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We identify field theories that describe the surfaces of three-dimensional bosonic point group symmetry
protected topological (pgSPT) phases. The anomalous nature of the surface field theories is revealed via a
dimensional reduction argument. Specifically, we study three different surface field theories. The first field theory
is quantum electrodynamics in three space-time dimensions (QED3) with four flavors of fermions. We show this
theory can describe the surfaces of a majority of bosonic pgSPT phases protected by a single mirror reflection, or
by Cnv point group symmetry for n = 2,3,4,6. The second field theory is a variant of QED3 with charge-1 and
charge-3 Dirac fermions. This field theory can describe the surface of a reflection symmetric pgSPT phase built by
placing an E8 state on the mirror plane. The third field theory is an O(4) nonlinear sigma model with a topological
theta term at θ = π , or, equivalently, a noncompact CP1 model. Using a coupled wire construction, we show
this is a surface theory for bosonic pgSPT phases with U(1) × ZP

2 symmetry. For the latter two field theories,
we discuss the connection to gapped surfaces with topological order. Moreover, we conjecture that the latter two
field theories can describe surfaces of more general bosonic pgSPT phases with Cnv point group symmetry.
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I. INTRODUCTION

Symmetry protected topological (SPT) phases [1–10] are a
class of gapped phases of matter, which behave almost trivially
in the bulk, but support interesting boundary states. SPT
phases, by definition, have a bulk energy gap, a unique ground
state for periodic boundary conditions, and can be adiabatically
connected to a trivial product state if the symmetry is broken
explicitly. Topological band insulators [11–13] serve as a key
example of an SPT phase, where the symmetries needed to
protect the nontrivial boundary states are ZT

2 time reversal and
U(1) charge conservation. These are both internal symmetries,
and more generally there has been remarkable progress in the
characterization and classification of SPT phases protected by
internal symmetry [14,15].

Besides internal symmetries, crystalline symmetries such
as point group or space group symmetry can also protect
SPT phases. Such crystalline SPT (cSPT) phases, including
topological crystalline insulators (TCIs) [16,17], are rather
well understood in noninteracting fermion systems [15]. When
interactions are strong, less is known about cSPT phases
than their internal symmetry cousins. However, a number
of works have studied examples of interacting cSPT phases
[6,7,18–33], and significant progress on general classification
has been made recently [34–37]. In particular, it has been
shown that point group SPT (pgSPT) phases can be built by
placing lower-dimensional topological states at points, lines,
and planes of high symmetry [34]. Crucial to this result is
a dimensional reduction procedure, where a pgSPT wave
function is locally trivialized away from a lower-dimensional
subspace containing points fixed under symmetry operations.
While this approach does not apply directly in the presence
of space group symmetry, many space group SPT phases, and
perhaps all cSPT phases, can nonetheless be constructed and

classified in a similar fashion [37]. Other approaches to the
classification of cSPT phases are based on an extension of the
notion of gauging symmetry to crystalline symmetries [36],
and on tensor-network wave functions [35]. These approaches
give identical classifications, at least for bosonic states in
d = 2,3 protected only by crystalline symmetry and built from
lower-dimensional SPT states in the dimensional reduction
approach [37].

While Ref. [34] used dimensional reduction in the bulk
to classify and characterize pgSPT phases, the procedure
can also be used on the surface. Indeed, the approach of
Ref. [34] was inspired in part by the work of Isobe and Fu
[21], who used a surface version of dimensional reduction to
show that the Z classification of noninteracting electron TCIs
protected by mirror reflection reduces to Z8 in the presence of
interactions. In this paper, we show that dimensional reduction
is a simple means of identifying and characterizing surface field
theories of pgSPT phases. In particular, we focus on pgSPT
phases in spatial dimension d = 3 and their two-dimensional
surfaces. We study three different field theories, showing that
two of these are “parent theories,” in the sense that they can
describe multiple different pgSPT surfaces, depending on the
microscopic symmetry and how it acts on the continuum fields.
The other theory is conjectured but not shown to describe a
number of different pgSPT surfaces.

In general, SPT surfaces are anomalous, in the sense
that they possess properties that are intrinsically due to the
existence of a bulk. A familiar example is the single Dirac
cone observed on the surface of d = 3 topological insulators
[11–13,38], which cannot occur in a purely d = 2 system with
time reversal symmetry. The surface dimensional reduction
we employ here can be viewed as a tool to reveal anomalies
in a field theory and to match it to a corresponding pgSPT
bulk.
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We study three different surface field theories for bosonic
pgSPT phases. Two of these are also related to fermion pgSPT
surface theories and are variants of quantum electrodynamics
in three space-time dimensions (QED3), where Dirac fermions
are coupled to a compact U(1) gauge field. The first variant
is QED3 with Nf = 4 fermion fields, which can be obtained
from the surface of an electron TCI with four Dirac fermions by
gauging the U(1) conserved charge. We show this QED3 theory
can describe surfaces of all bosonic pgSPT phases built either
by placing d = 2 Ising SPT states [9,10] on mirror planes, or
by placing Haldane chains [39–41] on Cnv axes.

