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Dynamical Friedel oscillations of a Fermi sea
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We study the scenario of quenching an interaction-free Fermi sea on a one-dimensional lattice ring by suddenly
changing the potential of a site. From the point-of-view of the conventional Friedel oscillation, which is a static or
equilibrium problem, it is of interest what temporal and spatial oscillations the local sudden quench will induce.
Numerically, the primary observation is that for a generic site, the local particle density switches between two
plateaus periodically in time. Making use of the proximity of the realistic model to an exactly solvable model
and employing the Abel regularization to assign a definite value to a divergent series, we obtain an analytical
formula for the heights of the plateaus, which turns out to be very accurate for sites not too close to the quench
site. The unexpect relevance and the incredible accuracy of the Abel regularization are yet to be understood.
Eventually, when the contribution of the defect mode is also taken into account, the plateaus for those sites close
to or on the quench site can also be accurately predicted. We have also studied the infinite lattice case. In this case,
ensuing the quench, the out-going wave fronts leave behind a stable density oscillation pattern. Because of some
interesting single-particle property, this dynamically generated Friedel oscillation differs from its conventional
static counterpart only by the defect mode.
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I. INTRODUCTION

Quantum nonequilibrium dynamics is now under extensive
study [1–3], as theorists are quenching all kinds of models in
all kinds of protocols. As a fair observation, in most cases,
the model taken up is a many-body system with interaction.
Although models of this kind have to be the choice for
addressing problems like thermalization, their actual wide
employment might to some extent result from the prejudice
that only interacting many-body systems could yield novel,
interesting dynamics. But actually, when it comes to dynamics,
even the simplest model can be nontrivial [4,5]. The point is
that there is a big gap from the static property of a system
to its dynamics, as the extra dimension of time makes the
latter much more richer and more complicated than the former.
As examples of interesting dynamics exhibited by simple
models, we have the Landau-Zener-Stueckelberg tunneling of
a two-level system [6–8], the nonspreading wave packet of a
free particle [9,10], the dynamical localization of a particle
on a one-dimensional tight binding chain [11], the coherent
destruction of tunneling of a particle in a double-well potential
[12], etc. Moreover, in the field of atomic physics, many
intriguing phenomena, such as above-threshold ionization
[13,14] and stability under super-intense lasers [15], can be
displayed by the simplest atom, namely, the hydrogen atom.
Hence, in search of interesting dynamics, one does not need to
resort to complicated many-particle systems—single-particle
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models or many-particle models without interaction could
suffice.

In this spirit, we had studied the transition dynamics
of a Bloch state on a one-dimensional tight binding chain
[16,17]. The scenario is extremely simple. We just take a one-
dimensional tight binding chain with the periodic boundary
condition and put a particle in an arbitrary Bloch state [see
Fig. 1(a)]. Then we quench it by suddenly changing the
potential of an arbitrary site. Because of the newly introduced
local barrier, the particle will be scattered into all other Bloch
states, in particular, the one which is the mirror of the initial
Bloch state, and its wave function in the real space will be
deformed. This is all one can anticipate from general principles.
However, down-to-earth numerical simulation reveals that the
probability of the particle remaining in its initial state (the
survival probability) and the probability of it being reflected
into the mirror state (the reflection probability) both show cusps
periodically in time [see Fig. 2(a)]. This kind of nonsmooth
behavior is totally unexpected. Yet more is in store. In the
real space, the evolution trajectory of the probability density
on a generic site shows plateau structures [see Fig. 2(b)]. All
these unexpected, structured dynamical phenomena can be
explained by identifying and studying an ideal model, which
we shall sketch below.

It is natural to generalize the single-particle problem to a
many-particle one. After all, to single out a particle and prepare
it in a certain Bloch state other than the ground one, is no easy
task. Experimentally, people more often deal with a collection
of particles simultaneously. Hence, in this paper we consider
the same scenario as before but with the initial state being
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FIG. 1. Two quench scenarios on the one-dimensional tight bind-
ing ring. (a) The single-particle case. Initially an arbitrary Bloch state
with wave vector qi is occupied. (b) The many-particle case. Initially
all the Bloch states with wave vector |q| � qf are occupied.

a Fermi sea, in which all the Bloch states below the Fermi
energy are filled [see Fig. 1(b)]. From the point of view of
Friedel oscillations, this is a violent way of introducing the
defect into the Fermi sea. It is of interest what temporal and
spatial oscillation it will induce. To make things tractable and
to adhere to our idea mentioned above, we assume that there
is no interaction between the particles. Despite this simplicity,
the problem is still very challenging analytically. But at least
numerically, it is simple. As there is no interaction, we can just
evolve each particle independently, and then for calculating
single-particle quantities like the particle number at a site, we
just need to sum up the contributions of each particle. It turns
out that the particle number at a generic site switches between
plateaus of two different heights, with the times of jumping
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FIG. 2. Quench dynamics of a Bloch state |ki〉. (a) Time evolution
of the survival probability Pi [solid line, see Eq. (4)] and the reflection
probability Pr [dashed line, see Eq. (5)]. (b) Time evolution of the
local probability density Dl [see Eq. (6)]. The parameters are N =
401, ki = 100, l = 100, and U = 1.5. Note the cusps in (a) and the
plateaus in (b). That the survival probability shows cusps has also
been observed in some other models [18–24].

determined by the Fermi wave vector qf . Determining the
heights of the plateaus is then our primary aim.

In the following, we shall first describe in detail the quench
scenario and the numerically observed plateaus in Sec. II. Then
in Sec. III we shall try to develop an analytic formula for the
plateaus. This will be done in three steps. First, we shall review
the single-particle case in Sec. III A, and derive many results in
a new way. Then, in Sec. III B, by approximating the realistic
Fermi sea by a fictitious one, we employ the Abel summation
trick to get an analytic formula for the heights of the plateaus,
which turns out to be very accurate for sites not too close to
the quench site. Motivated by this success, we do some formal
extension in Sec. III C, and obtain another analytic formula
which reduces to the Abel one for sites far away from the
quench site and has the advantage that it is defined also for
the quench site. Finally, in Sec. III D, we take into account the
contribution of the defect mode, and get a formula accurate
for all sites, including the quench site. This is the ultimate
result for the plateau heights. On the basis of this result, in
Sec. IV, we consider the infinite lattice case. In this case, there
is no repeated plateau switching, and for each site, the particle
number will settle down to a constant value. The picture is
that the sudden quench generates two out-going wave fronts,
which leave in their wakes a stable density pattern. This is
Friedel oscillation generated dynamically. We shall discuss its
relation with the conventional static Friedel oscillation.

II. THE SCENARIO AND THE PLATEAUS

The setting is simply the one-dimensional tight binding
chain with the periodic boundary condition, or a lattice ring.
The unperturbed single particle Hamiltonian is (h̄ = 1 in this
paper)

H0 = −
L∑

l=−L

(|l〉〈l + 1| + |l + 1〉〈l|), (1)

where |l〉 denotes the basis function (the Wannier function) at
site l. Here for notational simplicity, it is assumed without loss
of generality that the lattice size N = 2L + 1 is an odd number.
The periodic boundary condition means that |l〉 ≡ |l + N〉 for
arbitrary l. As is well known, the unperturbed eigenstates of
H0 are the so-called Bloch states, which are essentially plane
waves on the lattice ring. Explicitly, they have the expression

〈l|k〉 = 1√
N

exp(iql). (2)

Here k is an integer indexing the Bloch state and q = 2πk/N

is the corresponding wave vector. Apparently, |k〉 ≡ |k + N〉.
It is easily verified that the eigenenergy associated with the
Bloch state |k〉 is ε(q) = −2 cos q. This dispersion relation is
illustrated in Fig. 1.

