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Parity bifurcations in trapped multistable phase locked exciton-polariton condensates
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We present a theoretical scheme for multistability in planar microcavity exciton-polariton condensates under
nonresonant driving. Using an excitation profile resulting in a spatially patterned condensate, we observe organized
phase locking which can abruptly reorganize as a result of pump induced instability made possible by nonlinear
interactions. For π/2 symmetric systems this reorganization can be regarded as a parity transition and is found to
be a fingerprint of multistable regimes existing over a finite range of excitation strengths. The natural degeneracy
of the planar equations of motion gives rise to parity bifurcation points where the condensate, as a function of
excitation intensity, bifurcates into one of two anisotropic degenerate solutions. Deterministic transitions between
multistable states are made possible using controlled nonresonant pulses, perturbing the solution from one attractor
to another.
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I. INTRODUCTION

A microcavity exciton-polariton is a bosonic quasiparticle
that arises from the strong coupling between a quantum well
exciton and a cavity photon [1]. Due to their bosonic statistics
and short lifetimes, polaritons can form a nonequilibrium
analog of a Bose-Einstein condensate at high nonresonant
excitation intensities where stimulated scattering results in
large coherent population balanced by gain and decay. Their
ability to interact strongly with themselves gives rise to a χ (3)

Kerr-like nonlinearity which in turn, for resonant excitation
schemes on scalar condensates, gives rise to optical bistability
[2–5], spatial multistability [6], and multistability for vectorial
(spin dependent) condensates [7–9].

Recently, ultrafast [10,11], ultralow-energy [12], and non-
linear relaxation [13] switching mechanisms were realized
experimentally between bistable states of polariton ensem-
bles and suggest their future application as optical memory
elements. Bistability is also a precursor for a number of
effects in exciton-polariton systems, including the formation
of solitons [14–16], imprinting patterns and spatial images
[17–20], screening disorder [21], sustaining superfluid propa-
gation [22], realizing quasicompactons [23], simulating cellu-
lar automata [24], realizing emergent descriptions of (classical)
Ising models [25], and realizing polaritonic circuits [26].

While optical multistability with resonant excitation
schemes has been the subject of intensive research [2–9],
optical multistability in nonresonantly excited microcavity
polaritons is less well studied. Physically, the nonresonant
pump scheme is advantageous since a resonant pump scheme is
implemented with an external laser, but nonresonant pumping
can be achieved with electrical contacts on both sides of the
quantum well cavity to spur the creation of excitons, which is
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far more compact to implement in optoelectronic circuits. To
date, theoretical schemes for incoherently excited bistability
based on strong saturated absorption [27], thermally induced
changes [28], modulational instability [29], and gain competi-
tion between symmetric and antisymmetric condensate modes
[30] have been proposed. Fairly recently, nonresonant optical
bistability was demonstrated in polariton condensates under
electrical injection of charge carriers [31,32] and between spin
polarizations in annular pumping geometries [33].

In this paper, we investigate the appearance of optical mul-
tistability in a planar two-dimensional (2D) exciton-polariton
condensate under spatially patterned nonresonant pumping. In
Ref. [30] optical bistability has been shown theoretically to
arise due to the modulational instability between the parities of
a localized one-dimensional (1D) polariton condensate pattern,
each bistable state corresponding either to an antisymmetric
or symmetric macroscopic wave function. Consequently, it
stands to reason that multistability can be observed in higher
dimensional geometries due to the increased degeneracy of the
linear part of the equations of motion.

The multistability relies on pump induced parity cross-
saturation previously considered in 1D exciton-polariton con-
densates [30,34]. The symmetry of the dynamical equations
results in a condensation threshold belonging to a definite
parity of the system due to optimal constructive interference
between same-parity modes (phase locked condensates). This
result is well studied in the field of nonlinear optics [35] and
in agreement with recent experimental observations where
different excitation geometries result in exciton-polariton con-
densates being phase locked either in-phase or antiphase
[36–42]. Increasing the pump intensity beyond threshold
results in an unstable condensate which rapidly transitions
into a new solution of different parity, corresponding to a
reorganization of phase lockings within the system. Sweeping
backward in pump intensity, several hystereses are recovered
between the condensate parities. Within these hystereses we
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find that regimes of multistability between symmetric and
antisymmetric condensate solutions exist.