The second variant of QED3 has a single charge-1 and
a single charge-3 Dirac fermion, and can be obtained, by
gauging U(1) symmetry, from the surface of the strongly
interacting E8 paramagnet TCI discussed in Ref. [34]. We
arrive at this theory by combining dimensional reduction with
the “cluston” constructions of various interacting topological
phases introduced in Ref. [42], where clustons are fermions
formed by binding together an odd number of electrons (see
also Ref. [43] for a related discussion). This QED3 theory
describes the surface of the mirror-symmetric bosonic pgSPT
phase obtained by placing an E8 state [44] on the mirror plane.
We also conjecture that the same theory describes surfaces of
more general pgSPT phases obtained by placing E8 states on
mirror planes, but we do not establish this definitively.

The third field theory we study for bosonic pgSPT surfaces
is the O(4) nonlinear sigma model with a topological theta term
at θ = π , which can be mapped to the CP1 model of a two-
component bosonic field coupled to a U(1) gauge field [45].
We focus on bosonic pgSPT phases protected by U(1) × ZP

2
symmetry, although we conjecture that this theory can describe
surfaces of more general bosonic cSPT phases with symmetry
U(1) × Gc, where Gc is a point group or space group.

The field theories considered in this paper have been
discussed as surface theories of SPT phases involving time-
reversal symmetry [19,31,42,43,46–50]. Indeed, these theories
are Lorentz invariant, and if we work in Euclidean space time,
there is no difference between reflection and time-reversal
symmetry. A reflection symmetry in a Euclidean field theory
can be analytically continued to either a reflection or a time-
reversal symmetry in Lorentz signature (see Ref. [48] for a
discussion of this well-known fact in the context of topological
phases). From this point of view, the dimensional reduction
method can serve as an alternative and particularly simple
means to obtain surface field theories for SPT phases involving
time-reversal symmetry.

We now give an outline of the paper. We first review the
classification of d = 3 pgSPT phases in Sec. II A, following
Ref. [34]. We focus on point groups that can be preserved at
surfaces; among such point groups, there are nontrivial pgSPT
phases with Cs and Cnv symmetry (n = 2,3,4,6). These states
can be obtained by placing Ising SPT or E8 states on mirror
planes, and by placing Haldane chains on Cnv axes. Section II B
reviews the Dirac surface theory of TCIs with U(1) × ZP

2
symmetry. Surface dimensional reduction is discussed and
used as a tool to reveal anomalies of the Dirac theory.

Section III considers QED3 with Nf = 4 Dirac fermions as
a surface field theory of bosonic pgSPT phases. Section III A
focuses on bosonic pgSPT phase with a single reflection
symmetry, built by placing an Ising SPT state on the mirror

plane. The QED3 surface theory is obtained from the Dirac
surface theory of an n = 4 electronic TCI with U(1) × ZP

2
symmetry, by gauging the U(1) symmetry. The connection
to the Nf = 4 QED3 theory obtained by Qi and Fu [26] is
also discussed in this section and in Appendix A. We further
discuss how to modify the symmetry action in the Nf = 4
QED3 theory such that it describes a surface of a trivial bosonic
pgSPT state. Section III B considers bosonic pgSPT phases
with C2v symmetry, built by placing Ising SPT states on mirror
planes. Section III C extends the discussion to Cnv symmetry.
Section III D considers the surfaces of the remaining pgSPT
phases built by placing a Haldane chain on the Cnv axis. Taken
together, these results show that Nf = 4 QED3 theory can
describe surfaces of all bosonic pgSPT phases built either from
lower-dimensional SPT states placed on high-symmetry planes
and axes.

Section IV discusses the surface field theories of bosonic
and fermionic SPT states built by placing an E8 state on the
mirror plane. We first consider an E8 based electronic TCI,
dubbed the E8 paramagnet TCI [34]. The surface field theory is
obtained by the cluston construction [42] and is a Dirac theory
with charge-1 and charge-3 Dirac fermions. The surface theory
of the E8 based bosonic pgSPT phase is obtained by gauging
the U(1) symmetry. This field theory is a variant of QED3 with
both charge-1 and charge-3 Dirac fermions. We then discuss
how to obtain a gapped surface with three-fermion topological
order starting from the QED3 field theory.