In Refs. [16,17] the following quench scenario [see
Fig. 1(a)] was studied. Initially, a particle is in some Bloch state
|ki〉 with wave vector qi = 2πki/N . This is an eigenstate of
H0, and nothing interesting happens. Then at t = 0, the system
is quenched suddenly by changing the potential of some site,
which, because all the sites in a ring are on equal footing,
can be assumed to be the l = 0 site. The subsequent evolution
of the single-particle system is then controlled by the final
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Hamiltonian Hf = H0 + H1, with the perturbation

H1 = U |0〉〈0|, (3)

where U is the strength of the defect potential, or the quench
amplitude.

It turns out that this scenario yields very interesting and
unexpected dynamics. Let us denote the wave function of
the particle as |ki(t)〉 ≡ exp(−iHf t)|ki〉, where ki denotes
the initial state and the argument t indicates how long it has
been evolved by Hf . This way of notation is used throughout
the paper. The state |ki(t)〉 can be easily determined once
the Hamiltonian Hf is diagonalized numerically. It is then
observed that, in the momentum space, both the probability
of the particle remaining in its initial state |ki〉,

Pi = |〈+ki |ki(t)〉|2, (4)

and the probability of it being reflected into the momentum-
reversed Bloch state |−ki〉,

Pr = |〈−ki |ki(t)〉|2, (5)

show cusps periodically; while in the real space, the local
probability density,

Dl(t) ≡ |〈l|ki(t)〉|2, (6)

at a generic site l, jumps constantly from plateau to plateau.
These two phenomena are illustrated in Figs. 2(a) and 2(b),
respectively. An important question is at what times the cusps
or the sudden jumps occur. The answer is that the cusps are
located at t = rT , where r is an integer and T = N/vi , with
vi = 2 sin qi being the group velocity of a wave packet with
wave vector qi , and the sudden jumps are located at t = rT ±
sc, with sc = |l|/vi . These results are predicted by the ideal
model in Refs. [16,17] and agree with numerics very well.

In the present paper we study the scenario of locally
quenching a Fermi sea, as illustrated in Fig. 1(b). Now instead
of a single Bloch state, all the Bloch states with wave vector
|q| � qf = 2πkf /N are occupied by spinless, noninteracting
fermions. The total number of particles is then M = 2kf + 1,
and the particle number at each site is n̄ = M/N . The total
wave function of the system is always a Slater determinant.
Formally, we can denote it as

�(t) = Slater{|−kf (t)〉, . . . ,|kf (t)〉}. (7)

Before proceeding, let us introduce another orthonormal basis.
Both H0 and Hf are invariant under the reflection with respect
to the defect site l = 0. Hence, it is convenient to have a set of
basis states with definite parities. We thus form the even-parity
standing waves

|k+〉 ≡
{ 1√

2
(|k〉 + |−k〉), 1 � k � L,

|0〉, k = 0,
(8)

and the odd-parity standing waves

|k−〉 ≡ 1√
2

(|k〉 − |−k〉), 1 � k � L. (9)

The odd-parity standing waves vanish at the quench site l = 0,
and thus are not affected by the defect potential. Therefore, they
are still eigenstates of Hf . But the even-parity standing waves
are coupled to each other by the perturbation Hamiltonian H1.
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FIG. 3. Time evolution of the local probability density D+
l (t) ≡

|〈l|k+(t)〉|2 with the initial state being an even-parity standing wave
|k+〉. The red dashed lines indicate the analytic prediction (21) based
on the ideal model. In all of the three panels, the common parameters
are N = 201, l = 50, and U = 1.5.

In terms of the new basis, the total wave function (7) can be
rewritten as

�(t) = Slater{|0+(t)〉, . . . ,|k+
f (t)〉,|1−(t)〉, . . . ,|k−

f (t)〉}.
The quantity of most interest is the local particle number on
an arbitrary site l. It is the sum of the contributions of all the
particles,

n(l,t) =
kf∑

k=0

|〈l|k+(t)〉|2 +
kf∑

k=1

|〈l|k−(t)〉|2

=
kf∑

k=0

|〈l|k+(t)〉|2 +
kf∑

k=1

|〈l|k−〉|2. (10)

Here in the second line we have used that fact that the odd-
parity standing waves are eigenstates of Hf and thus they only
accumulate a global phase in time. The time variation of the
local particle number then comes solely from the even-parity
states.

Equation (10) suggests studying the time evolution of each
even-parity standing wave first. Figure 3 shows the time
evolution of the probability density D+

l (t) ≡ |〈l|k+(t)〉|2 for
three different values of k. In Fig. 3(a) we see that D+

l alternates
between plateaus on two different heights. This should be
compared with Fig. 2(b), where the initial state is not an
even-parity state but a Bloch state. We see that while D+

l

jumps back and forth between just two plateaus, Dl has a
sinusoidal profile and shows more plateaus. The difference
comes from the fact that |k(t)〉 contains also an odd-parity
part |k−(t)〉, which interferes with the even-parity part |k+(t)〉.
The remaining two panels of Fig. 3 demonstrate a point less
emphasized in Refs. [16,17]. There we see that as the wave
vector q = 2πk/N recedes from the inflection point q = π/2,
the two-plateau structure deteriorates. This phenomenon has
its root in the fact that the dispersion curve ε(q) is best
approximated by a straight line at q = π/2 (or the middle of
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FIG. 4. (a) Time evolution of the local probability density
|〈l|k+

f (t)〉|2 with the initial state being the even-parity standing wave
|k+

f 〉. (b) Time evolution of variation of the local particle number
δn(l,t) = n(l,t) − n̄, with the initial state being a Fermi sea in which
all the Bloch states |k〉 with |k| � kf are filled. In both panels, the
common parameters are N = 401, kf = 100, l = 50, and U = 1.5.
The dashed lines are guide for the eye, but they are actually the analytic
predictions of (21) or (31).

the energy band) and least at q = 0 or π (or the edges of the
band). A detailed theory will be presented in Sec. III A below.

Now apart from some constant contribution from the odd-
parity standing waves, n(l,t) is the superposition of all the
curves |〈l|k+(t)〉|2. In view of the three panels in Fig. 3, it is
uncertain what will result from the superposition; in particular,
it is uncertain whether n(l,t) will display any plateau structure.
Superficially, there are two unfavorable factors. First, for
different k, the switch times rT ± sc are different, as bothT and
sc depend on k; second, for those k � 0, the plateau structure
is not well developed at all. However, as Fig. 4(b) shows, n(l,t)
does show a well-shaped two-plateau structure. Moreover, its
switching between the two plateaus is synchronized with that
of |〈l|k+

f (t)〉|2, as is evident by comparing Fig. 4(a) with 4(b).
Here it is interesting that in n(l,t), the features of the low-lying
states are smeared out—only that of the states on the top like
|k+

f (t)〉 is still visible.

III. ANALYTIC FORMULAS

We face the problem to account for the unexpected two-
plateau structure displayed by n(l,t). In view of the irregular
behavior of the low-lying states, to develop a comprehensive
theory seems a task of challenge and is yet to be fulfilled. Here
we confine ourselves to a relatively humble goal. That is, we
admit that n(l,t) alternates between two plateaus and that it
does so in the same pace as |〈l|k+

f (t)〉|2, and focus only on the
problem of predicting the heights of the plateaus. Once this is
done, the skeleton of the curve of n(l,t) is determined. As the
first plateau corresponds to the prequench value n̄ of n(l), the
real problem is to predict the height of the second plateau.

