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Temperature dynamics of the electronic structure in dilute Bi-Sn alloys
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We study the changes of Bi electronic structure near T and L points of the Brillouin zone caused by doping
with Sn (concentrations�0.08 at.%). Hall coefficient and magnetoresistance measurements (under magnetic field
up to 8 T) enabled calculation of magnetoconductivity tensor components. The usage of quantitative mobility
spectrum analysis together with the isotropic approximation for band structure allowed the estimation of Fermi
level position at temperatures 10–300 K. The results have shown that Sn doping shifts the Fermi level down on
the energy scale at the L point (in all temperature range) and at the T point under (primarily at low temperatures),
leading to the decrease of band overlap.
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I. INTRODUCTION

Semimetals [1] and narrow-gap semiconductors [2] have
found numerous applications in modern electronics as they
combine high mobility of charge carriers [1] and low-energy
electronic transitions [3]. The recent progress in development
of thermoelectric devices [4–6], THz emitters [7,8], and in-
frared detectors [3,9] justifies the need for understanding the
influence of various factors (like temperature and doping) on
electronic states in this class of materials. However, current
knowledge of temperature, doping, and morphology effects
on those properties needs further improvement, especially for
the Bi-based materials. The modern advantages in methods of
galvanomagnetic measurements processing [10–12] open the
new prospectives for better understanding the doping effect
on charge carrier parameters in a wide temperature range for
Bi-based compositions. We explore these new possibilities
in order to elucidate the very electronic band changes of
semimetallic samples under doping and temperature influence.

Bismuth is a canonical semimetal with highly anisotropic
Fermi surface originating from a complicated unit cell [13–17],
resulting in the electronic structure [14,15,18–20] schemati-
cally presented in Fig. 1. The band at the L point is a source of
light electrons (with effective mass mn ≈ 10−2 of free electron
mass m0), the band at the T point is a source of heavier holes
(with mp ≈ 10−1m0). Fermi level EF is positioned close to
bands’ extrema [19–21]: the distance between the EF and
L-point band minimum is ζn = 27 meV, the distance between
the EF and T -point band maximum is ζp = 11 meV at 4 K
(see Fig. 1). The electronic band structure is characterized by
small indirect overlap Eo = ζn + ζp between bands as well
as nonparabolic dispersion law at the L point [21,22]. The
parameters ζn, ζp, Eo and band gap Eg exhibit strong temper-
ature dependencies growing approximately three times from
liquid helium temperature (LHT) to room temperature (RT)
[19,20,23].
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Nowadays, despite much effort devoted to Bi investigation,
the influences of doping and temperature on electronic states
require better understanding. For example, the effects of Sn
doping [24–27] are known mostly qualitatively for temper-
atures above LHT. Doping with Sn turns Bi to p type at
low temperatures returning to mixed conductivity at RT. The
influence of doping for small concentrations (�10−1 at.%)
can be described as result of Fermi level shift deeper into
hole band at the T point [25,27]. There were reports on light
holes in doped samples [25,26] with effective mass similar
or less than mass mn of L-point electrons. Concentration
dependence of Fermi level ζp position for Bi100−xSnx , x <

0.1 at.%, was systematically investigated by Para [27] and
Nikolaeva [28] by analysis of Shubnikov–de Haas oscillations
in single-crystalline wires. It is reasonable to expect significant
temperature dependence of band parameters in analog to
nondoped Bi, but the Shubnikov–de Haas effect is observable
only at low temperatures.

Several electrical methods are suitable for charge car-
rier characterization. Methods based on cyclotron resonance
[29,30] and Shubnikov–de Haas oscillations [16,31] require
low temperatures and very high quality of samples. The
galvanomagnetic measurements [23,32,33] of the Hall effect
and magnetoresistance allowed broader range of temperatures,
but usually need achievement of weak or strong magnetic
field limits that is difficult in case of very low or high
carrier mobility. The modern quantitative mobility spectrum
analysis (QMSA) methods [10–12,34–37] use information in
all available ranges of magnetic fields and require minimum
external input parameters for the computational procedure.
This makes QMSA a very promising tool for investigation of
electronic states in diluted Bi100−xSnx alloys.

Therefore, despite a lot of measurements and quantitative
investigations, the movement of Fermi level is practically
unknown in diluted Bi100−xSnx (x < 0.08 at.%) compounds
at temperatures higher than 10 K. In this paper, we report
the temperature dependence of Fermi level position relative
to the T - and L-point band extrema in the range 10–300 K.
We have found that the band overlap Eo decreases with
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FIG. 1. Simplified band structure of Bi (a) and Fermi surface (b).

doping and disappears at RT for x = 0.08 at.%. Additionally,
it was shown that temperature dependence of Fermi level can
be qualitatively described at low temperatures by means of
Sommerfeld expansion.

II. EXPERIMENTAL DETAILS

Alloys of Bi100−xSnx , 0 � x � 0.08 at.%, were prepared by
melt spinning [38,39] of high-purity initial materials. Thick-
ness of samples showed less than 2% fluctuations. Preferred
crystalline orientations partially compensate each other. For
detailed information on structure, see Appendix A.

Hall coefficient RH and magnetoresistance ρ(B) were mea-
sured in the temperature range 10–300 K under magnetic fields
up to 8 T using a close-cycled measuring system by Cryogenic
Ltd. Details on the experiment and raw data processing are
given in Appendix B.

III. CONDUCTIVITY TYPE CHANGE

As experiments showed, the Hall coefficient RH is positive
in doped Bi100−xSnx at LHT and switches to negative with
the increase of temperature. The sweeping out magnetic field
increases the temperature Tswitch at which RH changes its sign.
The curves separating regions of positive and negative RH are
given in Fig. 2 for different Sn concentrations x. The Tswitch

moves to the higher temperatures with the increase of x (Fig. 3)
indicating the suppression of the electron’s contribution by
doping. Magnetic field reverses the switch of RH sign and
returns it to positive values (Fig. 2). Therefore, in doped
samples, average mobility of electrons is still much higher
than mobility of holes, so magnetic field drags electrons in the
first place decreasing its contribution to charge transport.