Section V considers a parent surface field theory of some
bosonic pgSPT phases with U(1) × ZP

2 symmetry, which we
classify in Appendix B. The surface field theory is an O(4)
nonlinear sigma model with a topological theta term at θ = π

and with O(2) × O(2) anisotropy, which is equivalent to a
noncompact CP1 model [45]. This surface field theory is
obtained by a coupled wire construction where each wire
is a SU(2)1 Wess-Zumino-Witten model. The connection to
the surface topological orders is also discussed. Finally, we
conclude in Sec. VI with a discussion of our results and possible
directions for future work.

II. REVIEW

A. Point group SPT phases built from lower-dimensional states

We begin by reviewing results of Refs. [34,37] on classi-
fication of pgSPT phases in terms of lower-dimensional topo-
logical states. Reference [34] studied pgSPT phases in d

spatial dimensions and argued that a ground state pgSPT wave
function can be adiabatically connected to a product of a trivial
state with a nontrivial wave function on a lower-dimensional
subset of d-dimensional space. A particularly simple example
is mirror reflection symmetry in three dimensions, which is
the point group Cs . We also refer to this point group as ZP

2 .
Here, the lower-dimensional space is simply the d = 2 mirror
plane. On the mirror plane, reflection acts as a Z2 effective
internal symmetry, which allows one to classify d = 3 mirror-
symmetric pgSPT phases by placing d = 2 topological states
with Z2 symmetry on the mirror plane. In bosonic systems,
there are two root states that generate a Z2 × Z2 classification.
The first root state, referred to as the Z2 root state, is obtained
by placing the nontrivial d = 2 SPT phase with Z2 internal
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FIG. 1. Depiction of root states built from Haldane chains and
Ising SPT states for Cnv point groups. In each case a cross section
normal to the Cnv axis is shown. Dashed lines are mirror planes hosting
a trivial state, while solid lines represent Ising SPT states placed on
mirror planes. Solid circles represent Haldane chains placed on the
Cnv axis.

symmetry [9,10], which we refer to as the “Ising SPT phase,”
on the mirror plane. The second root state is obtained by
placing an E8 state [44] on the mirror plane. While naively
one might expect the E8 root state to generate a Z factor in the
classification, this is not the case and it generates a Z2 factor,
as was shown in Ref. [34].

Each of these root states has a particularly simple surface
termination, where the surface is gapped and trivial away from
its intersection with the mirror plane. The mirror axis on the
surface is the gapless edge of the Ising SPT or E8 state for the
two root states, respectively. Such simple surfaces will play an
important role in the analysis of the present paper; beginning
with some d = 2 field theory, we will add perturbations to
make it trivial away from the mirror axis and then study the
resulting d = 1 theory to match its anomaly with the Ising SPT
or E8 edge.

A more interesting point group is C2v , which is generated
by two perpendicular mirror reflections, and where the lower-
dimensional space is the union of the two mirror planes. Here,
there is a Z4

2 classification of bosonic pgSPT phases, with
four root states [34]. Two of these are obtained by placing
an Ising SPT state on one mirror plane and leaving the other
plane trivial; these root states are illustrated in Fig. 1. Another
root state is obtained by placing E8 states on the planes; up
to equivalence operations, there is a unique arrangement that
respects the C2v symmetry (see Fig. 2). The last root state is
obtained by placing a d = 1 Haldane phase [39–41] on the
axis where the mirror planes intersect, on which C2v acts as
an effective Z2 × Z2 internal symmetry, which is sufficient to
protect the Haldane phase.

In general, there are nine nontrivial d = 3 point groups that
can be preserved at a d = 2 surface. These are Cnv and Cn,
both with n = 2,3,4,6, and Cs . Only Cs or Cnv symmetry can
protect nontrivial pgSPT phases, whose surface theories we
discuss. For n � 3, it is straightforward to apply the approach
of Ref. [34] to obtain a classification of pgSPT phases. (This
was obtained in Ref. [37] for the subset of phases built from
lower-dimensional SPT states, ignoring phases built from E8

FIG. 2. Depiction of root states built from E8 states for Cnv point
groups. Solid lines represent an E8 state on each mirror plane. The
arrows represent the edge chiralities of the E8 states.

states.) For n = 3, there is a single set of symmetry-related
mirror planes, and the classification is Z2

2. One root state is
obtained by placing Ising SPT states on the mirror planes, and
the other by placing E8 states. For n = 4,6, there are two sets
of symmetry-related mirror planes, and the classification is
Z4

2. Two root states are obtained by placing Ising SPT states
on different sets of mirror planes, one by placing E8 states
on the mirror planes, and one by placing a d = 1 Haldane
chain on the axis where the planes intersect, where the effective
internal symmetry is Zn � Z2. We note that, for n = 3,Z3 �

Z2 symmetry admits only trivial SPT phases in d = 1; we do
not obtain a nontrivial pgSPT phase by placing a Haldane chain
on the symmetry axis for C3v symmetry.