This is what we try to do in the following subsections.
As we shall see, this humble target is still too high, and

in many cases we have to resort to bold approximations or
just formal procedures to do what we can only do. However,
interestingly, the formulas so obtained, although not really
rigorously justified, turn out to be very accurate predictions
of the height of the second plateau. In particular, in the end,
we will get an analytic formula accurate for an arbitrary site l.

A. An exactly solvable ideal model

As Eq. (10) shows, to calculate n(l,t), we can calculate
D+

l (t) = |〈l|k+(t)〉|2 first. In this subsection we try to find an
approximate value of the latter by using the proximity of the re-
alistic model to an ideal model, which is exactly solvable. This
has essentially been done in Refs. [16,17] already, so below we
just sketch the construction of the ideal model and present the
most relevant result, with which the phenomena in Figs. 2, 3,
and 4(a) can be understood. For the sake of completeness, the
detailed derivation is retained but deferred to the Appendix.
The derivation there is more straightforward than that in
Refs. [16,17]. We shall also discuss more about the limitation
or validity of the approximation than in Refs. [16,17].

The state |k+
i (t)〉 evolves by the equation

i
∂

∂t
|k+

i (t)〉 = (H0 + H1)|k+
i (t)〉, (11)

with the initial value |k+
i (t = 0)〉 = |k+

i 〉. As both H0 and H1

are diagonal with respect to the even-odd partition of the basis
functions, |k+

i (t)〉 always belongs to the even-parity subspace,
and is of the form

|k+
i (t)〉 =

L∑
k=0

ak(t)|k+〉, (12)

whereak(t) are time-dependent coefficients. With respect to the
even-parity basis functions {|k+〉},H0 is diagonal while H1 is
close to a matrix whose entries are all equal. Specifically, we
have

〈k+
1 |H0|k+

2 〉 = −2 cos(2πk1/N)δk1,k2 , (13)

and (g ≡ U/N )

〈k+
1 |H1|k+

2 〉 =

⎧⎪⎨
⎪⎩

2g, if both k1,2 are nonzero,√
2g, if only one of k1,2 is zero,

g, if both k1,2 are zero.

(14)

Numerically, it is observed that for given U , if the lattice size
N is large enough, and if the wave vector qi is not so close
to 0 or π , in the time evolution, only those few states |k+〉
with k � ki are significantly populated. Other states are far off
resonance and hence are suppressed. This fact means that in
the full spectrum of H0, only a small segment is effective in the
dynamics in question. Within this segment, the spectrum of H0

is nearly equally spaced, with the gap between two adjacent
levels being approximately

� = ε(qi + η) − ε(qi) � ηε′(qi) = 4π

N
sin qi, (15)

where η = 2π/N is the difference between two adjacent wave
vectors in the Brillouin zone. Also, by (14), the coupling
between two arbitrary levels in the segment is of the constant
value 2g.
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1. Construction and solution of the ideal model

We now extend this segment, together with the two features,
to the whole axis (−∞,+∞). We consider an ideal model
consisting of infinitely many levels {|j̃〉| − ∞ � j � +∞},
whose energies are equally spaced, i.e.,

H̃0|j̃ 〉 = j�|j̃ 〉, (16)

and between any pair of which, the coupling is constant, i.e.,

〈j̃1|H̃1|j̃2〉 = 2g, (17)

for ∀j1,j2 ∈ Z. Here H̃0,1 are counterparts of H0,1. By con-
struction, |j̃〉 is meant to be the counterpart of |(ki + j )+〉, and
its wave function in the real space is postulated to be

〈l|j̃ 〉 = 〈l|(ki + j )+〉 =
√

2

N
cos[(qi + jη)l]. (18)

The correspondence between |j̃〉 and |(ki + j )+〉 of course
fails for j large enough, either because |(ki + j )+〉 no longer
belongs to the linear segment, or simply because there is
no one-to-one correspondence between a finite set and an
infinite one. However, as long as those fictitious levels |j̃〉
are not significantly populated, the error introduced could be
negligible. Also note that in (16), the energy of |j̃ 〉 is defined
as j� but not ε(qi) + j�. This is a mere shift of the origin of
energy, and does not lead to any observable effect.

Corresponding to the original dynamical problem of the
realistic model, in the ideal model, initially the system is in the
state |ψ̃(t = 0)〉 = |0̃〉. It then evolves as

i
∂

∂t
|ψ̃〉 = (H̃0 + H̃1)|ψ̃〉. (19)

At any time t , it is of the form |ψ̃(t)〉 = ∑
j∈Z ãj (t)|j̃〉. As |j̃〉 is

the counterpart of |(ki + j )+〉, so is ãj (t) that of aki+j (t)eiε(qi )t .
Once ãj (t) is calculated, we get an approximation of 〈l|k+

i (t)〉
as

〈l|k+
i (t)〉 =

L∑
k=0

ak(t)〈l|k+〉

� e−iε(qi )t

√
2

N

∑
j∈Z

ãj (t) cos[(qi + jη)l]. (20)

Now we have two steps to go. First, we have to solve ãj (t)
and then we can substitute it into (20) to calculate 〈l|k+

i (t)〉
and in turn D+

l (t) approximately. The detailed calculation is
in the Appendix. Here we just describe the ultimate result.
For the current problem, a characteristic time scale is the so-
called Heisenberg time T = 2π/�. For a given site l satisfying
−L � l � L, there are two critical times, s+

c = T |l|/N and
s−
c = T (N − |l|)/N . The physical meaning of these times will

be clear in the next paragraph. Now for an arbitrary time t =
rT + s, where 0 < s < T and r is a nonnegative integer, we
have

D+
l (t) �

⎧⎪⎨
⎪⎩

2
N

cos2 qil, if s ∈ (0,s+
c ),

2
N

cos2(qi |l| − θi/2), if s ∈ (s+
c ,s−

c ),
2
N

cos2 qil, if s ∈ (s−
c ,T ),

(21)
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FIG. 5. Equal-distant snapshots of the probability distribution of
the wave function |〈l|k+

i (t)〉|2 in the time interval [0,2T ]. For clarity,
two adjacent curves are displaced by an amount of 2 in the vertical
direction. The parameters are (N,ki,U ) = (301,75,2). The dashed
lines indicate the motion of the wave fronts with a constant velocity
of vi = 2 sin qi � 2.

where the angle variable θi = θ (qi) is defined as

θ (q) = 2 arctan
U

2 sin q
. (22)

Equation (21) explains the two-plateau structure in Figs. 3
and 4(a). Its content can be best illustrated by presenting
the snapshots of the probability distribution |〈l|k+

i (t)〉|2 at
consecutive times, as is done in Fig. 5. There, 17 snapshots
of |〈l|k+

i (t)〉|2, which are sampled equal-distantly in the time
interval [0,2T ], are stacked in a pile. The red dashed lines
indicate the fronts of the waves generated by the sudden
quench. They move at the constant velocity vi = 2 sin qi . The
time for them to finish a loop on the lattice ring is then N/vi ,
which is exactly T . Similarly, rT + s±

c are just the times when
the wave fronts (backwards or forwards) pass the site l. One
can recognize that the curves show a pattern inside the two
rhombuses and another pattern outside the two rhombuses.
On the interfaces between the two regions, the dislocation is
quite clear. This observation embodies the meaning of (21) that
|〈l|k+

i (t)〉|2 alternates between two values in time.
Another thing noticeable in Fig. 5 is that at t = rT , the prob-

ability distribution |〈l|k+
i (t)〉|2 reconstructs itself to its initial

pattern approximately. It would be an exact reconstruction if
it were the ideal model—the ideal model has an equal-distant
spectrum of (A7), hence the revival would be periodic and
complete.