We classify a point of instability where an isotropic con-
densate transitions into one of two anisotropic degenerate
condensate solutions with equal probability, a feature which
can be regarded as parity bifurcation. Very recently, bifurcating
points were observed in spinor polariton condensates where,
also as a function of pump intensity, a linearly polarized
condensate transitions to either of two circularly polarized
states [43].

After characterizing the possible multistable regimes and
states therein, we proceed to demonstrate a method to induce
controlled, reversible transitions within a group of stable states
based on the application of nonresonant excitation pulses.

II. CONDENSATE PHASE LOCKING

Eigensolutions of spatially symmetric Hamiltonians are
classified as either symmetric (even) or antisymmetric (odd).
For nonlinear equations of motion this is no longer necessarily
the case. Regardless, phase locking between spatially separate
condensates [37–39] still takes place, made possible through
their interactions, where condensates form either symmetric
or antisymmetric states due to constructive interference of
polaritons traveling from one condensate to another. Due to
the short polariton lifetime, there naturally exists only a finite
range of distances between the two condensates to coherently
phase lock before traveling polaritons decay away.

We consider a nonequilibrium condensate of 2D planar
exciton-polaritons described by the driven-dissipative non-
linear Schrödinger equation. Standard heuristics dictate that
the feeding of polaritons into the condensate is controlled
by active-exciton reservoir rate equations [44]. Under the
assumption of a fast active-exciton reservoir dephasing rate
and low polariton densities the equation of motion for lower
polaritons in the parabolic regime can be simplified into the
following [45]:

ih̄
∂ψ

∂t
=

[
− h̄2∇2

2m
+ V (r) + iP (r)

− i
h̄�

2
+ (α − iR)|ψ |2

]
ψ. (1)

Here ψ is the polariton condensate macroscopic wave function
or order parameter; ∇2 is the 2D Laplacian; m is the polariton
effective mass; P (r) is a spatially dependent nonresonant feed-
ing of polaritons into the condensate; V (r) = V0(r) + gP (r)
is the potential landscape of the system corresponding to an
external potential and pump induced blueshift, respectively;
� is the average dissipation rate; α is the polariton-polariton
interaction strength; and R is the condensate saturation rate.
Results within this paper are not exclusive to this simplified
version of the equation of motion and can be reproduced using
standard reservoir based models [44] (see Appendix A).

We fix the system parameters similarly to those in Ref. [45]:
α = 2.4 meV μm2, R/α = 0.3, � = 0.5 ps−1, and m = 3 ×
10−5m0 where m0 is the free electron mass. All numerical
results are performed under the presence of stochastic white
noise effectively replicating classical thermal fluctuations. It
should be stressed that the multistable regimes and instability

points reported are not sensitive to naturally occurring disorder
in planar cavities, driving field inhomogeneities [34], and
energy relaxation due to condensate interactions with the
exciton reservoir.

In order to illustrate the phase locking of different conden-
sates we begin by simulating an open system with V (r) = 0
and P (r) ∝ P0 corresponding to a hexagonal arrangement of
Gaussian pump spots with average intensity P0 (see Fig. 1).
If the distance between the spots is large enough, no phase
locking takes place and each condensate forms with its own
phase distribution. When the spots are brought close together,
a new condensation threshold of the system belongs to phase
locked condensates (see Fig. 2). Here we define a phase locking
order parameter, or parity intensity, as follows,

ne =
∣∣∣∣
∫

A

ψ(r)dr

∣∣∣∣
2

, (2)

no =
∣∣∣∣
∫

A

ψ(r)
x1x2x3

|x1x2x3|dr

∣∣∣∣
2

, (3)

where A is the planar system size and x1, x2, and x3 are
anticlockwise rotated x axes by an angle π/6, π/2, and 5π/6,
respectively (see Fig. 1). Here “e” and “o” stand for even
and odd parity respectively. As pump intensity is increased
the condensates reorganize their phase locking. This type
of instability can be regarded as a parity transition where
a condensate with a well defined parity is overcome by an
opposite sign parity state. High density condensates in such
geometric configurations also display vortex-antivortex lattice
formation [37] which can be seen in the central region of
Fig. 2(g). In what follows we will attempt to shed light on
the mechanism of these sudden transitions.