The temperature dependencies of relative magnetoresis-
tance (rMR) under magnetic field 8 T are given in Fig. 3.
The rMR of Bi (1) at LHT is very high (of 103%–105%)
and monotonously decreases with temperature. The rMR

FIG. 2. Separating curves between regions of positive (red side)
and negative (blue side) Hall coefficient for Bi100−xSnx , x (at.%):
1 (0.01), 2 (0.02), 3 (0.04), 4 (0.06), 5 (0.08).

temperature dependencies of doped samples (2)–(6) are not
monotonous. The well-known expression [23,33,40,41] for
rMR establishes the square dependence on the carrier’s mo-

bility: �ρ(B)/ρ(0) = C1
pμ2

p+nμ2
n

pμp+nμn
+ C2

(pμ2
p+nμ2

n)2

(pμp+nμn)2 (C1, C2 are
constants). Therefore, small numbers of high-mobility carriers
can significantly boost rMR. This confirms the activation
of light electrons with temperature in doped samples. The
temperature Tgr , where rMR starts to rise with the T , increases
with the growth of Sn concentration x. That means reducing
electron numbers with x (Fig. 3).

The detailed discussion of galvanomagnetic experiment
results and additional arguments for usage of QMSA are given
in Appendix C.

IV. TEMPERATURE DEPENDENCIES
OF ELECTRONIC CHARACTERISTICS

The charge carrier characteristics were obtained us-
ing QMSA implementation described in Appendix D. The
temperature dependencies of electron mobilities μn and

FIG. 3. Temperature dependence of relative magnetoresistance
�ρ(B)/ρ(0) under field B = 8 T for various concentrations x (at. %):
1 (0) (pure Bi), 2 (0.01), 3 (0.02), 4 (0.04), 5 (0.06), 6 (0.08). Inset:
the temperatures Tgr where MR start to rise with the temperature vs
Sn concentration.
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FIG. 4. Temperature dependencies of electron mobilities μn and
concentrations n (inset) for different Sn doping level x: 1 (0) (pure Bi),
2 (0.01 at.%), 3 (0.02 at.%), 4 (0.04 at.%), 5 (0.06 at.%).

concentrations n for various tin concentrations x are given in
Fig. 4. The Sn doping significantly reduces absolute values
of μn at low temperatures. The electron mobility becomes
similar for all studied x ranging from T � 175 K. The
electron concentration decreases with x (inset of Fig. 4) that
is in agreement with sign of RH . From x = 0.06 at.% the
electrons’ contribution to conductivity becomes very low and
undetectable by means of QMSA in the studied temperature
range.

The temperature dependencies of T -point hole mobilities
μp and concentrations p for various tin concentrations x are
given in Fig. 5. The hole concentration p rises with x the
most obvious at lower temperatures. While heating up to room
temperature, p returns to values as in nondoped Bi. The hole
concentration p lowers with temperature T in the samples with
x ∈ (0.04–0.08) at.%.

The position of Fermi level relative to the band bottom in
the L point ζn and to the top in the T point ζp can be found
from the concentrations n, p. The nonparabolic dispersion law
of electrons in the L point is approximated with the Lax model
[19,20], the effective mass mn of electrons, and the temperature
dependence of band gap Eg between L-point ellipsoids are

FIG. 5. Temperature dependencies of T -point hole mobility
for different Sn concentration x: 1 (0) (pure Bi), 2 (0.01 at.%),
(3 0.02 at.%), 4 (0.04 at.%), 5 (0.06 at.%), 6 (0.08 at.%).

FIG. 6. Temperature dependencies of Fermi level position ζp

relative to the top of band in the T point for different Sn concentration
x: 1 (0) (pure Bi), 2 (0.01 at.%), 3 (0.02 at.%), 4 (0.04 at.%), 5 (0.06
at.%), 6 (0.08 at.%). Inset: doping level dependence of Fermi level
position ζp relative to the top of band in T point estimated from
concentration integrals (black squares, T = 10 K) and from literature
[16,27] (white triangles, T = 4 K).

taken from [20]. Therefore, the integral equation for ζn will be

n =
∫ ∞

0

8π
√

2

h3
m3/2

n

(
1 + 2E

Eg

)√
E

(
1 + E

Eg

)
e

E−ζn
kB T

+1
dE, (1)

where E is energy, kB is the Boltzmann constant, and h is
the Planck’s constant. The temperature dependencies of Fermi
level position ζp relative to the top of the T -point band are
calculated from

p =
∫ 0

−∞

8π
√

2

h3
m3/2

p

√−E

e
−E−ζp

kB T
+1

dE, (2)

where mp is the effective mass of T -point holes. The temper-
ature dependencies of Fermi level positions ζn, ζp are given in
Figs. 6 and 7.

FIG. 7. Temperature dependencies of Fermi level position ζn rela-
tive to the bottom of band in the L point for different Sn concentration
x: 1 (0) (pure Bi), 2 (0.01 at.%), 3 (0.02 at.%), 4 (0.04 at.%),
5 (0.06 at.%).
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FIG. 8. Temperature dependence of T - and L-point bands’ over-
lap Eo for different Sn concentration x: 1 (0) (pure Bi), 2 (0.01 at.%),
3 (0.02 at.%), 4 (0.04 at.%), 5 (0.06 at.%).

The doping shifts the Fermi level deeper inside the T -point
band which leads to the increase of p (Fig. 5). However, the
increase of the temperature leads to the rollback and ζp tends
to return closer to the original values in nondoped Bi (Fig. 6),
reducing the p with growth of temperature.

The comparison between estimated ζp and values [16,27]
for single crystals found from Shubnikov–de Haas oscillations
at LHT is given in the inset on Fig. 6. Our results (black
squares) show quite good coincidence with the literature (white
triangles).