The root states obtained by placing Ising SPT states on
mirror planes and Haldane chains on Cnv axes are illustrated
in Fig. 1. Nf = 4 QED3 is the parent surface field for all these
states, as discussed in Sec. III. In Sec. IV, we consider ZP

2
symmetry and show that QED3 with charge-1 and charge-3
fermions is a surface theory when an E8 state is placed on the
mirror plane. Related root states for Cnv symmetry, where E8

states are placed on mirror planes, are shown in Fig. 2. We
conjecture that QED3 with charge-1 and charge-3 fermions is
also a parent surface field theory for these states.

Finally, we also consider d = 3 bosonic SPT phases pro-
tected by U(1) × ZP

2 symmetry, which we classify in Ap-
pendix B using the dimensional reduction approach. We find a
Z4

2 classification. Two of the root states are obtained by placing
an Ising SPT or an E8 state on the mirror plane and do not
involve the U(1) symmetry. Another root state is obtained by
placing a boson integer quantum Hall (BIQH) state [51,52]
on the mirror plane. The BIQH state is a d = 2 SPT phase
protected by U(1) symmetry. The last root state is obtained by
placing a two-dimensional U(1) × Z2 SPT phase on the mirror
plane that essentially involves both U(1) and Z2 symmetries,
in the sense that if either symmetry is broken the state becomes
trivial. A parent surface field theory describing surfaces of all
these phases except for the E8 root state is discussed in Sec. V.

B. Dirac theory of TCI surfaces

As a warmup and a review, we consider the Dirac surface
theory of TCIs with U(1) × ZP

2 symmetry. The noninteracting
classification is Z, and it was shown by Isobe and Fu that
interactions reduce this to Z8 [21]. The full classification
is Z8 × Z2, where the Z2 factor is generated by the E8

paramagnet TCI, which does not have a description in terms of
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noninteracting electrons [34]. This section essentially follows
a part of the analysis of Ref. [21], informed by the perspective
of Ref. [34].

We focus on the root state generating the Z8, which has
a surface theory with a single Dirac fermion. The Z8 index
of this state is n = 1 ∈ Z8. The same state can be obtained in
dimensional reduction by placing a ν = 1 integer quantum Hall
(IQH) state on the mirror plane, where we choose the mirror
operation to act as the identity on the fermion fields [21,34].

The surface theory is

LDirac = −iψ̄γμ∂μψ, (1)

where γμ = {τ z,τ x,τ y}, ψ̄ = ψ†(iτ z), the τμ are the 2 × 2
Pauli matrices, and sums over repeated indices are implied.
Very generally, reflection M acts by

M : ψ(x,y) → UMψ(−x,y), (2)

where UM is a unitary matrix. Without loss of generality, we
can take U 2

M = 1, and it is straightforward to show there are
two solutions for UM that leave LDirac invariant, UM = ±τ x =
±γ1. These solutions are the two distinct possibilities for the
action of reflection symmetry on the continuum fields. We will
see in the following discussion that the two solutions result in
surface theories for two different SPT phases. Equivalently, we
can say these solutions correspond to two different anomaly
types of the surface theory.

We choose UM = τ x = γ1. To determine the anomaly type
of this surface field theory, we dimensionally reduce it by
adding a reflection preserving mass term. Passing to the
Hamiltonian formalism, the Dirac Hamiltonian density is

HDirac = ψ†(iτ y∂x − iτ x∂y)ψ, (3)

and we add the mass term:

Hm = m(x)ψ†τ zψ, (4)

where m(x) is a monotonic function with m(x) = −m0 for
x → −∞,m(x) = m0 for x → +∞, and m0 a positive con-
stant. We have thus introduced a single domain wall where the
mass changes sign, which is required by reflection symmetry.
The surface is gapped everywhere except on the x = 0 mirror
axis, and the anomaly type can be determined by studying any
gapless modes pinned to the axis.

There is a single gapless mode with single-particle wave
function

|ψpy
(x,y)〉 = exp

(
ipyy −

∫ x

0
m(x ′)dx ′

)
|χ+〉, (5)

where the spinor part is |χ+〉 = 1√
2
(1,1)T . The energy of this

mode is E(py) = py , so the mode is chiral and can be viewed as
the edge of a ν = 1 IQH state on the mirror plane. Moreover,
the mirror eigenvalue of this wave function is τM = 1. We
note that taking m0 > 0 was an arbitrary choice. If instead we
take m0 negative, we find a fermion mode of opposite chirality
(therefore ν = −1) and with τM = −1. The product τMν = 1
remains unchanged and can be associated with the Z8 SPT
invariant.