Some new light will be shed on (21) when we consider the
eigenstates of H0 + H1 in Sec. IV.

2. Validity of the approximation

Now we discuss the validity of the approximation. The ideal
model agrees with the realistic model only locally. Hence, for
the dynamics occurring in the ideal model to be a faithful
reflection of that occurring in the realistic model, the levels
actively participating (significantly populated) in the ideal
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model should be as few as possible, and the linearization of
the spectrum ε(q) at q = qi should be as good as possible. By
(A13) we see that the population on |j̃〉 (j �= 0) is up bounded
by the value

max
t

|ãj (t)|2 = F (g/�)/j 2, (23)

where F (x) ≡ 16x2/(1 + 4π2x2). As the series
∑

j�1 1/j 2

converges absolutely, for any ε > 0, there exists a nmax, such
that

∑
|j |>nmax

|ãj (t)|2 < ε. Moreover, as F (x) is a monotoni-
cally increasing function of |x|, the smaller the ratio |g/�| is,
the smaller nmax can be chosen. As g/� = U/(4π sin qi), for
fixed U and N , the minimum of |g/�| is achieved at qi = π/2.

On the other hand, the energy of the state |(ki + j )+〉 has
the Taylor expansion

ε(qi + ηj ) = ε(qi) + ε′(qi)ηj + 1
2ε′′(qi)η

2j 2 + · · · . (24)

At qi = π/2, the quadratic term vanishes identically, and
the linearization is the best. Hence, the ideal model as an
approximation works the best at qi = π/2. As qi recedes from
this optimal point (either towards 0 or π ), the ratio |g/�|
increases and at the same time the quadratic term in (24)
increases too. Both facts are detrimental to the approximation,
and the analytic predictions above become less accurate. This
is demonstrated in Fig. 3.

Although π/2 is the most favorable value of qi , at other
levels of qi , the approximation can work well too as long
as the lattice size N is large enough. Actually, as g/� =
U/(4π sin qi) is independent of N, nmax is independent of N .
However, for j in the range −nmax � j � nmax, the quadratic
term will become negligible in comparison with the linear term
as N → ∞. Therefore, for given U , the range of qi where the
ideal model is a good approximation will become larger and
larger as N increases, and will cover (0,π ) eventually in the
limit of N = ∞.

B. Magic of the Abel summation method

Having treated the single-particle problem, we now proceed
to the many-particle problem. By (10) we face the problem of
summing over the |k+(t)〉 states. But the problem is that, as
pointed out in the proceeding subsection, for a finite lattice
and for states |k+〉 lying close to the bottom of the energy
band, we do not have an accurate estimation of |〈l|k+(t)〉|2.

This seems an insurmountable difficulty. But there is an
important fact worth noting. In Fig. 6 we study the population
on each even-parity state |k+〉 (0 � k � L)

Pk(t) =
kf∑

ki=0

|〈k+|k+
i (t)〉|2 (25)

at some arbitrary times. We see that the population distribution
is close to its initial value

Pk(t = 0) =
{

1, if k � kf ,

0, if k > kf .
(26)

Hence, although on the single-particle level, each |k+〉 state
mixes with its neighbors, on the many-particle level, popula-
tion transfer occurs only between the states in the vicinity of
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FIG. 6. (a) Population on each even-parity standing wave |k+〉
at two arbitrarily chosen times [see Eq. (25) for the definition]. The
parameters are N = 401, kf = 100, and U = 2. (b) Highlight of the
transition region in (a).

the Fermi energy. Those states at the bottom of the Fermi sea,
which pose a difficulty for the summation, are dormant.

Actually, that the states deep beneath the surface of the
Fermi sea are in a sense dormant is also reflected in Fig. 4.
Originally, n(l,t) is the superposition of all |〈l|k+(t)〉|2 with
0 � k � kf . By (21) and as demonstrated in Fig. 3, these
quantities switch between plateaus at different times. However,
the net result of the superposition is that n(l,t) switches
between the two plateaus with the same rhythm as |〈l|k+

f (t)〉|2.
The observations above motivate us to approximate the

realistic Fermi sea by a fictitious one. Suppose that in the
fictitious model in the proceeding subsection, all the levels |j̃〉
with j � 0 are filled initially. After the quench, the levels mix
with each other, but overall, population transfer occurs only at
the surface layer of the Fermi sea. For this fictitious model, the
analytic formula (21) works exactly for all the single-particle
levels, and the plateau switchings are all synchronized. The
fictitious Fermi sea is infinitely deep, and hence the total
number of particles on a local site l is ill-defined, but its
variation could be well defined. By (21), the height of the
second plateau relative to the first plateau is

δn(l) = 1

N

∞∑
m�0

{cos[2(qf − ηm)|l| − θf ]

− cos[2(qf − ηm)|l|]}. (27)

Here θf ≡ θ (qf ). Apparently this series is not convergent but
oscillatory. But one can use the trick of the Abel summation
method to extract a finite and definite value from it [25]. The
idea is that while the series

∞∑
m=0

am (28)

diverges, the series

I (x) ≡
∞∑

m=0

amxm (29)
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FIG. 7. Time evolution of the variation of the local particle
number δn(l,t) ≡ n(l,t) − n̄. In each panel, the blue solid line is the
numerically exact result, while the horizontal red dashed line is the
analytic prediction of Eq. (31). The parameters are displayed in each
panel.

might converge for 0 � x < 1, and the limit

lim
x→1−

I (x) = S (30)

might exist. If so, then the original summation (28) is assigned
the value S. Carrying out these procedures for the series (27),
which involve just some geometric series, we get readily

δnA(l) = sin(2qf |l| − θf + η|l|) − sin(2qf |l| + η|l|)
2N sin(η|l|)

= − sin(θf /2) cos(2qf |l| + η|l| − θf /2)

N sin(η|l|) . (31)

Here the subscript indicates that the formula is from the Abel
summation method. It turns out that this formula, which is
obtained by a purely formal procedure, is a very accurate
prediction of the second plateau in the time evolution of n(l,t).

In Fig. 7 we show the evolution trajectories (solid lines) of
the variation of local particle number δn(l,t) = n(l,t) − n̄ for
two different sets of parameters. The analytic prediction of (31)
is indicated by the horizontal dashed lines. In each panel we see
that in the time intervals where the second plateau is expected,
the solid line either almost coincides with the horizontal dashed
line, or oscillates around it.

In Fig. 8 we check the accuracy of the formula (31) in a more
systematic way. For the two sets of parameters (N,kf ,U ) in
Fig. 7, we compare the plateaus exhibited by δn(l,t) and the
analytic prediction δnA(l) in (31) for 1 � l � 20. The height
of the plateau is defined as

δn(l) = 1

t2 − t1

∫ t2

t1

δn(l,τ )dτ, (32)

where t1,2 are chosen in the region where δn has settled
down. In our calculation we take t1 = 0.5s+

c + 0.5s−
c and

t2 = 0.1s+
c + 0.9s−

c . This choice of t1,2 is of course arbitrary,
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FIG. 8. More systematic check of the accuracy of the analytic
formula (31) by comparing δn [see Eq. (32), the ◦ markers] and δnA

[see Eq. (31), the ∗ markers] for a wide range of l. In (a) [(b)], the
parameters (N,kf ,U ) are of the same values as in Fig. 7(a) [Fig. 7(b)].
As δnA(l) decays like 1/l, for clarity, we present δn × l and δnA × l.

but other choices yield almost the same result. As δnA(l) decays
like 1/|l|, for clarity, instead of δn or δnA, we present δn × l

and δnA × l in Fig. 8. We see that the two agree with each
other very well in the whole range of l. The difference is only
discernible at the lower limit l = 1. But even there, the relative
error is smaller than 20%.