V. DISCUSSION

A. Temperature dependence of bands’ overlap

The Sn doping significantly shifts the Fermi level down
relative to the bottom of the L-point electron band ζn in all the
temperature ranges. The effect on the ζp is different: the change
of Fermi level position is significant at low temperatures
and is almost negligible at RT. This difference in outcome
in temperature dependence of bands’ overlap Eo = ζn + ζp

depends on doping level x (Fig. 8).
The overlap Eo between bands becomes smaller as x in-

creases (Fig. 8). Because the presence of small band overlap is
often considered as a main feature of semimetals, it can be said
that lessening of band overlap with x turning from semimetal
closer to narrow-gap semiconductor. This is illustrated by
Fig. 9 for room temperature.

B. Sommerfeld expansion prediction for Fermi level
temperature dependence

Sommerfeld expansion is the method of evaluating integrals
of

∫ ∞
−∞ H (E)f (E)dE type, where f (E) is Fermi distribution

function. It is frequently being used for the calculation of tem-
perature dependencies of fermion ensemble characteristics,
e.g., Fermi level position. We have derived the expression and
check if it is applicable to the Bi100−xSnx system Fermi level
temperature dependencies.

FIG. 9. The band structure of Bi100−xSnx at temperature T =
300 K for (a) pure Bi, (b) x = 0.02 at.%, (c) x = 0.06 at.%. EF

is Fermi level, ζn and ζp are the Fermi level positions relative to the
band extrema in L or T points, respectively.

As follows from the Ashcroft and Mermin book [42], the
integral

∫ ∞
−∞ H (E)f (E)dE can be reexpressed as∫ ∞

−∞
H (E)f (E)dE =

∫ ζ

−∞
H (E)dE

+
∞∑

n=1

∫ ∞

−∞

(E − ζ )2n

(2n)!

(
− ∂f

∂E

)
dE

d2n−1

dE2n−1
H (E)

∣∣∣∣
E=ζ

,

(3)

where ζ is Fermi level, H (E) some energy-dependent smooth
function. By substituting the density of states g(E) as H (E) in
Eq. (3) and keeping the first two temperature-dependent terms
we get [42]∫ ∞

−∞
g(E)f (E)dE =

∫ ζ

−∞
g(E)dE

+
[∫ ∞

−∞

(E − ζ )2

2!

(
− ∂f

∂E

)
dE

d

dE
g(E)

]∣∣∣∣
E=ζ

+
[∫ ∞

−∞

(E − ζ )4

4!

(
− ∂f

∂E

)
dE

d3

dE3
g(E)

]∣∣∣∣
E=ζ

+ · · · .

(4)

The first term can be rewritten in the assumption that the
Fermi level change is small:

∫ ζ

−∞ g(E)dE ≈ ∫ ζ0

−∞ g(E)dE +
(ζ − ζ0)g(E), where ζ0 is the preknown Fermi level at low
temperature. If the change in charge carrier concentration is
small

∫ ∞
−∞ g(E)f (E)dE ≈ ∫ ζ0

−∞ g(E)f (E)dE. That gives in
our case

ζ (T ) = ζ0 − π2

6
(kBT )2 g′(ζ0)

g(ζ0)
− 7π4

360
(kBT )4 g′′′(ζ0)

g(ζ0)
− · · · .

(5)

The temperature dependence of the Fermi level position
can be evaluated from Eq. (5) by substituting the expression for
density of states (parabolic for holes or elliptical for electrons).
The detailed derivation of expressions in case of elliptic density
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FIG. 10. Temperature dependence of Fermi level position ζn

(scatter) and Sommerfeld expansion prediction (solid lines) for
appropriate Sn concentration x: 1 (0.02), 2 (0.04), 3 (0.06).

of states is given in Appendix F. We present the best coinciding
with QMSA results in Figs. 10 and 11.

As seen from Fig. 10, ζn position predicted by Sommerfeld
expansion shows in general the same tendency as QMSA data.
It still keeps the monotonicity and does not deviate too much
in absolute values for Sn concentrations x > 0.04 (Fig. 10). In
case of ζp, the Sommerfeld expansion satisfactorily describes
QMSA results only in the initial part of the temperature de-
pendencies. For both ζn, ζp the description by the Sommerfeld
expansion better describes QMSA results with increase of x

(Fig. 11).
The results above show that Sommerfeld expansion is

still limitedly applicable to the semimetallic systems. The
limitation is connected to the assumption that carrier con-
centration changes slightly with temperature. The expansion
better describes ζn with growth of x because absolute values of
electronic concentration n decrease (Fig. 4), i.e., n temperature
changes become smaller as well. Only the initial part of ζp

is well described because hole concentrations p stay almost
constant at low temperatures (Fig. 5).

FIG. 11. Temperature dependence of Fermi level position ζp

(scatter) and Sommerfeld expansion prediction (solid lines) for
appropriate Sn concentration x: 1 (0.02), 2 (0.04), 3 (0.06), 4 (0.08).

VI. CONCLUSIONS

In summary, we have revealed three key features of
band structure changes caused by temperature and doping
in Bi100−xSnx (0 � x � 0.08 at.%) diluted alloys using the
combination of QMSA, isotropic approximation for band
structure, and Sommerfeld expansion method. This allowed
to track Fermi level in wider temperature range (10–300 K)
than was previously available in literature.

First, we have quantitatively established that band overlap
Eo decreases with the increase of Sn concentration. Second, it
is demonstrated that the band overlap Eo for samples with
Sn concentration x � 0.02 at.% reduces with temperature
(reaching almost zero overlap for x = 0.08 at.%, T = 300 K).
These changes in electronic band structure may be interpreted
as transition of Bi100−xSnx from semimetal to the narrow-gap
semiconductor. The last, but not least, important result is that
the Fermi level temperature dependencies can be qualitatively
described by Sommerfeld expansion at low temperatures for
samples with x � 0.02 at.%.
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APPENDIX A: FABRICATION AND STRUCTURE
OF SAMPLES

1. Fabrication

The initial compounds were certified Bi and Sn of 99.9999%
purity. The alloys were prepared in quartz tubes on air at
temperatures 910–950 K. After crystallization, only the middle
part of the obtained ingots were taken to the fabrication of foils.
The stoichiometric proportion of compounds corresponded to
x = 0.01, 0.02, 0.04, 0.06, 0.08 at.% in Bi100−xSnx .