In order to simplify the numerical experiment, and get a
clearer understanding on the mechanism causing reorgani-
zation of phase locked condensates, we choose an infinite

FIG. 1. Normalized pump profile P (r) of six Gaussian spots
arranged into a hexagon with nearest neighbor distance 20 μm. Three
axes of symmetry between pump spots are plotted with white dashed
lines and denoted x1, x2, and x3.
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FIG. 2. (a) Evolution of the normalized parity intensities for a
hexagonal pattern of Gaussian pump spots under slow increasing
of P0. Sudden transitions between different parity solutions take
place at high pump power. Normalized density [(b)–(d)] and phase
[(e)–(g)] plots show the corresponding solution at the points indicated
by arrows in panel (a). Here we set V (r) = 0.

quantum well (IQW) of width L as our system:

V0(r) =
{

0, if |x|,|y| < L/2,

∞, if |x|,|y| � L/2.
(4)

We set g = 0 for simplicity. Let us begin our analysis by
choosing a basis satisfying the following real linear part of
Eq. (1),

Ĥ0 = − h̄2

2m
∇2 + V (r). (5)

Here, separation of variables allows us to write the eigenstates
of Eq. (5) in the form |φnx,ny

〉 = |φnx
〉 ⊗ |φny

〉 where |φnx
〉 and

|φny
〉 are the eigenstates of the 1D IQW. The solutions in the

coordinate basis are written

φnxny
(r) = φnx

(x)φny
(y), (6)

where

φnx
(x) =

√
2

L
sin

[
nxπ

(
x

L
− 1

2

)]
, (7)

φny
(y) =

√
2

L
sin

[
nyπ

(
y

L
− 1

2

)]
. (8)

Similarly to the analysis in Refs. [30] and [34] we write our time
dependent order parameter in the basis of the linear eigenstates:

ψ(r,t) =
∑
nxny

cnxny
(t)φnxny

(r)e−iωnxny t . (9)

Here, h̄ωnxny
are the eigenenergies of Eq. (5). For brevity we

will write the indexing as n = (nx,ny) where n is a unique

quantum number for each state. Inserting Eq. (9) into Eq. (1)
and integrating out the spatial dependence we arrive at a
coupled set of dynamical equations:

ih̄
∂cn

∂t
=

(
h̄ωn − i

h̄�

2

)
cn + i

∑
m

pnmcm

+ (α − iR)
∑
njkl

Mnjklc
∗
j ckcl. (10)

Here,

pnm =
∫

A

P (r)φ∗
nxny

φmxmy
dr, (11)

and

Mnjkl =
∫

A

φ∗
nxny

φ∗
jxjy

φkxky
φlx ly dr. (12)

It becomes immediately clear that if P (−x,y) = P (x,y) and
P (x,−y) = P (x,y) then only states φnx,ny

of the same parity
structure along x and y coordinate are coupled by the pump
gain mechanism [Eq. (11)]. As an example, the state φ22 does
not contribute to the gain of φ11 but does however affect its
decay through the nonlinear saturation R. It then becomes
evident that the condensate threshold belongs to a superposi-
tion of same-parity eigenstates cn. Furthermore, it is clear that
degenerate states such as φ12 and φ21 evolve equivalently. For
large separation distances between pump spots the condensate
formation can be said to be uncoupled since the polariton
decay rate � will destroy any coherent overlap between the
two condensates. Numerically, the coherence of weak polariton
waves is destroyed by introducing stochastic terms to the
equations of motions (not shown explicitly here). In this
paper we consider only small distances where condensates do
interfere coherently.

The last term of Eq. (10) is analogous to polarization
coupling of electromagnetic waves in media with χ (3) Kerr
nonlinearity. The elements Mnjkl only depend on the choice of
basis to represent the condensate order parameter. Evidently,
since φnxny

are representable as real functions, the order of
the indices in Mnjkl does not matter but it does matter for the
evolution of the amplitudes cm [Eq. (10)] which are coupled
through the sum of products Mnjklc

∗
j ckcl , mixing the phases of

different parities. It becomes clear that without nonlinearity the
condensate cannot be stable above threshold as it will diverge;
it is also clear that the nonlinear term is the only one responsible
for causing the instability points shown in Fig. 2(a) where one
condensate solution is replaced by another. More interestingly,
only the imaginary nonlinear term (R) is enough to produce
these unstable points [34].