The quantity δnA depends on the lattice size N . But in
the thermodynamic limit of (N,kf ) → ∞ with qf = 2πkf /N

fixed, it converges to

δn∞
A (l) = lim

N→∞
δnA(l)

= − sin(θf /2) cos(2qf |l| − θf /2)

2π |l| , (33)

which is a cosine function modulated by the 1/|l| function.
This limiting behavior is illustrated in Fig. 9. In Figs. 9(a)
and 9(b) we study two cases with the Fermi wave vectors
qf being the same while the lattice sizes N differing by a
factor of three. In each panel, the red dash dotted line indicates
the value δn∞

A , which is independent of N . From Fig. 9(a)
to 9(b) we see clearly that as the lattice size increases, the
plateau, which is accurately predicted by δnA, tends towards
the dash-dotted line predicted by δn∞

A . This means that the
system shows some finite-size effect and that is accurately
captured by δnA. The scaling behavior of the finite-size effect
is investigated more systematically in Fig. 9(c), where the
lattice size N in Fig. 9(a) is further increased by 5, 7, ..., 15
times, and δnA is plotted against 1/N . It is apparent that δnA

(the circles) approaches δn∞
A (the horizontal line) by the 1/N

power law.
We have thus seen that the formal result (31) is a very

accurate prediction of the height of the second plateau. Its
success is the most dramatic thing in this paper. To make
sense of the magic Abel summation method, we note that
it is essentially a way of regularization. The exponentially
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FIG. 9. In the thermodynamic limit, δnA(l) in (31) converges to
δn∞

A (l) in (33). This is illustrated in (a) and (b) by fixing (U,l) =
(2,25), and enlarging (N,kf ) from (401,100) to (1203,300). In each
panel, the solid line denotes the numerically exact time evolution of
δn(l,t), while the dashed line the Abel formula (31), and the dash-
dotted line its thermodynamic limit (33). A more systematic study
is presented in (c). Fixing (U,l,N/kf ) and starting with (N,kf ) =
(401,100), (N,kf ) are enlarged consecutively by 1, 3, 5, ..., 15 times.
The circles denote the predictions of δnA(l). Apparently, they fall on a
straight line with respect to 1/N and, as 1/N → 0, converge towards
δn∞

A (l), which is indicated by the horizontal line.

decaying factor xm (when 0 < x < 1) helps to suppress the
contribution of the low-lying states (with m � 1), which are
fictitious in the fictitious Fermi sea and dormant in the realistic
Fermi sea.

Of course, formula (31) also has its drawbacks. In the first
place, it is not defined at the quench site l = 0. This corresponds
to the fact that the series

∑
m�0 1 is not Abel summable.

This shortcoming will be overcome below by other formulas.

C. A formal summation

The success of the formal procedure in the proceeding
subsection is very encouraging. We have thus considered
applying (21) to the realistic Fermi sea, regardless of the
validity of this formula for small k. Substituting (21) into (10),
we get another prediction of the relative height of the second
plateau to the first one as

δns = 1

N

kf∑
k=1

{cos[2|l|ηk − θ (ηk)] − cos(2|l|ηk)} − 1

N
,

(34)

where the last term corresponds to the state |0+〉. We have
used the fact that θ (0) = ±π , and that the k = 0 term has to be
scaled down by 1/2 in view of (8). Here the subscript stands for
summation. Compared with δnA in (31), δns has the advantage
that it is also defined at l = 0.

The summation above can be rewritten more compactly as
δns = (S1 − S2)/(2N ), with

S1 =
kf∑

k=−kf

cos[2|l|ηk − θ (ηk)], (35a)

S2 =
kf∑

k=−kf

cos(2|l|ηk) = sin(2qf |l| + η|l|)
sin(η|l|) . (35b)

The second term was easily calculated as the arguments of
the cosine function forms an arithmetic sequence. The first term
is more complicated—because of the θ function, the arguments
of the cosine function are not an arithmetic sequence. But they
are not far away from an arithmetic sequence, especially when
|l| is large. Actually, the θ function defined in (22) is a very
regular function in the sense that its derivative is bounded.
It can be easily verified that |dθ/dq| � 4/|U |. Therefore, if
|U | or |l| is large enough, the gap between two neighboring
arguments is approximately 2η|l|.

We thus can employ the same idea as for S2, and approxi-
mate S1 as

S1 =
kf∑

k=−kf

cos[2|l|ηk − θ (ηk)] �
kf∑

k=−kf

cos

(
2|l|ηk − 1

2

{
θ

[(
k + 1

2

)
η

]
+ θ

[(
k − 1

2

)
η

]})

=
kf∑

k=−kf

sin
{
2|l|(k + 1

2

)
η − θ

[(
k + 1

2

)
η
]} − sin

{
2|l|(k − 1

2

)
η − θ

[(
k − 1

2

)
η
]}

2 sin
(
η|l| − 1

2

{
θ
[(

k + 1
2

)
η
] − θ

[(
k − 1

2

)
η
]})

�
kf∑

k=−kf

sin
{
2|l|(n + 1

2

)
η − θ

[(
k + 1

2

)
η
]} − sin

{
2|l|(k − 1

2

)
η − θ

[(
k − 1

2

)
η
]}

2 sin(η|l|)

= 1

sin(η|l|) sin

[
2|l|

(
kf + 1

2

)
η − θ

((
kf + 1

2

)
η

)]
� 1

sin(η|l|) sin(2qf |l| + η|l| − θf ). (36)

It is easy to verify that the error introduced in the first and the last line is on the order of 1/N , and the approximation in the third
line is legitimate if |Ul| � 1.
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FIG. 10. To verify that in the large l limit, the formal summa-
tion (34) reduces to the Abel formula (31). The parameters are
(N,kf ,U ) = (401,100,−1). In (a), for clarity, δns × l (◦ markers)
and δnA × l (∗ markers) are presented. In (b), the horizontal dashed
line indicates the value of unity.

Collecting (35) and (36), we see that the formal summation
(34) can reduce to (31) in the large l limit. This is verified in
Fig. 10. This is an interesting result, as (31) and (34) come from
the fictitious Fermi sea and the realistic Fermi sea, respectively.
That they agree with each other asymptotically adds to the
plausibility of both.

Now, for l large enough, δns is close to δnA, while the latter
in turn is close to δn. Hence, for l large enough, δns should
also be a good approximation or prediction of δn. In Fig. 11 we
compare δns with δn for the two sets of parameters in Fig. 7 or
Fig. 8. Indeed, as l increases, the two curves converge together.
The two differ significantly only for l small.
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FIG. 11. Comparison between the formal summation (34) (the
∗ markers) and the numerical exact result δn [see Eq. (32), the ◦
markers]. In (a) [(b)], the parameters (N,kf ,U ) are of the same values
as in Fig. 7(a) [Fig. 7(b)]. Except for l = 0, we present δn × l and
δns × l instead of δn and δns .