The electric motor rotated a copper cylinder of 20-cm di-
ameter with frequency 25 Hz. The overheated melt was spilled
out to the inner surface of cylinder . The alloy crystallized in
stripes with length up to 10 cm, width higher than 1 cm, and
thickness 20–60 μm.

The speed v of liquid phase cooling was evaluated [38] with
Eq. (A1):

v = αθ

cdρ
, (A1)

where α is the heat transfer coefficient, θ is the excess
temperature of melt, c is the heat capacity, and d is the foil
thickness. α lies in range (1–2)×105 W/m2 K, the difference
in media and melt temperature was about 400 K. All the other
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FIG. 12. Typical SEM image of Bi100−xSnx film cross section in
secondary electron regime.

parameters were taken as for pure Bi. Therefore, estimated
cooling speed was 106–107 (K s)−1 as in work [33].

For all further experiments, samples were cut from the
center of the stripes to increase their homogeneity.

2. Structure

The cross sections of samples were studied using SEM
in secondary electrons regime with LEO 1455VP Oxford
Instruments microscope. Most grains in samples had rodlike
shape (Fig. 12) due to high speed of cooling at synthesis.

Thickness of samples was estimated from scanning electron
microscope (SEM) images of cross sections in secondary
electrons regime and was 28–31 μm. The few percent error was
introduced by image perspective distortion and nonsmooth-
ness of chips. The crystalline texture and grain parameters
were investigated with HKL Electron Backscatter Diffraction
(EBSD) Premium System Channel 5 with 4QBSE Carl Zeiss
detector or Bruker e-Flash HR EBSD Detector with an ARGUS
FSE/BSE-Detector System.

The other details on grain structure are given in [33]. X-ray
diffraction (XRD) patterns were measured with X-Pert PRO
produced by PANalytical system (Netherland). The position of
peaks was in agreement with electron backscatter diffraction
(EBSD) (Fig. 13).

Crystalline texture was visualized in pole figures
[Fig. 14(a)] and texture mapping in real space [Fig. 14(a)].

FIG. 13. Typical x-ray diffraction pattern of Bi100−xSnx sample.

FIG. 14. Pole figures (a) and EBSD texture mapping (b) of
samples. Indices are in hexahedral coordinate system.

Approximately 1
3 of grains had orientation with direction [012]

and 1
3 with direction [001] in hexahedral coordinate system.

The relief of sample surface was investigated with atomic
force microscopy (AFM) using an AutoProbe M5 setup pro-
duced by Park Scientific Instruments (Fig. 15). AFM showed
that the deviations from mean thickness for each sample are
less than 2%.

The energy dispersive x-ray measurements were performed
with Ronteg EDX addon for SEM Leo 1455 VP. EDX analysis
does not detect oversaturated with Sn regions in samples.

Element analysis was performed with PANalytical Epsilon
1 x-ray fluorescence spectrometer (XRF). Sn concentrations
xch detected by XRF and concentrations x evaluated from the
weight of initial compounds are given in Table I. As is seen
from the table, detected xch are smaller than by load. Taking
in account the typical error of XRF measurements, we decided
to point concentrations in the paper up to the one significant
number.

FIG. 15. Typical film surface image by AFM.
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TABLE I. Sn concentration x evaluated by weight of initial com-
pounds and Sn concentration xch detected results of x-ray fluorescent
analysis.

x (at.%) 0.01 0.02 0.04 0.06 0.08
xch (at.%) 0.008 0.017 0.035 0.057 0.075

APPENDIX B: GALVANOMAGNETIC MEASUREMENTS

1. Experiment details

All measurements were performed on Cryogen Free Mea-
surement System from Cryogenic Ltd. The covered range of
temperatures is 5–300 K under magnetic fields up to 8 T.

The samples were cut rectangular (typically 3 × 8 mm)
from the middle of crystallized stripe, far from the stripe
edges. Length and width of each sample were measured
with optical microscope MPB-2 using collimator ruler which
gives 0.01-mm error. Thickness of each chip was estimated
from SEM measurements (see Appendix A). More details on
microscopies are given in Appendix A.

The sample was wired on the contact pad (Fig. 16). Indium
probes were deposited with ultrasound soldering. Six contacts
were made: two current and two potential for four-point probe
resistivity measurements and two potential for the Hall voltage
measurements (Fig. 17). The uncertainty of contacts size was
about 0.2 mm which gives ≈2%–3% error.

The dc was set in the range 10−4–10−3 A with a Keithley
Sub-Femtoamp RemoteSourceMeter SMU Instrument 6430
giving 0.05% error or less. Voltages were measured with
Keithley 2182A Nanovoltmeters (error 0.01% in correspond-
ing range). The contact pad with sample was placed in a
cell with thermometer and magnetic field sensors in He
atmosphere under low pressure. The cell was inserted into
a superconducting solenoid inside of a cryostat. Temperature
was regulated by gas He flow outside and electrical heaters
inside the cell. Temperature was measured and stabilized using
LakeShore 331 measuring controller providing the temperature
determination with precision up to 0.01 K.

While measuring Hall voltage, it is necessary to account
influence of collateral galvanomagnetic and thermomagnetic
effects as well as due to Hall contacts (Fig. 17) may be not
equipotential under zero magnetic field. The measured voltage
between Hall contacts (Fig. 17) consists of the following
contributions [40]:

UHC = UH + UN + UE + URL + UIR. (B1)

FIG. 16. The contact pad of galvanomagnetic probe (a) and the
Bi sample mounted for the measurements (b).

FIG. 17. Position of contacts on the sample.

Here, UH is voltage due to Hall effect, UN appears due to
Nernst effect, UE and URL are contributed by Ettingshausen
and Righi-Leduc effects, UIR is the potential difference be-
tween Hall contacts in the absence of magnetic field. The sign
of each contribution is defined by the sign of current and the
magnetic field. There are four possible combinations of current
and magnetic field directions:

B + ,I+ : U++
HC = UH + UN + UE + URL + UIR, (B2)

B + ,I− : U+−
HC = −UH + UN − UE + URL − UIR, (B3)

B − ,I+ : U−+
HC = −UH − UN − UE − URL + UIR, (B4)

B − ,I+ : U−−
HC = UH − UN + UE − URL − UIR. (B5)

From Eqs. (B2)–(B5),

UH + UE = (U++
HC + U+−

HC + U−+
HC + U−−

HC )/4. (B6)

Typically, UH � UE so Hall voltage can be estimated with
Eq. (B6).