The nonlinear problem is therefore highly nontrivial and
searching for multistable solutions relies heavily on numerical
modeling. However, a qualitative result on pump-induced,
parity-dependent instability was given in Ref. [34] where the
critical instability point was demonstrated analytically for a
two-mode system. The full quenching (parity transition), as
shown in Fig. 2(a), where the green colored curve is replaced
by red and vice versa, is then made possible when the critical
point gives rise to a solution capable of driving the previous
solution to zero, a feature made possible through the nonlinear
saturation. The reorganization of phase locked condensates
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shown in Fig. 2 can therefore be regarded as parity transitions
within a single spatially modulated condensate. The transition
is not only characterized by a flip in parity but also a shift
in both real and imaginary energies of the condensate which
manifests itself in sudden shifted chemical potential, and total
polariton population defined as N = ∫

A
|ψ |2dr. The transition

does therefore not occur between degenerate solutions. In
Ref. [30] the shift in N was too small to be observed and
remained unreported.

Furthermore, since the gain of the condensate depends on
the condensed mode in question through the saturation term
R|ψ |2, it has been shown that a hysteresis can be recovered
when the pump intensity is swept below the point of instability,
evidencing parity bistability [30]. Here, in contrast to bistable
1D states, the degeneracy of the 2D linear equations of motion
results in multistability.

III. RESULTS

We continue our analysis in the IQW system. We work with
the following pump profile:

P (r) = P0|φ22(r)|2. (13)

Here, P0 represents the average nonresonant driving field
intensity. Similarly to Eqs. (2) and (3) we define new parity
intensities for each possible parity structure along the x and y

axes of the system:

nee =
∣∣∣∣
∫

A

ψ(r)dr

∣∣∣∣
2

,

neo =
∣∣∣∣
∫

A

ψ(r)
y

|y|dr

∣∣∣∣
2

,

noe =
∣∣∣∣
∫

A

ψ(r)
x

|x|dr

∣∣∣∣
2

,

noo =
∣∣∣∣
∫

A

ψ(r)
xy

|xy|dr

∣∣∣∣
2

.

(14)

When ψ is in a superposition of modes of only one parity
structure then only one of the above integrals is nonzero. We
note that the choice of driving field P (r) is nonexhaustive and
Eq. (13) is only one example of many to create a spatially
patterned condensate and to produce similar results in this
paper.

A. Multistability

In Fig. 3(a) we show the results of sweeping adiabatically
forward in pump intensity. As expected, we observe the clear
phase locking upon condensation corresponding to nee (sym-
metric state) as the initial dominant parity structure. Increasing
the pump intensity further we observe recurrent drops in
the parity intensities of the condensate quickly replaced by
another solution of different parity, corresponding to parity
cross-saturation analogous to the observed drops in Fig. 2.
In Fig. 3(b) we sweep backwards in pump intensity (colored
markers) and find several hysteresis intervals indicating the
bistable nature of the system.

As an example, at P0/Pcond = 2.75, the system can exist
in at least two steady states, separately characterized by

1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

Forward sweep
(a)

1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

Forward sweep
+ Backward sweep

(b)

FIG. 3. (a) Evolution of the normalized parity intensities when
P0 is slowly swept to higher values. Points of instability (parity
transitions) take place when one colored curve is replaced by another.
(b) Forward (whole lines) and backward (markers) sweeps of P0

give away hysteresis regions indicating the bistable nature of the
condensate.

having nee (green circles) and noo (red whole curve) as the
dominant parity intensities. These states are analogous to the
observations of Ref. [37] except without vortex lattices [see
Figs. 4(a), 4(d)], classifying them as ferromagnetic (FM) and
antiferromagnetic (AFM) ordered states in phase. However,
two degenerate anisotropic states can also exist which were
reported as 90◦ compass states [46] due to their two possible
perpendicular orientations, and correspond to the blue and
magenta colored curves and markers in Fig. 3 [also Figs. 4(b),
4(c)]. It is clear that these states are interchangeable since the
neo and noe parity structures are one and the same under π/2
rotation of the system. Nonadiabatic statistics (instant pump
activation) on the formation of the reported solutions are given
in Appendix B.