D. Influence of the defect mode

So far we have obtained two analytic formulas for the height
of the second plateau. They both work very well for l large,
but become inadequate for l small. The Abel formula (31) is
not defined at all for l = 0, while the summation formula (34)
deviates from the exact value significantly for l around zero.

This local failure forces us to examine the small-l cases
more carefully. It turns out that the small l’s need extra attention
already on the single-particle level. Actually, an attentive
reader should have noticed that in Fig. 5, a spike pulses at
l = 0, while the pattern of |〈l|k+

i (t)〉|2 in its vicinity is mostly
stationary. In Figs. 12(a) and 12(b) the local probability density
|〈l|k+(t)〉|2 as a function of time is shown for l = 0 and l = 2,
respectively, with all other parameters the same as in Fig. 3(a).
We see that unlike in Fig. 3(a), where l = 50, for these two
small values of l, |〈l|k+(t)〉|2 does not show any sign of plateau,
but just oscillates very quickly. More systematic investigation
reveals that as l increases, the oscillation amplitude shrinks
and the two-plateau structure emerges gradually. The former
fact is already visible by comparing Fig. 12(a) with 12(b).

All these observations point to the defect mode induced
by the defect potential. It is well known that on an infinite
one-dimensional tight binding lattice, a defect potential like
H1 will induce a defect mode |φd〉 localized around the defect
[26]. Its wave function is of the form

〈l|φd〉 = φd (l) = Ac|l|, (37)

where c = 1
2 [U − (sgn U )

√
U 2 + 4]. The corresponding

eigenenergy is εd = (sgn U )
√

U 2 + 4, and the normalization
factor A = √

U/εd . In reality, we are dealing with a finite
lattice. But as its wave function decays exponentially, as long
as the lattice size is much larger than its characteristic size,
the defect mode will always be there with its energy and wave
function perturbed only slightly.

Besides the defect mode, the post-quench Hamiltonian
H0 + H1 has also many extended states, whose wave functions
spread out on the whole lattice. Let us denote them as |φm〉 and
their energies as εm (1 � m � N − 1). Formally we have

〈l|k+(t)〉 = ad (k)φd (l)e−iεd t +
N−1∑
m=1

am(k)φm(l)e−iεmt

= Cd (l,t) + Ce(l,t), (38)

where ad,m(k) ≡ 〈φd,m|k+〉, φd,m(l) ≡ 〈l|φd,m〉, and in the sec-
ond line, as the subscripts indicate, Cd and Ce denote the
contributions of the bound state and the extended states,
respectively.

Now for l large enough, the term Cd is exponentially small
and dominated by Ce, and |〈l|k+(t)〉|2 � |Ce(l,t)|2. However,
for l small, the term Cd will be competitive with Ce. Although
the overlap ad between the localized mode |φd〉 and the
extended state |k+〉 is on the order of 1/

√
N , the amplitude

of the mode function at the site l, i.e., φd (l), is on the order
of unity. Hence, the term Cd , like Ce, is also on the order of
1/

√
N .

In Fig. 3(a) it is verified that for appropriate parameters,
and when l is large, |〈l|k+(t)〉|2 shows the predicted plateau
structure. As in this region, 〈l|k+(t)〉 � Ce(l,t), the observed
behavior is actually that of |Ce(l,t)|2. That is, in the time
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FIG. 12. (a) and (b) Time evolution of the local probability density |〈l|k+(t)〉|2 for two small values of l. The parameters are the same as in
Fig. 3(a), i.e., (N,k,U ) = (201,50,1.5). (c) and (d) Time evolution of the quantity |Ce|2 [see Eq. (38) for definition]. The horizonal dashed line
indicates the analytic prediction of (39).

interval (s+
c ,s−

c ),

|Ce(l,t)|2 � 2

N
cos2(q|l| − θ/2). (39)

By analytic continuation, this relation should hold also for l

small. This is confirmed in Figs. 12(c) and 12(d). There, Ce

is calculated by subtracting Cd from 〈l|k+(t)〉. We see that
the well-developed plateau agrees with the prediction of (39)
exactly.

Making use of (39), and the fact that Cd and Ce contain no
common Fourier component, we have on average in the time
interval (s+

c ,s−
c ),

|〈l|k+(t)〉|2 = |Cd (l,t)|2 + |Ce(l,t)|2

� |ad (k)|2|φd (l)|2 + 2

N
cos2(q|l| − θ/2). (40)

Here the first term on the right-hand side is the contribution of
the defect mode, which is missed by the ideal model. It can be
and was ignored for large l. Retrieving this term, we now have
a modified prediction of the plateau of δn(l,t) as

δnf (l) = Pd |φd (l)|2 + δns(l), (41)

where δns is defined in (34) and Pd is the total population on
the defect mode, i.e.,

Pd =
kf∑

k=0

|ad (k)|2 =
kf∑

k=0

|〈φd |k+〉|2 =
kf∑

k=−kf

|〈φd |k〉|2. (42)

Note that Pd is l independent.
With the contribution of the defect mode taken into account,

finally (the subscript of δnf stands for final) we have an
accurate formula for the height of the second plateau for all
l. In Fig. 11 we see that δnS agrees with δn very well for large
l, but significantly underestimates it for small l. It turns out that
the contribution of the defect mode, which is positive-definite,
and is peaked at l = 0, fills the gap exactly. In Fig. 13 the time
evolution of δn(l,t) for two small values of l is shown. We see
that the plateaus ensuing the quench are located exactly at the

height predicted by δnf (l) in (41). For large l, δnf reduces to
δns , and is again accurate.

IV. THE INFINITE LATTICE CASE

So far we have always assumed a finite lattice. On a finite
lattice, as we have seen in the figures above, the local particle
number n(l) never really settles down to a constant value—
again and again, it bursts up suddenly after remaining quiet for
a long time. Actually, the out-going waves generated by the
sudden quench will sweep across the lattice ring repeatedly,
and each time a wave front passes by a site l, the local particle
number δn(l) experiences an abrupt and violent change. An
overall picture can be well provided by a series of snapshots of
δn(l,t), as we do in Fig. 14. There, like in Fig. 5, the trajectories
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FIG. 13. Time evolution of the variation of the local particle
number δn(l,t) for two small values of l. In each panel, the blue solid
line is the numerically exact result, while the horizontal red dashed
line is the prediction of Eq. (41). The parameters are displayed in each
panel.
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FIG. 14. Equal-distant snapshots of the variation of the local
particle number δn(l,t) in the time interval [0,2T ]. For clarity, two
adjacent curves are displaced by 0.05 in the vertical direction. The
parameters are (N,kf ,U ) = (50,25,2). The dashed lines indicate the
motion of the wave fronts with a constant velocity ofvf = 2 sin qf � 2.

of the wave fronts divide the space-time into two different
regions, where δn show qualitatively different patterns.

But on an infinite lattice, the out-going waves will not come
back again. The out-going waves will just pass by each site
once and after that the local particle number n(l) will converge
to a constant value. That is, the out-going wave fronts leave
behind a stationary pattern of n(l), the region of which expands
linearly with time. This phenomenon is actually visible in the
lower few curves in Fig. 14. If superimposed together, one can
see that they agree very well in the inner region.