The error in resistivity (and other specific characteristics)
determination is mainly defined by the size of contacts and is
equal or less than 5%. Taking into account the inhomogeneity
of current distribution, the overall error may achieve 5%–7%.
The reproducibility of directly measured characteristics like
potential differences is very good and the error is usually less
than 1% according to our estimates.

2. Primary data processing

The result of a measurement is a data file with several
columns: magnetic field induction on contact pad, temperature
on sample, current through the sample I , potential difference in
the direction of current flow and the Hall voltage. Automatized
data processing is needed to build magnetic field dependencies
of Hall coefficient RH (B), magnetoconductivity σxx(B), and
Hall conductivity σxy(B).

The Hall coefficient RH is defined by Eq. (B7):

RH = d
UH

IB
. (B7)

Here, d is sample thickness, I is current, and UH is Hall
voltage. The current direction was switched rapidly in each
field point and mean Hall voltage was recorded. The magnetic
field, in contrast, cannot be reversed quickly due to risk of
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additional heat release or even solenoid damage. Therefore,
we measure monotonous dependence on field induction B

from 0 to 8 T, 8 to −8 T, and back to zero. We interpolate
measured UH (B) with first-order splines and set UH (B) as
mean between two measurements [UH (B) − UH (−B)]/2 for
a number of Bj field points. Then, a set of RH (Bj ) values
was calculated introducing averaged UH (Bj ) both by field and
current into Eq. (B7).

Relative magnetoresistance was estimated with Eq. (B8):

�ρ(B) = ρ(B) − ρ(0), (B8)

where ρ(B) is resistivity under field B.
Magnetoconductivity tensor components were computed

[41] from resistivity under magnetic field ρ(B) and Hall
coefficient RH using the equations [41]

σxx(B) = ρ(B)

ρ(B)2 + R2
HB2

, (B9)

σxy(B) = RH (B)B

ρ(B)2 + R2
HB2

. (B10)

APPENDIX C: ELECTRICAL PROPERTIES

1. Resistivity, magnetoresistance, Hall coefficient

The temperature dependence of resistivity was measured in
the range 10–300 K (Fig. 18). Resistivity of pure Bi 1 increases
linearly with temperature. The addition of tin increases the
resistivity. There are small extrema for doped samples 2–6
which are shifted to higher temperatures for more doped
samples.

Hall coefficient RH was estimated in the temperature range
10–300 K under fields up to 8 T (Figs. 19 and 20). Hall
coefficient RH of isotropic material with two carrier types [41]
can be approximated at low fields as

RH = − rH

q

(
nμ2

n − pμ2
p

n2μ2
n + p2μ2

p

)
, (C1)

FIG. 18. Resistivity temperature dependence ρ(T ) for various
concentrations x (at.%) of Sn: 1 (0) (pure Bi), 2 (0.01), 3 (0.02),
4 (0.04), 5 (0.06), 6 (0.08).

FIG. 19. Temperature dependence of Hall coefficient RH under
field B = 0.1 T for various concentrations x (at.%): 1 (0) (pure Bi),
2 (0.01), 3 (0.02), 4 (0.04), 5 (0.06), 6 (0.08).

and at highs fields as

RH = rH

q

(
1

p − n

)
. (C2)

Here p, n are concentrations, μp, μn are the mobilities of holes
and electrons, respectively, q is the elementary charge, and rH

is the Hall factor which depends on scattering mechanism and
is close to 1.

The sign of low-field Hall coefficient [Eq. (C1)] is governed
by carriers with highest product of concentration n by squared
mobility μ2. For pure Bi, the Hall coefficient is negative:
mobility of electrons in Bi is significantly higher than one of
holes, whereas concentrations are the same. Moreover, the low-
field Hall coefficient (Fig. 19) remains negative for all studied
x at room temperatures. It confirms that relative contribution of
electrons substantially increases with temperature [μ2

nn term
prevails according Eq. (C1)].

Hall coefficient in high-field limit [see Eq. (C2)] must be
independent on mobilities. Hall coefficients of doped samples
do not saturate in available fields so it is hard to make
quantitative interpretations. However, we can still use RH at
8 T to obtain qualitative information about material. The RH

FIG. 20. Temperature dependence of Hall coefficient RH under
field B = 8 T for various concentrations x (at.%): 1 (0) (pure Bi),
2 (0.01), 3 (0.02), 4 (0.04), 5 (0.06), 6 (0.08).
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sign under 8 T becomes positive which marks that majority of
carriers are holes (Fig. 20). Samples with x � 0.02 at.% always
show positive Hall coefficient at 8 T. Although high-field limit
is not achieved, RH at 8 T field are relatively independent
on mobilities of charge carriers in comparison to the low-field
case. Therefore, majority of charge carriers (by concentrations)
are holes and amount of its excess increases with x [follows
from Eq. (C2), absolute values of RH at 8 T decreases].

It is curious to compare the signs of RH of doped samples at
low (Fig. 19) and high fields (Fig. 20). Hall coefficients at low
field become negative much earlier than RH at high field (see
RH temperature dependencies). It means that although excess
carriers are holes, the contribution of electrons to conduction
at temperatures upper than 200 K is comparable to the one of
holes (Fig. 19).

2. Magnetoconductivity tensor components

The σxx field dependencies are given in Fig. 21. Field
dependencies of σxx show no peculiarities and are in agreement
with resistivity/magnetoresistance temperature dependencies
(Figs. 18 and 3). The relative MR of nondoped Bi and sample
with x = 0.01 at.% are similar (see Fig. 18), while the absolute
values of resistivity are lower by an order of magnitude.
Theoretically, it may open the possibility for fabrication of
magnetoresistors with controllable absolute resistivity and
relative MR as high as of Bi at room temperatures.