Sweeping forward and backward in pump intensity reveals
bistable intervals but does not elucidate the multistability of
the system. By the virtue of symmetry between x and y it is
clear that if nee and noo can exist at the same pump power,
then neo and noe are also possible stable states. This is verified
numerically by activating P0 instantaneously and rapidly con-
densing the system from a stochastic initial condition, resulting
in one of the four different possible stable states (see Fig. 4).
Density and phase plots of the four different multistable states
are shown in the upper and lower rows of panels in Fig. 4,
respectively.

A fifth state appears when slowly sweeping backward in
pump intensity (see Fig. 5) showing a vortex in the system
center and equal population in both neo and noe parity intensi-
ties (overlapping blue and magenta markers in Fig. 3). Vortex
states, being one of the fundamental solutions of the nonlinear
Schrödinger equation, naturally occur in driven-dissipative
condensates.

B. Parity bifurcation

Earlier it was stated that the noe and neo solutions evolve
in an indistinguishable manner due to the symmetry of the
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FIG. 4. Four steady states within the square trap achieved using Eq. (13) at instantaneous activation of the excitation power P0/Pcond = 2.75.
(a)–(d) Normalized condensate density and (e)–(h) phase corresponding to nee, neo, noe, and noo steady states, respectively.

system. We verify this by averaging over 1000 stochastic
trials (Monte Carlo) simulating the evolution of the condensate
as a function of pump power up to the point of instability
(bifurcation point) where the condensate transitions to either
an neo or noe state. The trials are stochastic by introducing white
noise field to the order parameter at much smaller time steps
than the polariton lifetime, keeping any uncondensed states
completely stochastic in evolution. In Fig. 6 the average parity
intensity drops from the nee state and populates either an neo or
noe state with approximately equal probability. Such process
can be classified as parity bifurcation.

We stress that the critical transition in Fig. 6 depends on
the adiabaticity of the pump. It is clear that if the neo and
noe solutions become unstable and condense then noo should
also be unstable. Stochastic fluctuations can not only seed the
odd parity along one of the system axes, resulting in an neo

or noe state, but also seed odd-parity states along both x and
y axes close enough in time that an noo state is recovered.
Such a process is however only likely if the adiabaticity of the
pump is relaxed (faster ramping rates). The parity bifurcation
naturally vanishes when disorder is introduced, corresponding
to breaking of the π/2 invariance of the system, making one
of the two states deterministically dominant. We stress that the
influence of disorder only breaks the equivalence of neo and

FIG. 5. (a) Normalized density and (b) phase color maps showing
a vortex state appearing in the center of the trap when sweeping
backward in excitation intensity (overlapping blue and magenta
markers in Fig. 3).

noe states without affecting multistable regimes between nee,
neo,oe, and noo states.

We have only demonstrated the bifurcating point as a
function of pump intensity which does not distinguish between
the paths taken going to either neo or noe states. There are
however other methods which can be used to control the path
from the nee state to either neo or noe states by, e.g., changing
the geometry of the real and complex potential landscapes.
In an animation in the Supplemental Material [47] this is is
demonstrated by changing the square well potential and pump
shape from square to rectangular.

C. Controlled transitions between multistable states

A sweep of the pump intensity can be utilized to switch
between different states as is evident in Fig. 3 but a more
pragmatic method relies on controllably perturbing the system
to deterministically change between states. By applying short
nonresonant pulses to create pressure gradients within the
condensate, controlled transitions between the four steady

1.75 1.8 1.85 1.9 1.95 2
0

0.2

0.4

0.6

0.8

1

FIG. 6. Average normalized parity intensity of the trapped con-
densate over 1000 stochastic trials. As the P0 is adiabatically increased
the condensate bifurcates into one of two possibilities corresponding
to states neo and noe.
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FIG. 7. Time evolution of the normalized parity intensities of the polariton condensate being perturbed at t = 300 ps with a (a), (b) p(1001),
(c), (d) p(1100), and (e), (f) p(1010) pulse, resulting in the condensate abandoning its old parity structure and settling into a new one. (a) nee → neo,
(b) neo → nee, (c) nee → noe, (d) noe → nee, (e) nee → noo, (f) noo → nee.

states can be induced. We will demonstrate that the transitions
(or steps for brevity) based on these nonresonant pulses can
be made from any of the four steady states to any of the other
steady states. Therefore any path made up of these steps is
completely reversible.