This stationary pattern of n(l) can be fairly called dynami-
cally generated Friedel oscillation. As discussed in Sec. III A 2,
as N → ∞, the ideal model is a good approximation for all
q ∈ (0,π ). Hence, in this limit, formula (34) and in turn (41)
can be justified almost rigorously. By (41), the stationary value
of δn(l,t → ∞) is

δndyn(l) = δn
(d)
dyn(l) + δn

(e)
dyn(l), (43)

where the two terms on the right-hand side corresponds to
the contribution of the defect mode and the extended states,
respectively. By straightforward calculation and replacing
summation by integral, we have

δn
(d)
dyn(l) = Pd |φd (l)|2 = U 4c2|l|

πε2
d

∫ qf

0

dq

(εd + 2 cos q)2
(44)

and

δn
(e)
dyn(l) = 1

2π

∫ qf

0
[cos(2q|l| − θ ) − cos(2ql)]dq. (45)

It is natural to compare the dynamically generated Friedel
oscillation with the conventional static (or equilibrium) Friedel
oscillation [27–31]. It is well known that a defect in a Fermi
sea will induce density oscillation around it. To calculate
the density oscillation, a convenient approach is using Green
functions [32]. But here we shall take a more straightforward
way, which will also help us gain some insight of the problem.

Imagine that for the initial Hamiltonian H0, all the Bloch
states with wave vectors |q| � qf are filled. Now ramp up
the defect potential adiabatically. The odd-parity eigenstates
are not affected and their contribution to the particle density
is unchanged. But the even-parity eigenstates do feel the
potential and deform accordingly. ForH0, a generic even-parity
eigenstate is of the form

ψ (0)
m (l) =

√
2

N
cos ql, − L � l � L, (46)

where the wave vector q satisfies qN = 2πm for some integer
m. For the final Hamiltonian Hf = H0 + H1, its even-parity
eigenstates fall into two categories. The first category contains
only one state, i.e., the defect mode, which in theN → ∞ limit,
reduces to |φd〉 in (37). The second category are the extended
states. By Bethe’s ansatz, their wave functions are in the form

ψ (f )
m (l) = B cos(q|l| − θ/2), − L � l � L, (47)

where θ ∈ (−π,π ) is some phase shift, and B is a normaliza-
tion factor, which in the thermodynamic limit should be close
to

√
2/N . The eigenvalue equation at l = 0 determines the

relation between θ and q,

tan
θ

2
= U

2 sin q
, (48)

which is exactly Eq. (22). The only thing is that the q’s are
to take different values than in (46). Specifically, the periodic
boundary condition requires ψ (f )(−L) = ψ (f )(L + 1), which
leads to the condition

qN − θ = 2πm, (49)

with m being an integer. By continuity, ψ
(f )
m is the adiabatic

correspondence of ψ (0)
m .

These are interesting results. Comparing (21), (46), and
(47), it suggests that when we quench an even-parity standing
wave like (46) on a sufficiently large lattice ring, the stationary
pattern predicted by (21) inside the light cone actually corre-
sponds to the eigenstate (47) of the final Hamiltonian. That is,
after the abrupt quench, apart from a component proportional to
the defect mode, the initial state is phase shifted to its adiabatic
correspondence inside the light cone. The resulting probability
distribution is largely the same as if the defect potential is
turned on adiabatically. This is confirmed in Fig. 15.

Now we can sum over the even-parity states and determine
the static Friedel oscillation. Again, it contains two parts, i.e.,

δnst(l) = δn
(d)
st (l) + δn

(e)
st (l), (50)

where the defect mode’s contribution is

δn
(d)
st (l) =

{|φd (l)|2, if U < 0,

0, if U > 0,
(51)
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FIG. 15. After the quench, the initial state (46) relaxes coherently to its adiabatic correspondence (47) inside the light cone, in that the time
evolving wave function ψ(l,t) agrees with the eigenstate (47) of the final Hamiltonian inside the light cone, and the eigenstate (46) of the initial
Hamiltonian outside the cone. The parameters are (N,m,U,t) = (8001,2000,1,40). Note the size of N here.

while the extended states’ contribution is

δn
(e)
st (l) =

∫ qf

0

dq

2π/N

2

N
[cos2(q|l| − θ/2) − cos2 q|l|]

= 1

2π

∫ qf

0
[cos(2q|l| − θ ) − cos(2q|l|)]dq

= δn
(e)
dyn(l). (52)

That δn
(e)
st = δn

(e)
dyn results naturally from the single-particle

behavior discussed above. Hence, we see that the dynamically
generated Friedel oscillation differs from its static counterpart
only by an exponentially localized part.

It is instructive to study the asymptotic behavior of δnst(l),
or that of δndyn(l) for large |l|. As both δ

(d)
dyn(l) and δ

(d)
st (l)

decay exponentially, what we want is actually the asymptotic
behavior of δn

(e)
st (l), or equivalently δn

(e)
dyn(l). The second part

of (45) can be easily integrated to sin(2qf |l|)/4π |l|. As for the
first part, it is

1

2π

∫ qf

0
dq[f (q) cos 2q|l| + g(q) sin 2q|l|], (53)

with

f (q) = cos θ = 4 sin2 q − U 2

4 sin2 q + U 2
,

g(q) = sin θ = 4U sin q

4 sin2 q + U 2
.

Both f and g are slowly varying functions of q. Integrating by
parts, we have

1

2π

∫ qf

0
dq[f (q) cos 2q|l| + g(q) sin 2q|l|]

= 1

4π |l| [f (q) sin 2q|l| − g(q) cos 2q|l|]|qf

0 − 1

4π |l|
∫ qf

0
dq[f ′(q) sin 2q|l| − g′(q) cos 2q|l|]

= 1

4π |l| [f (qf ) sin 2qf |l| − g(qf ) cos 2qf |l|] + O

(
1

|l|2
)

= 1

4π |l| sin(2qf |l| − θf ) + O

(
1

|l|2
)

. (54)

Combing the two parts, we recover the formula (33).

V. CONCLUSIONS AND DISCUSSIONS

We have investigated the nonequilibrium dynamics of a
Fermi sea when a defect potential is introduced suddenly. On
the one hand, this is a natural generalization of our previous
study of the quench dynamics of a single Bloch state, which
is featured by the cusps or plateaus in the time evolution of
some physical quantities. The concern is whether these singular
behaviors will survive in the many-particle case. On the other
hand, from the point-of-view of the well-known (equilibrium)
phenomenon of Friedel oscillation, this is a problem of interest:
what if the defect potential is introduced not adiabatically but
abruptly?

As for the first problem, the primary observation is
that the local particle number n(l) alternates between two
plateaus. This two-plateau behavior is actually exhibited
on the single-particle level by an even-parity eigenstate.
But its existence on the many-particle level is far from
obvious. Let alone other issues, the plateau-switching times
for different single-particle states disperse continuously in a
wide range, and hence it could be totally reasonable if the
abrupt plateau-switching were smeared out.

Leaving aside the problem of the very existence of the
plateaus, we have focused on predicting the heights of the
plateaus. This seems like a mere summation job. But the prob-
lem is that we do not really know all the summands, as the
theory we had developed for the corresponding single-particle
problem holds not for all the single-particle states involved.
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We thus had to resort to arguments and approximations, and
when confronted with a series oscillatory instead of conver-
gent, we simply took on the Abel summation method to assign
a finite value to it. Magically, this finite value is a very accurate
prediction of the numerically exact one for l not very small.
We are thus in a (possibly fortunate) dilemma that we get the
numbers accurate without knowing why. The unreasonable rel-
evance and accuracy of the formalism is yet to be understood.
Anyway, the success of the formal approach encouraged us
to try other formal expressions, and ultimately an expression
accurate for all sites is obtained. We have thus successfully de-
termined the backbone of the evolution trajectory of n(l). This
is possibly all that we can wish for, as the erratic details exhib-
ited by n(l) are definitely beyond any simple analytic formula.