The σxy data are given on Fig. 22. Field dependencies of
σxy are valuable for qualitative analysis of mobilities: the
field B where σxy shows extrema is proportional to inverse
mobility of charge carriers (maximum corresponds to holes
and minimum to electrons). Therefore, the lower field where
σxy shows extrema means higher mobility of charge carriers.

At low temperatures, the mobility of electrons in pure
Bi is higher than inverse lowest available fields in our
setup. Therefore, we see only the right side of the minimum
[Figs. 22 (a) and 22 (b)].

Addition of tin shifts the minimum to higher fields which
means reduction of electron mobility. Maxima become distin-
guishable since x � 0.01% and appear under higher fields
than minima (Fig. 22 ), which means lower mobility than one
of electron. For x � 0.04%, the hole peak exhibits significant
broadening at lower temperatures which may be considered as
contribution of the second, high-mobility hole species.

The general trend is that mobility of charge carriers
decreases with doping level and temperature. Mobility of
electrons is higher than one of holes for all the studied cases.
Electron contribution to conductivity is seen for all the samples
at room temperatures as can be seen from sign of σxy .

3. Why QMSA is required in this particular research

The QMSA is a complicated numerical procedure and may
not be familiar even to many of the specialists in semiconductor
science. Therefore, we feel obligated to justify our choice of
this tool.

It is well known that mobility of charge carrier can be
estimated as B−1

i where Bi is field and where σxy(B) shows
the corresponding peak. But, in case that there several types of
charge carriers with comparable mobilities, the related peaks

FIG. 21. Dependence of σxx on magnetic field B at temperatures
(a) 10 K, (b) 100 K, (c) 300 K for different concentrations x (at.%):
1 (0) (pure Bi), 2 (0.01), 3 (0.02), 4 (0.04), 5 (0.06), 6 (0.08).

will distort each other. Let us illustrate this on the basis of our
samples.

The temperature dependencies of T -point hole mobilities
μpL calculated from the inverse position of σxy(B) peaks are
given on Fig. 23. For nondoped Bi, σxy is negative at all B and
holes cannot be seen on σxy(B) dependencies directly.

On Fig. 23, the mobility of sample (2) with x = 0.01%
rises with temperature at 10–100 K. There is no sense in huge
decrease of (2) μpL at T > 150 because it makes mobilities for
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FIG. 22. Dependence of σxy on magnetic field B at temperatures
(a) 10 K, (b) 100 K, (c) 300 K for different concentrations x (at.%): 1
(0) (pure Bi, not seen), 2 (0.01), 3 (0.02), 4 (0.04), 5 (0.06), 6 (0.08).

sample x = 0.01 at.% even lower than hole mobilities in more
doped samples. The last is an artifact caused by the electrons
which influence on σxy(B) cancels the neighboring part of
positive peak related to holes. The hole mobilities temperature
dependence for rest x � 0.02% seems more or less realistic.

The situation with electrons is not so good. According to
Fig. 24, electron mobility rises several times with increase of
dopant concentration. Truly, a small rise is possible due to

FIG. 23. Mobility of T -point holes calculated directly from posi-
tion of σxy extrema x (at.%): 1 (0) (pure Bi), 2 (0.01), 3 (0.02), 4 (0.04),
5 (0.06), 6 (0.08) (not seen).

narrowing of the conduction band in the L point, but such
a serious rise is wrong for sure. The reasons for this serious
distortion of negative parts of σxy field dependencies (Fig. 22)
is caused by holes. In samples with low influence of holes
(x = 0%, 0.01%), electron mobilities look realistic.

The QMSA methods were developed to take into account
the mutual influence of different charge carriers to correspond-
ing regions of σxy field dependence. This is why we decided
to use it in our study.

APPENDIX D: QUANTITATIVE MOBILITY SPECTRUM
ANALYSIS IMPLEMENTATION

Quantitative mobility spectrum analysis (QMSA) is a com-
mon name for the modern family of techniques for processing
data from galvanomagnetic measurements. Great advantage of
QMSA is the possibility of extraction of charge carrier mobil-
ities and concentrations in cases where traditional equations
for kinetic coefficients give significant error or require too
many additional data. The main fields of QMSA application
are materials with several sorts of charge carriers [11,36,43]).
Numerical implementations of QMSA have gone a long way
in a few decades. In the pioneering approach by Beck and

FIG. 24. Mobility of L-point electrons calculated directly from
position of σxy extrema x (at.%): 1 (0) (pure Bi), 2 (0.01), 3 (0.02),
4 (0.04), 5 (0.06), 6 (0.08).
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Anderson [43], the condition for uniqueness was that the
solution is the envelope rather than the true mobility spectrum
and is inaccurate [36]. Modern algorithms are much more
accurate and uniqueness of fit in correctly set problems is
mentioned in several reports [36,44].

The underlying physics of QMSA is usually
[10,34,35,37,43,44] based on single charge carrier McClures
[45] solution for magnetoconductivity tensor components σxx ,
σxy in magnetic field B:

σxx(B) = qn〈μ〉
1 + 〈μ〉2B2

, (D1)

σxy(B) = qn〈μ〉2B

1 + 〈μ〉2B2
, (D2)

where q, 〈μ〉, and n are carrier’s charge, mean mobility, and
concentration.

To get the form suitable for QMSA procedure, we need
to account distributions of carrier mobility vs carrier energy
instead of single 〈μ〉. This can be done in two ways: one [34]
is to present n as a function of mobility n(μ) and integrate
∂n(μ)
∂μ

dμ, the next is to replace 〈μ〉 by summation over a
set of delta functions μi [10,44]. We choose the last way
because it is both more developed and simpler to implement.
Equations (D1) and (D2) become [46]

σxx(B) =
M∑
i=1

qiniμi

1 + μ2
i B

2
, (D3)

σxy(B) =
M∑
i=1

qiniμ
2
i B

1 + μ2
i B

2
. (D4)

Here, M is number i of points (delta functions) in mobility
mesh.