We present here three possible steps (not counting backward
steps), namely nee ↔ neo, nee ↔ noe, and nee ↔ noo. With this
set of steps, it is possible to transit between all of the four
states with at most two steps. The pump pulse is simulated by
replacing the iP (r) term with i[P (r) + P ′(r,t)] where P ′ is a
short pulse superimposed upon the static excitation,

P ′(r,t) = P ′
0e

−( t−t0
δt

)2
p(r)(A,B,C,D), (15)

where P ′
0 determines the intensity of the pulse, t0 = 300 ps is

the pulse delay, and δt = 20 ps determines the temporal length
of the pulse. For simplicity, we choose the following scheme

of pulsing:

p(r)(ABCD) = A
(1 − x/|x|)(1 + y/|y|)

4

+ B
(1 + x/|x|)(1 + y/|y|)

4

+ C
(−1 + x/|x|)(−1 + y/|y|)

4

+ D
(1 + x/|x|)(1 − y/|y|)

4
. (16)

Here x,y ∈ [−L/2,L/2] and A,B,C,D ∈ {0,1}. The function
P ′(r,t) corresponds then to a short duration of added uniform
gain in the chosen quadrants of the quantum well. The choice
of which quadrants are to be excited is given by the binary
control variables A, B, C, and D corresponding to a pulse being
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FIG. 8. Forward sweep of P0 for different values of g. Green,
blue, and red curves correspond to nee, neo,oe, and noo parity intensities,
respectively. The value gP corresponds to maximum blueshift at P0 =
2Pcond where Pcond is defined as the condensation value for g = 0.

activated in the top right, top left, bottom left, and bottom right
quadrants of the square well, respectively. We stress that the
number of methods of perturbing the system is nonexhaustive
and the one given by Eq. (16) is just one of many possibilities.

Three pulse profiles are employed, p(1001), p(1100), and
p(1010) for the nee ↔ neo, nee ↔ noe, and nee ↔ noo transitions,
respectively. The results are presented in Fig. 7. Let us analyze
one transition as an example. The steps neo → nee and neo →
nee [see Figs. 7(a), 7(b)] are both induced using a p(1001)

profile. This is a logical choice of pump pulse profile since
the condensate is being perturbed in the x > 0 quadrants,
evolving differently from the rest of the condensate at x < 0.
The perturbing dynamics are thus symmetric about the x axis
but encourage asymmetry about the y axis. In Fig. 7(a) we
see that the nee state decays much slower as opposed to the
decay of the neo state in Fig. 7(b) indicating that the transition
dynamics are distinguishable. Numerical simulations over long
times reveal that the nee intensity eventually decays down to
the white noise level of the simulation.

The other two transition pairs (nee ↔ noe and nee ↔ noo)
can be induced in a fashion similar to that of the p(1100)

and p(1010) pump profiles, respectively. Our system therefore
possesses a cyclical transition scheme that allows for controlled
transitions between all four steady states.

D. Effects of pump induced blueshift

We shift our attention to the case when g = 0. The real
potential gP (r) alters the energy landscape of the system
but is determined by the symmetry of the pump, so only
same-parity structures are still coupled together in both energy
and gain coming from the pump [see Eq. (11)]. Mixing between
different parity structures is therefore still only realized through
the system nonlinearity which is unchanged. Previous results
are thus only quantitatively changed with all parity related
effects still present. This is demonstrated in Fig. 8 where for
realistic values of pump blueshift the points of parity transition
are shifted along the P0 axis. We define the blueshift parameter
as gP = max[gP (r)] for P0 = 2Pcond, that is, the maximum
energy shift at twice the threshold intensity.

FIG. 9. (a) Evolution of the normalized parity intensities for the
harmonic potential, V (r) = u(x2 + y2), where u = 0.2 μeV μm−2,
and P (r) = P0|φ22(r)|2, showing also clear transitions between
the parities of the condensate (colored lines). Normalized density
[(b)–(d)] and phase [(e)–(g)] plots show the corresponding solution
at the points indicated by arrows in panel (a).

E. Generalization to symmetric pump and trapping geometries

The above results are naturally not exclusive to the IQW
and can mostly be replicated using other symmetric trapping
geometries V (r) or driving-field profiles P (r) such as the
hexagonal pattern shown in Fig. 1. In fact, any real potential
and driving field in the planar system which are symmetric
about the xy coordinates will never mix together the different
parity structures. As an example, the harmonic oscillator is a
cylindrically symmetric potential and does not distinguish the
x and y coordinates. When the system is driven by a symmetric
nonresonant field P (r) = P0|φ22(r)|2 parity transitions analo-
gous to those shown in Fig. 3 are observed in the polariton
condensate (see Fig. 9).