If we choose instead the solution UM = −τ x = −γ1, and
follow the same dimensional reduction procedure, we find a
mode with the same chirality but mirror eigenvalue τM = −1,

corresponding to the surface of the n = −1 TCI. We see that
different choices of symmetry action on the continuum fields
indeed result in different anomaly types.

III. QED3 PARENT FIELD THEORY OF BOSONIC
POINT GROUP SPT SURFACES

Here, we consider quantum electrodynamics in three space-
time dimensions (QED3) with Nf = 4 Dirac fermions as
a parent surface theory of bosonic pgSPT phases. First, in
Sec. III A we consider mirror reflection symmetry. We obtain
Nf = 4 QED3 as a surface theory of the Z2 root state
by gauging the surface of an electron TCI with four Dirac
fermions. We also discuss how the symmetry action can be
modified to obtain a nonanomalous theory that can describe
a purely two-dimensional system (or, equivalently, the surface
of a trivial SPT phase). We then proceed to consider other point
groups, focusing primarily on pgSPT phases that are built by
placing Ising SPT states on mirror planes. In Sec. III B we
consider C2v symmetry. We show that surfaces of the two root
states built from Ising SPT states, and the state obtained by
adding these two root states, can be described by Nf = 4
QED3 with different symmetry actions. In Sec. III C, we
consider Cnv symmetry for n = 3,4,6, showing that a set of
root states built from Ising SPT states on mirror planes can all
be described by the same surface field theory for appropriate
actions of symmetry. Finally, in Sec. III D we show that the 1d

root state, obtained by placing a Haldane chain on the Cnv axis
for n = 2,4,6, also admits Nf = 4 QED3 as a surface theory.

A. Mirror symmetry: Z2 root state

For d = 3 bosonic mirror SPT phases, the Z2 root state
is formed by placing a d = 2 Ising SPT state on the mirror
plane. It was shown in Ref. [34] that the n = 4 electronic TCI
with U (1) × ZP

2 symmetry is equivalent to a product of the
bosonicZ2 root state with a trivial electronic insulator. We thus
proceed to obtain a surface theory of the bosonic Z2 root state
by gauging the Dirac surface theory of the n = 4 electronic
TCI.

The surface of the n = 4 electronic TCI can be described
by a Nf = 4 Dirac theory:

L = −i
̄γμ∂μ
, (6)

where 
 is an eight-component spinor comprised of Nf = 4
Dirac fermions. We take tensor products of σ i and μi Pauli
matrices (i = x,y,z) to act in the SU(4) flavor space, while
τ i Pauli matrices act in the two-component Dirac space as in
Sec. II B. We choose the reflection x → −x to act by

M : 
(x,y) → τ x
(−x,y) = γ1
(−x,y). (7)

We apply dimensional reduction by adding the mass term

Lm = m(x)
̄μz
, (8)

with m(x) as in Sec. II B.
Following Sec. II B, we find that there are two counter-

propagating pairs of chiral fermions cI (y) on the mirror axis
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(I = 1, . . . ,4). The effective d = 1 Hamiltonian density is

H1d = −iv

2∑
I=1

c
†
I ∂ycI + iv

4∑
I=3

c
†
I ∂ycI , (9)

with velocity v and mirror symmetry action

M : c1,2(y) → c1,2(y)

M : c3,4(y) → −c3,4(y). (10)

This theory was studied via bosonization in Refs. [21,34]. By
making an appropriate change of variables, Ref. [34] showed
the bosonized theory breaks into two decoupled sectors, where
one sector is a trivial electronic insulator and the other is the
edge of the Ising SPT state. Therefore, the corresponding TCI
is adiabatically connected to a product of a trivial insulator
with the bosonic Z2 root state.

To proceed, we first imagine the surface is in a limit where
it is actually a product of a trivial electronic insulator and
the edge of the Ising SPT state. First of all, it is clear that
we can consistently gauge the U(1) symmetry in the surface
theory, because only degrees of freedom in the trivial insulating
sector carry U(1) charge. Second, gauging the U(1) symmetry
using a compact gauge field turns the insulating sector into a
trivial confined phase, leaving only the Ising SPT edge [53].
Therefore, gauging the U(1) produces a surface theory for the
bosonic Z2 root state. These conclusions only have to do with
anomalies of the surface, so they hold for any surface theory
of the n = 4 TCI.

We can thus obtain a surface theory of the bosonic Z2 root
state by starting with the Dirac theory Eq. (6) and coupling the
U(1) charge to a dynamical compact gauge field. The gauged
Lagrangian is

Lg = −i
̄γ μ(∂μ + iaμ)
 + LMaxwell + · · · , (11)

where LMaxwell is the Maxwell term for aμ. The ellipsis
represents various perturbations consistent with microscopic
symmetries, which include monopole operators because the
gauge field is compact. To keep Lg invariant under symmetry,
we take aμ even under reflection for μ = τ,y, with and ax odd.
This implies that electric charge is even under reflection, while
magnetic flux is odd.