It is also convenient to unite qiniμi in Eqs. (D3) and (D4)
numerators to introduce partial conductivities:

σxx(Bj ) =
M∑
i=1

σp(μi) + σn(μi)

1 + μ2
i B

2
j

, (D5)

σxy(Bj ) =
M∑
i=1

[σp(μi) − σn(μi)]μiBj

1 + μ2
i B

2
j

. (D6)

Here, partial hole and electron contributions are σp(μi) =
|q|piμi and σn(μi) = |q|niμi , q is elementary charge. The
main goal is to find the distributions of σp and σn vs mobility.
The technical core of QMSA is nonlinear least-square fitting.
The short description comes below.

First, we fill the array of σp(μ) and σn(μ) with initial
positive values. Then, we calculate σ trial

xx and σ trial
xy by Eqs. (D5)

and (D6) from σp(μ) and σn(μ) under several field B values.
The key moment of least-square methods is the estimation of
total squared error. Vurgaftman and others suggested [44] to
include derivatives and proved that it leads to smoother spectra:

χ2 =
N∑

j=1

1

N

(�σxx,j )2 + (�σxy,j )2 + (�σ
′
xx,j )2 + (�σ

′
xy,j )2(

σ
exp
xx,j

)2 + (
σ

exp
xy,j

)2 + ([
σ

exp
xx,j

]′)2 + ([
σ

exp
xy,j

]′)2 .

(D7)

Here, N is the number of available points in magnetic field,
σ

exp
xx,j and σ

exp
xy,j are the experimentally measured magnetocon-

ductivity tensor components, and σ trial
xx,j and σ trial

xy,j are the tensor
components calculated by Eqs. (D5) and (D6) from σp , σn vs μ.
In the numerator, �σxx,j = σ

expt
xx,j − σ trial

xx,j and �σxy,j =
σ

expt
xy,j − σ trial

xy,j . The other terms includes field derivatives:

[
σ

expt
xx,j

]′ = Bj

∂σ
expt
xx,j

∂B

∣∣∣∣∣
B=Bj

, (D8)

[
σ

expt
xy,j

]′ = Bj

∂σ
expt
xy,j

∂B

∣∣∣∣∣
B=Bj

. (D9)

�σ
′
xx,j = Bj

(
∂σ

expt
xx,j

∂B
− ∂σ trial

xx,j

∂B

)∣∣∣∣∣
B=Bj

, (D10)

�σ
′
xy,j = Bj

(
∂σ

expt
xy,j

∂B
− ∂σ trial

xy,j

∂B

)∣∣∣∣∣
B=Bj

. (D11)

The next step is decreasing the error by modification of
σp(μ) and σn(μ). The approach described in improved QMSA
[44] suggests to make small change σp/n(μ) only in a single
point per iteration, but the change in this point must provide
the higher decrease of error than possible small changes at any
of the rest μi points.

The values of σp/n(μi) can be increased by multiplying
(1 + f ), decreased by (1 − f ), where f < 1 is adjustment
factor [see Eq. (D12)], or stay the same as on previous iteration.
Option where both σp/n(μi) stay not changed can be dropped
because it means no modification at all. For rest M μi points
there will be (8M) possible adjustments at one iteration. We
calculate all corresponding new (8M) errors and sort them in
order to find the smallest. After it is found, we change corre-
sponding σp(μi) and σn(μi) and proceed to the next iteration

σnew(μi) = (1 ± f )σold(μi). (D12)

We also implemented the fitting in Fourier space to accel-
erate convergence and decrease the number of artifacts [10].
It was very similar to the procedure described above. It is
only needed to transfer in Fourier domain with discrete Fourier
transforms applied to σp(μi) and σn(μi) arrays:

S̃(μ−1
l ) =

M∑
k=1

σ (μk)e− 2πi
M

(k−1)(l−1), (D13)

where S̃(μ−1
i ) is the Fourier image of corresponding σ (μi)

spectrum. The adjustment of the image

S̃new
(
μ−1

l

) = (1 ± f ) · S̃old
(
μ−1

l

)
(D14)

and inverse transform is needed to calculate the error

σnew(μk) = 1

M

M∑
l=1

S̃new
(
μ−1

l

)
e

2πi
M

(k−1)(l−1). (D15)

The uniqueness of mobility spectra was discussed in Beck
and Anderson’s pioneering article [43]. They showed that the
envelope of mobility spectra is unique. This envelope literally
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FIG. 25. Example of mobility mesh with two scales needed to
accurately capture both carriers with higher and lower mobilities.

contains all meaningful information that can be extracted from
galvanomagnetic measurements. Antoszewski and others dis-
cussed [36] convergence of improved QMSA. They analyzed
the set of galvanomagnetic data specimen (both experimental
and synthetic) and established that convergence has been
obtained for every reasonable data set ever analyzed.

The initial conditions for the best convergence for similar
algorithm were discussed [44] by Vurgaftman and others. In
this early implementation, improved QMSA begins with an
initial trial spectrum, which for example may be conveniently
taken from the Beck and Anderson algorithm. It should be
noted, they said, that the precise form of the initial trial
spectrum has little influence on the final result. Therefore,
improved QMSA seems stable relative to initial conditions.

As our algorithm implements the feature of Fourier-domain
fitting, it is fair to apply arguments from the original paper
[10] that introduces Fourier analysis to QMSA. Unlike prior
methods requiring a separate computational algorithm for the
envelope from Beck and Anderson as the initial guess, the
FMSA method quickly gets a more accurate envelope after its
first resolution step with lowest spectral resolution and least
fitted data points. It starts with a constant carrier conductivity
for all the mobility points. Therefore, Cui et al. report [10] that
implementation of Fourier-domain fitting allows the usage of
constant values as initial spectrum form.

The implementation was written in Intel Visual Fortran
2015. The example of mobility mesh is given in Fig. 25. The
mesh was made nonuniform (denser at low mobility values) in
order to guarantee needed the number of points for the good
resolution of low-mobility holes’ peak.

The code tested on synthetic data (see Fig. 26) consisted
of one electron and one hole species with mobilities differing
by an order. The forms of synthetic σp(μi), σn(μi) distribution
were taken Gaussian.