We also demonstrate certain excitation schemes which do
not show the sudden change in parities of the system. It
is clear that the competition between the parities to domi-
nate the condensate ultimately depends on how the real and
complex potentials couple together same-parity modes, and
subsequently how the modes interact through the nonlinearity
of the condensate pattern. Clearly some potentials will favor
this conflict between the parities as shown above, whereas
others show no sudden transitions in the condensate parity.
As an example, annular pump shapes are used to create
cylindrically symmetric condensates [48] to investigate the
onset of spontaneous currents [49], vorticity [50], and petal
formation [51–53]. We point out that in Ref. [51] spatial
ellipticity of the excitation beam breaks the degeneracy of
symmetric and antisymmetric superpositions of clockwise and
anticlockwise currents and stabilizes a standing wave (petal)
pattern. In the same manner here, if the equivalence between
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FIG. 10. (a) Normalized annular shaped pump profile. (b) Polari-
ton condensate density under annular shaped pump. (c) Phase profile
of the condensate under annular shaped pump, showing a vortex
of topological charge |m| = 2. (d) Gaussian shaped pump profile.
(e) Polariton condensate density under Gaussian shaped pump. (f)
Phase profile of the condensate under Gaussian shaped pump. Plots
(a), (b), (d), and (e) show normalized intensities using the color scale
in the top right. Plots (c) and (f) use the gray scale shown in the bottom
right. (g) Normalized parity intensities for annular pump (solid curve)
and Gaussian pump (dashed curve). V (r) = 0 in all plots.

x and y coordinates is broken (rectangular trap as opposed
to square) then one can create favorable conditions of states
symmetric and antisymmetric along the x and y directions,
respectively, and vice versa (see animation in the Supplemental
Material [47]). Here, a single annular shaped pump results in a
single condensate with a well defined phase corresponding to
the circulating current [see Figs. 10(a)–10(c)]. In the absence
of other condensates no phase locking is possible and no
instability appears from the interference.

The same goes for single Gaussian shaped pump spots
resulting in a single condensate with nothing to phase-lock
with [see Figs. 10(d)–10(f)]. The transition between parities is
therefore only observable by appropriate choice of V (r) and
P (r), creating a condensate pattern (or likewise, pattern of
condensates) which allows phase locking.

Lastly, we come back to the hexagonal driving pattern
of Fig. 2 and address the observation that only two parity
structures are visible, ne and no, which correspond to all
nearest neighbors forming a symmetric state or antisymmetric
state, respectively, and to why no other parity arrangements
are observed under the adiabatic increasing of the parameter
P0. It is clear that the above analysis is not fit for two of
the three axes of symmetry x1 and x3 as shown in Fig. 1.
These axes have projections on the x and y coordinates which
make the hexagonal parity structure nondecomposable onto
the Cartesian basis. But this is not the reason why only ne

and no are observed. In fact, using an octagonal pattern of
Gaussians results in a steady state with nearest neighbors

FIG. 11. (a) Normalized driving field profile of 8 Gaussians
arranged in an octagon. (b) Resulting normalized condensate density
and (c) phase at a fixed pump intensity showing a steady state of phase
locked condensates forming symmetric and antisymmetric bonds
interchangeably around the octagon.

forming symmetric and antisymmetric bonds along the lattice
(see Fig. 11), a state not observed when using hexagonal
lattices.

The reason for this observation stems from the fact that the
energy and gain of each condensate depends on the number of
nearest neighbor symmetric and antisymmetric bonds which,
in the hexagonal geometry, can only form a steady state with all
bonds being antisymmetric or symmetric to avoid frustration
when accounting for only nearest neighbor interactions. For
example, in Fig. 4 every solution has the same configuration
of symmetric and antisymmetric bonds in each quadrant of the
system, making them energetically equivalent. The symmetric
and antisymmetric bonds can be regarded as a type of FM
(0) and AFM (π ) bond ordering among scalar [37] and spinor
polariton condensates [54]. Figure 11 then shows an example
of a lattice favoring a periodic arrangement of FM and AFM
bonds. We note that a spin wave state was recently reported
theoretically in a hexagonal graph of polariton condensates
[55] which elucidates that nearest neighbor frustration can be
balanced through interactions with more neighbors.

