84) and 〈δU1(ξ ) δU2(ξ ′)〉 =
(eV )2χν(ξ,ξ ′). This establishes the correspondence with the
scattering formalism of Büttiker when applied to disordered
metals.
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