Qi and Fu have also obtained a Nf = 4 QED3 theory
starting from the n = 4 TCI surface, via a somewhat different
route [26]. Starting with the same Dirac surface theory, they
introduced an emergent U(1) gauge field and coupled this
field to fermions to obtain a low-energy sector described by
Nf = 4 QED3. This theory takes a slightly different form
from ours, but the two theories can be mapped to one another
by a particle-hole transformation, as shown in Appendix A.
While these two QED3 theories are obtained by somewhat
different routes, their equivalence is not a coincidence. To
obtain their QED3 theory, Qi and Fu integrate out high-energy
excitations, which presumably corresponds to integrating out
a trivial electronic insulating sector, thus producing a surface
theory for the bosonic Z2 root state.

We now describe how to modify the symmetry action in the
Nf = 4 QED3 theory to obtain a surface theory of a trivial
bosonic pgSPT surface. This will be useful in our discussion
of other crystalline symmetries below. We modify the action

of reflection symmetry by adding a Pauli matrix in the flavor
space,

M : 
(x,y) → μxτx
(−x,y) = μxγ1
(x,y). (12)

Such actions of reflection symmetry are known to occur in
algebraic spin liquids of d = 2 spin systems [54], where the
effective theory and symmetry action is derived starting from
a microscopic spin model using a parton effective field theory
construction. Therefore, we should expect this theory describes
a trivial pgSPT surface.

Instead of appealing to the connection with a microscopic
spin model, we show this QED3 theory describes a trivial
pgSPT surface by adding perturbations to drive the theory
into a trivial state. We can now add the spatially constant
mass term Lm = m
̄μz
, which gaps out the Dirac fermions
everywhere. It remains to consider the gauge sector, which,
because the gauge field is compact and the matter fields
are gapped, will be in a confining phase due to monopole
proliferation and condensation. We simply need to show it
is possible for monopoles to condense without breaking the
reflection symmetry. Letting M be the unit charge monopole
insertion operator, the most general possible action of reflec-
tion symmetry is M :M → λM†, where λ is a phase factor,
and the Hermitian conjugation appears because magnetic flux
is odd under M . It is possible to set λ = 1 by redefining the
overall phase of M, upon which the symmetry-invariant linear
combination M + M† can be added to the Lagrangian to
confine the gauge sector without breaking reflection.

B. C2v symmetry

Here, we discuss Nf = 4 QED3 as a surface theory of
bosonic pgSPT phases protected by C2v symmetry. The C2v

point group is generated by two reflections, Mx and My , whose
mirror planes are perpendicular. The pgSPT classification is
(Z2)4, in which two of the Z2 factors come from putting the
d = 2 Ising SPT state on either the x = 0 or y = 0 mirror
plane. We first discuss how to choose the action of Mx and My

to realize these two Z2 root states, which we refer to as the Z2x

and Z2y root states, respectively. Then we proceed to consider
the surface of the Z2x ⊕ Z2y state obtained by adding the two
root states together.

We consider the root state where an Ising SPT state is placed
on the x = 0 mirror plane, while the y = 0 plane is trivial. To
obtain such a surface theory, we take

Mx : 
(x,y) → γ1
(−x,y),

My : 
(x,y) → γ2μ
x
(x,−y). (13)

This choice is motivated by the discussion of Sec. III A, where
we showed that, for a single reflection symmetry, adding a
flavor-space Pauli matrix to the reflection symmetry action
results in a trivial pgSPT surface. We can add the mass term

Lm = m(x)
̄μz
, (14)

with m(x) as above. This gaps out the fermions away from
x = 0. Moreover, we can repeat the discussion of Sec. III A to
show that the monopoles can condense away from x = 0 while
preserving My reflection symmetry. Therefore, we have made
the theory trivial away from the x = 0 axis, as expected.
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On the x = 0 axis, ignoring coupling to the gauge field
for the moment, we again obtain a d = 1 theory of two
counterpropagating pairs of chiral fermions. The Hamiltonian
density is the same as in Eq. (9), with Mx acting as in Eq. (10)
and

My : c1,2(y) → ic3,4(−y), (15)

My : c3,4(y) → −ic1,2(−y). (16)

To proceed, we need to show that it is possible to gauge
the U(1) while preserving both Mx and My . This requires a
generalization of the bosonization analysis of Ref. [34] that
was described above. We introduce chiral boson fields φI by

c
†
1,2 ∼ eiφ1,2

c
†
3,4 ∼ e−iφ3,4 . (17)