We point out that, as expected, a lattice of vortices forms
within the center of the octagon just like in the hexagonal
geometry.

IV. CONCLUSIONS

We have shown through extensive numerical simulation
of the complex nonlinear Schrödinger equation that multi-
stability in planar microcavity exciton-polariton condensates,
with spatially patterned nonresonant pumping, can be achieved
between symmetric and antisymmetric solutions of the conden-
sate pattern. Solutions of different parity structures compete for
the system gain with ultimately one winner driving all other so-
lutions to zero through the condensate saturation mechanism.
Most notably, doubly degenerate condensate solutions give rise
to bifurcating points where the condensate transitions to one
of either degenerate state with equal probability at a critical
pump power. Most of the results focus on π/2 symmetric
linear equations of motion, such as the planar infinite quantum
well, where the linear physics of the system is decomposable
onto the Cartesian basis. But systems with a symmetry axis
at angles < π/2 such as hexagons and octagons also display
the same competition and quenching between symmetric and
antisymmetric bonded states.

Within the multistable regime, the use of controlled nonres-
onant pulses allows deterministic switching between different
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FIG. 12. Normalized density before (a) and after (b) the parity
transition from a symmetric state to an antisymmetric state. (c) Nor-
malized parity intensity along the x axis. Here the same parameters
were used as in previous sections with the exception of setting
R = 0.01 μm2 ps−1, �R = 1.5� and gX = 2α similarly to experiment
[56].

parity structures of the phase locked condensate pattern. Ap-
plying the same pulse repeatedly causes the system to alternate
between two states. For such pairs of states, the pulse acts
effectively as a NOT gate, paving the way towards controllable
optical quantum fluid circuitry. Consequently, a possible future
direction would be to consider multiple trapped condensates
and attempt to engineer an AND gate. Together, the two gates
form a universal set of logic gates for binary processing.
Although this relies on a binary logic, a further extension can
be to attempt to create a universal set of quaternary logic gates
from multiple trapped/localized condensates.
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APPENDIX A: RESERVOIR MODEL

Equation (1) is valid for a static reservoir at low to moderate
condensate densities. The above results can be reproduced
using the more honest approach which models the saturation
of the condensate through the hot excitonic reservoir nX using
the following equations [44]:

ih̄
∂ψ

∂t
=

[
− h̄2∇2

2m
+ V (r) + ih̄

2
(RnX − �) + α|ψ |2

]
ψ,

(A1)
∂nX

∂t
= − (�R + R|ψ |2)nX + P (r), (A2)

FIG. 13. Stacked histogram with colors marking different states
and their counted appearances as a final steady state through stochastic
initial conditions.

where �R is the exciton reservoir average decay rate, and
V (r) = V0(r) + gXnX where gX is the reservoir interaction
strength. In Fig. 12 we show the parity transition taking place
using Eqs. (A1) and (A2). Here P (r) is a superposition of two
spatially separated Gaussian spots creating two condensate
maxima which interfere, creating a standing wave pattern
between themselves. Slowly increasing the peak intensity of
the Gaussians P0 we observe the same parity transition as with
Eq. (1). In Fig. 12(a) a symmetric state appears initially at
condensation characterized by an antinode between the pump
condensate maxima. In Fig. 12(b) the antinode is replaced by
a node indicating a transition between the parities.

APPENDIX B: ATTRACTOR STATISTICS

The results in Fig. 3 are done under adiabatic conditions
where the condensate wave function slowly evolves as a
stationary solution of the equations of motion [Eq. (1)] with
increasing excitation intensity P0. In the nonadiabatic limit
where the external excitation P (r) is activated instantaneously
with ψ initially as a weak stochastic field the probability of
retrieving a given solution depends on its attractor strength
in solution space. Numerically this attractor strength can be
extracted by Monte Carlo counts where each count is a new
realization of stochastic initial conditions for ψ . In Fig. 13
we show the results of 70 counts for 70 different excitation
strengths corresponding to Fig. 3. The stacked histogram shows
regimes of coexistence between different solutions elucidating
the multistability properties of the system. We point out that
nonstationary solutions (cyclical) can appear as a result of
many energies being occupied within the condensate.
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