As for the second problem, the interesting thing is on the
single-particle level. It is found that on an infinite lattice ring,
after the quench, the state adjusts itself towards the eigenstate
of the final Hamiltonian with equal energy. Specifically, apart
from a localized component corresponding to the defect mode,
the time evolving state agrees with the phase-shifted eigenstate
of the final Hamiltonian inside the light cone. Because of
this nice single-particle behavior, the dynamically generated
Friedel oscillation differs from the conventional, static Friedel
oscillation only by an exponentially decaying term. It is
conjectured that this single-particle property holds regardless
of the quench potential or the quench protocol, as long as the
quench potential is a local one and it stays unchanged in the end.

As stressed as our point, simple models can yield rich
dynamics. Here, in the study of a noninteracting many-particle
model, we have actually noticed many interesting phenomena
which are not accounted for yet. For example, in Fig. 3(c),
around t = 50, the solid curve oscillates in a very elegant way,
which is typical of a state close to the band edge. It reminds us of
the Airy function actually. Can we find an analytic formula for
it? It might be related to the shape of the out-going wave fronts.
Similarly, in both panels of Fig. 4, in the first period and on the
second plateau, the oscillation amplitude shrinks with time. But
with what rate does it shrink? Is it power law or exponential? To
answer these questions, likely we have to go beyond the ideal
model. Anyway, more problems are posed than answered, and
more effort is to be expended on this simple model.
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APPENDIX: DERIVATION OF EQ. (21)

By (19), the equation of motion of ãj (t) is

i
∂

∂t
ãj = j�ãj + 2g

∞∑
m=−∞

ãm. (A1)

The two terms containing � and g come from H̃0 and H̃1, re-
spectively. The important thing is that the latter is independent

of j . Hence, we can introduce the auxiliary quantity

S(t) =
∑
m∈Z

ãm(t), (A2)

and solve ãj (t) formally as

ãj (t) = e−ij�t δj,0 − i2g

∫ t

0
dτe−ij�(t−τ )S(τ ). (A3)

Plugging it into (A2), we get an integral equation of S(t),

S(t) = 1 − i2g

∫ t

0
dτ

(∑
m∈Z

e−im�(t−τ )

)
S(τ ). (A4)

The integral part is in the form of convolution, which makes
it amenable to the Laplace transform. Defining L(p) =∫ ∞

0 dte−ptS(t), we get

L(p) = 1

p
− i2g

(∑
m∈Z

1

p + im�

)
L(p). (A5)

Using the Euler formula
∑

m∈Z 1/(z + m) = π cot πz [33], we
solve L(p) as

L(p) = 1/p

1 + gT cot(−ipT /2)
. (A6)

Where T ≡ 2π/� is the Heisenberg time associated with the
linear spectrum in (16). This name apparently comes from the
time-energy uncertainty relation. As we shall see below, it is
the most important time scale in the model, as it determines
the period of the curves in Fig. 4.

We want to decompose the meromorphic function L(p)
according to its poles and the corresponding residues in the
form L(p) = ∑

m∈Z bm/(p + iEm), so that we can recover
S(t) from L(p) as S(t) = ∑

m∈Z bme−iEmt . The poles −iEm

of L(p) are roots of the equation 1 + gT cot(−ipT /2) = 0.
We solve easily

Em = m� + γ, (A7)

with γ = θ (qi)/T , where the angle θ is defined as a function
of the wave vector q as

θ ≡ 2 arctan gT = 2 arctan
U

2 sin q
. (A8)

The corresponding residues are

bm = 1/p

gT d
dp

cot(−ipT /2)

∣∣∣∣
p=−iEm

= 2g

1 + g2T 2

1

Em

. (A9)

We thus know that S(t) is of the form

S(t) = 2g

1 + g2T 2

∑
m∈Z

e−i(m�+γ )t

m� + γ
. (A10)

The summation can be carried out by noting that

eihx = ei2πh − 1

2πi

∑
m∈Z

eimx

h − m
, 0 < x < 2π. (A11)

The result is that, for t = rT + s, where 0 < s < T , and r is
a nonnegative integer,

S(t) = e−irθ

1 + igT
, (A12)

075151-13



J. M. ZHANG AND Y. LIU PHYSICAL REVIEW B 97, 075151 (2018)

which is a piecewise constant function. Substituting this result
into (A3), we get

ãj (t) =
[
δj,0 + 2g(e−ij�s − 1)

�(1 + igT )j

]
e−irθ . (A13)

Note that the factor in the brackets depends only on j and
s, while the exponential factor outside depends only on r . In
the special case of j = 0, ãj is a piecewise linear function
of t . This nonsmoothness results in the cusps in Fig. 2(a), as
Pi,r = |1 ± ã0|2/4.

Substituting (A13) into (20) and ignoring the global phase
e−irθ−iε(qi )t which is independent of l, we get

〈l|k+
i (t)〉 ∝

√
2

N

[
cos qi |l| + g[eiqi |l|I+(s) + e−iqi |l|I−(s)]

(1 + igT )�

]
,

(A14)

where we have introduced the functions (0 < s < T )

I±(s) =
∑
m∈Z

e−im�s − 1

m
e±imη|l|. (A15)

We have

I+(s) = −i�s +
∑
m�=0

eim(η|l|−�s) − eimη|l|

m

= −i�s − lim
h→0

∑
m�=0

eim(η|l|−�s) − eimη|l|

h − m

= −i�s − lim
h→0

∑
m∈Z

eim(η|l|−�s) − eimη|l|

h − m
. (A16)

By (A11) we get (note that |l| < N/2)

I+(s) =
{

0, if s ∈ (0,s+
c ),

−2πi, if s ∈ (s+
c ,T ),

(A17)

where s+
c = η|l|/� = |l|/vi . Similarly,

I−(s) =
{

0, if s ∈ (0,s−
c ),

−2πi, if s ∈ (s−
c ,T ),

(A18)

where s−
c = η(N − |l|)/� = (N − |l|)/vi . Substituting (A17)

and (A18) into (A14), we get for −L � l � L,

D+
l (t) �

⎧⎪⎨
⎪⎩

2
N

cos2 qil, if s ∈ (0,s+
c ),

2
N

cos2(qi |l| − θi/2), if s ∈ (s+
c ,s−

c ),
2
N

cos2 qil, if s ∈ (s−
c ,T ),

(A19)

with

θi = 2 arctan
U

2 sin qi

. (A20)

In the derivation above, we see that it is the two defining
features of the ideal model, i.e., (16) and (17), that are respon-
sible for its exact solvability. We argue that these two nice
properties are shared by many other one-dimensional models
[22]. For a generic one-dimensional system, in the midst of
its spectrum, both the eigenenergies and the eigenfunctions
should be smooth functions of the state index. Hence, at least
locally, the two properties should hold and the ideal model
could be relevant for the dynamics of the realistic model.

The problem is that its relevance is confined to one dimen-
sion. In higher dimensions, the eigenfunctions are indexed
with multiple variables (say kx and ky) and thus generally
the eigenenergies are not equally spaced, i.e., (16) does not
hold. Therefore, for higher-dimensional generalizations of the
local quench scenario considered here, we need new analytic
approaches. While this sounds like a challenge, it also means
that the dynamic Friedel oscillations in higher dimensions
could be fertile of new features.
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