If we were to simply repeat the analysis of Ref. [34] at this
point, we would make a change of variables to new fields φ′

I ,
so that the fields φ′

1,2 describe a trivial electronic insulator.
However, this cannot be done while maintaining both Mx and
My symmetry. The reason is that Mx and My anticommute
acting on fermion operators, which implies that in any theory of
two counterpropagating fermion modes, one mode must have
Mx eigenvalue 1, while the other mode has Mx eigenvalue −1.
This is not a trivial electronic insulator, but rather is the edge
of a nontrivial d = 1 SPT phase protected by U(1) and Mx

symmetry [21].
To circumvent this problem, we introduce two more chiral

boson fields φ5,6. We put these fields in a bosonic state that is
trivial in the sense that it is the edge of a trivial SPT phase.
One is always free to add such trivial degrees of freedom at the
edge; for instance, these fields can be interpreted physically
as describing bulk degrees of freedom that we now include
in the edge theory. The bosonized theory is described by the
Lagrangian

L = 1

4π
KIJ ∂tφI ∂yφJ + · · · , (18)

where the ellipsis represents local terms allowed by symmetry,
which we will not need to consider explicitly. The K matrix is

K =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 0 1
0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎠

, (19)

and symmetry acts on the bosonic fields by

Mx : 
φ → 
φ + π 
mx (20)

My : 
φ(y) → Wy

φ(−y) + π 
my, (21)

U(1) : 
φ → 
φ + α
t, (22)

where 
mx = (0,0,1,1,1,0)T , 
my = (−1/2,−1/2,−1/2,

−1/2,0,0)T , 
t = (1,1,−1,−1,0,0)T , and

Wy =

⎛
⎜⎜⎜⎜⎜⎝

0 0 −1 0 0 0
0 0 0 −1 0 0

−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎠

. (23)

We can confirm the bosonic 2 × 2 block is indeed trivial by
noting that this sector can be gapped out by adding a cos(φ6)
term, which respects all the symmetries, and which does not
induce spontaneous symmetry breaking.

We change variables by

φ′ = Wφ, (24)

where W is a GL(6,Z) matrix given by

W =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 −1 0
0 1 0 0 0 0
0 0 1 0 1 0
0 0 0 1 0 0
0 0 0 0 1 0
1 0 1 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

. (25)

The K matrix is unaffected by this transformation, and the
symmetries act by

Mx : 
φ′ → 
φ′ + π 
m′
x (26)

My : 
φ′(y) → W ′
y

φ′(−y) + π 
m′

y (27)

U(1) : 
φ′ → 
φ′ + α
t ′, (28)

where 
m′
x = U 
mx = (−1,0,2,1,1,1)T , 
m′

y = U 
my = (−1/2,

− 1/2,−1/2,−1/2,0,−1), 
t ′ = U
t = 
t , and W ′
y =

WWyW
−1 = Wy .

We can now refermionize the φ′
1, . . . ,φ

′
4 sector using the

same transformation as in Eq. (17), obtaining fermion fields c′
I .

We can gap out these fermions with the symmetry-preserving
mass term

Hm = m[(c′
1)†c′

4 − (c′
3)†c′

2 + H.c.]. (29)

Therefore, this sector is a trivial electronic insulator. The
remaining 2 × 2 bosonic block is an Ising SPT edge under
the Mx symmetry [34].

We have thus shown that the d = 1 theory decomposes into
a trivial electronic insulator and an Ising SPT edge, so the
corresponding TCI is a product of a trivial insulator with the
bosonic root state obtained by placing an Ising SPT on the
x = 0 plane while keeping the y = 0 plane trivial. Following
the logic of Sec. III A, we can thus gauge the U(1) while
maintaining reflection symmetry to obtain a Nf = 4 QED3
surface theory for the Z2x root state, with symmetry action as
in Eq. (13). Similarly, the symmetry action

Mx : 
(x,y) → μxγ1
(−x,y),

My : 
(x,y) → γ2
(x,−y) (30)

gives a surface theory for the Z2y root state.
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Now that we have obtained surface theories for the two
root states, we consider the Z2x ⊕ Z2y obtained by adding
the two root states together. One surface theory is simply two
decoupled copies of Nf = 4 QED3, one with Dirac fermion
field 
1 on which C2v acts as in Eq. (13), and another with
fermion 
2 on which the symmetry action is given by Eq. (30).
From this starting point, we would like to obtain a single Nf =
4 QED3 surface theory. We note that similar constructions will
be used below to obtain surface theories for Cnv pgSPT phases
with n � 3.