FIG. 26. Simulated (solid lines) and reconstructed (dots) mobility
spectra.

Set σp,n intitial
values. Set M, N.

Calculate σtrial
xx/xy, [σtrial

xx/xy] ,

calculate χ2
old. Set I=0.

Compute possi-
ble adjustments for

σn,p(μi), calculate χ2

Assume adjusted
σn,p(μi). Update χ2

I=I+1

Apply discrete Fourier
transform to σn,p(μi)

Compute possible ad-
justments for σn,p(μi)

Fourier images, calculate χ2

Assume adjusted im-
ages of σn,p(μi), ap-
ply inverse Fourier

transform. Update χ2

I=Imax?

end

n

y

FIG. 27. Algorithm of QMSA implementation with Fourier-
domain adjustment and derivatives taken into account for error
calculation.

QMSA procedure run with adjustment factor of f = 0.05%
and mesh with 60 points (see Fig. 27). 300 interpolated field
points in the range 0.01–8 T were taken. The procedure was nu-
merically heavy and took several hours for 12 data sets to com-
plete with achievement 10−1% error on Intel Xeon E5-2695.

FIG. 28. Reconstructed σxx (1, orange diamonds), σxy (2, black
triangles) and measured σxx (3, orange circles), σxy (4, black squares)
for Bi0.9998Sn0.0002 at T = 300 K.
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The result of simulated data reconstruction was generally
correct with a small broadening (see Fig. 26), which is common
for the QMSA family of methods.

The example of real data fit by the described algorithm is
given in Fig. 28. The black points are experimental data and
orange points are evaluated from mobility spectra by Eqs. (D1)

FIG. 29. Distribution of electron partial conductivity (main peak)
σn(μ) of Bi100−xSnx vs mobility μ at different temperatures: 100 K
(a), 200 K (b), 300 K (c). Number marks x (at.%) of Sn: 1 (0) (pure
Bi), 2 (0.01), 3 (0.02), 4 (0.04), 5 (0.06), 6 (0.08). Green squares mark
centers of peaks.

and (D2). The coincidence of measured and reconstructed data
is good and in agreement with low χ2 error.

APPENDIX E: RESULTS OF QMSA ANALYSIS

The distributions of electron partial conductivity σn vs mo-
bility μ for different Sn concentrations x are given in Fig. 29.

FIG. 30. Distribution of T -point hole partial conductivity σp(μ)
of Bi100−xSnx vs mobility μ. Different temperatures: 100 K (a), 200 K
(b), 300 K (c). Number marks x (at.%) of Sn: 1 (0) (pure Bi), 2 (0.01),
3 (0.02), 4 (0.04), 5 (0.06), 6 (0.08). Green squares mark centers of
peaks. Insets: distributions of L-point hole partial conductivity σp(μ).
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The position of the peak corresponds to the mean mobility
μn of the charge carrier. The area under the peak shows
the magnitude of the carrier’s contribution to the conduc-
tivity. The mobility of electrons is highly dependent on Sn
concentration at lower temperatures [Fig. 29(a)]. With rise
of temperature the dependence of electron mobilities on Sn
concentration becomes much weaker [Figs. 29(b) and 29(c)].
The size of area under peaks decreases with x on Fig. 29
which means that contribution of electrons to conductivity
lowers.

The reason of small growth of electron mobility μn with x

may be explained by the nonparabolicity of the dispersion law
near the L point. Heremans and Hansen adapted the expression
for mobility of charge carriers with pseudoparabolic dispersion
law to Bi [19]:

μ(E) = qτ0

m∗

(
kBT

(1 + E/Eg)E

)1/2

, (E1)

where m∗ is the effective mass, Eg is the band gap at the
L point, and τ0 is a constant, which does not depend on the
energy.

With increase of tin concentration x the Fermi level shifts
down from the upper L-point band to the band gap and to
the lower L-point band. The average energy of electrons in
more doped system therefore will be lower than in less doped.
This may lead to increase of mobility according to Eq. (E1).
When mobility of electrons is high enough (low temperatures)
in doped samples, tin atoms act as mean-free path limiters
so doping decreases mobility. At higher temperatures, phonon
scattering plays a more important role so Eq. (E1) can be used
to estimate mobilities behavior.

The distributions of hole partial conductivity σp vs mobility
μ are given in Fig. 30. There are two types of peaks. First
are the peaks at lower mobilities which exist in all ranges
of temperature and correspond to the heavy T -point holes.
The others are peaks at higher mobilities visible under low
temperatures for samples with the Sn doping x > 0.04 at.%
[insets in Figs. 30(a) and 30(b)]. The last correspond to the
L-point light holes.

The areas under L-point hole peaks remain similar with the
temperature (Fig. 30). The area under the L-point peak quickly
decreases with the temperature and completely disappear

FIG. 31. Temperature dependencies of L-point hole mobility for
different Sn concentration x: 1 (0.04) at.%, 2 (0.06) at.%, 3 (0.08)
at.%.

under room conditions. T -point hole mobility μp temperature
dependencies are given in Fig. 31.

APPENDIX F: SUBSTITUTION OF ELLIPTICAL DENSITY
OF STATES TO SOMMERFELD EXPANSION

The Lax density of states for elliptical band [20]

gL(E) = 8π
√

2

h3m∗ (3/2)

(
1 + 2E

Eg

)√
E

(
1 + E

Eg

)
. (F1)

We substitute it to Eq. (5):

ζ (T ) = ζ0 − π2

6
(kBT )2 g′(ζ0)

g(ζ0)
− 7π4

360
(kBT )4 g′′′(ζ0)

g(ζ0)
− · · · .

The resulting expression for the temperature dependence of
Fermi level will be

ζ (T ) = ζ0 − k2
Bπ2T 2

(
E2

g + 8Egζ0 + 8ζ 2
0

)
12ζ0(Eg + ζ0)(Eg + 2ζ0)

− 7E4
gk

4
Bπ4T 4

960ζ 3
0 (Eg + ζ0)3(Eg + 2ζ0)

− · · · . (F2)

The evaluations have shown that contribution of higher-order
terms is negligible in a relevant range of parameters.
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