To proceed, we introduce the 16 component field ϒ =
(
1,
2)T and let ςi Pauli matrices act in the additional two-
dimensional flavor space. We add the mass term

Lm = mϒ̄Xϒ, (31)

where X = ςx(1 − μx). This term is not fully gauge invari-
ant and should be understood as the result of breaking the
U(1) × U(1) gauge structure down to U(1) due to the Higgs
mechanism. We can diagonalize X by making the change of
variables ϒ ′ = Uϒ , where U acts in the ς,μ part of the flavor
space and is given by

U = 1

2

⎛
⎜⎜⎝

1 −1 −1 1
−1 1 −1 1
0 0

√
2

√
2√

2
√

2 0 0

⎞
⎟⎟⎠. (32)

The mass matrix in the new basis becomes

X′ =

⎛
⎜⎝

−2 0 0 0
0 2 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠. (33)

We integrate out the modes gapped out by the mass, and
obtain a new Nf = 4 QED theory for the low-energy sector.
Denoting by 
 ′ the low-energy Dirac field, which is simply
composed of those components of ϒ ′ not gapped out, the
symmetry action is

Mx : 
 ′ → γ1

′ (34)

My : 
 ′ → γ2

′. (35)

This form could have been guessed immediately, because
upon dimensional reduction to either mirror plane one obtains
an Ising SPT edge. Indeed, another approach to show this is
a correct surface theory would be to start from this Nf = 4
Dirac theory, carry out the dimensional reduction to the “cross-
shaped” region containing both surface mirror axes, and then
argue the U(1) symmetry can be gauged. However, proceeding
in this way one has to treat carefully the junction between the
two d = 1 theories at the C2v center, which seems likely to be
more complicated than combining the two root state surface
theories as we have done instead.

C. Cnv symmetry for n = 3,4,6

The Cnv point group is generated by a mirror reflection My

and n-fold rotation Cn, where the rotation axis lies within the
mirror plane. This results in n mirror planes, as shown in Fig. 1,
where the root states obtained by placing Ising SPT states on
mirror planes are shown. For n = 3 there is a single such Z2

root state, while for n = 4,6 there are two root states labeled
Z2a and Z2b.

We first consider C4v symmetry. We will obtain a surface
field theory for the Z2a root state by stacking together two
QED3 surface theories for C2v pgSPT phases and adding a
fourfold rotation symmetry that exchanges these two layers.
The resulting theory is two decoupled copies of Nf = 4 QED3,
which nonetheless transform into one another under C4v . We
then proceed along the same line as our discussion of the C2v-
symmetric Z2x ⊕ Z2y state, adding a mass term that couples
the two layers and results in a single copy of Nf = 4 QED3.

We introduce eight-component Dirac fields 
1 and 
2 for
the two layers and combine these into the field ϒ = (
1
2)T .
Each of 
1 and 
2 is coupled to its own U(1) gauge field. We
choose symmetry to act by

Mx : ϒ(x,y) →
(

1 0
0 μx

)
γ1ϒ(−x,y) (36)

My : ϒ(x,y) →
(

μx 0
0 1

)
γ2ϒ(x,−y) (37)

C4 : ϒ(x,y) →
(

0 1
1 0

)
eiπγ0/4ϒ(−y,x), (38)

where the 2 × 2 matrices act in the additional two-dimensional
flavor space (i.e., the 
1, 
2 layer space). It can be checked
the relation My = C4MxC

−1
4 is satisfied.

The same mass term as in Eq. (31) is allowed for these
symmetries, and we can proceed as in that case to obtain a
low-energy Nf = 4 QED3 theory with Dirac field 
 ′. The
action of symmetry on this field is found to be

Mx : 
 ′ → γ1

′ (39)

My : 
 ′ → γ2

′ (40)

C4 : 
 ′ → μxeiπγ0/4
 ′. (41)

As expected, this symmetry action implies that if we reduce
onto the x = 0 or y = 0 mirror axis, we obtain an Ising SPT
edge. In addition, if we reduce onto thex = y orx = −y mirror
axis, we obtain a trivial state. To see this, we note that thex ↔ y

and x ↔ −y reflections are MxC4 and MyC4, both of which
act on 
 ′ with a μx Pauli matrix in the flavor space. As shown
in Sec. III A, this corresponds to the edge of a trivial state
on these mirror planes. Therefore, we have obtained a surface
theory for the Z2a root state. A similar theory for the Z2b root
state can be obtained simply by rotating the coordinate axes.

For C3v symmetry, we introduce three Nf = 4 QED3
layers, each with field 
i (i = 1,2,3), and ϒ = (
1
2
3)T .
We choose symmetry to act by

Mx : ϒ →
⎛
⎝1 0 0

0 0 1
0 1 0

⎞
⎠γ1ϒ (42)

C3 : ϒ →
⎛
⎝0 1 0

0 0 1
1 0 0

⎞
⎠eiπγ0/3ϒ, (43)

where the 3 × 3 matrices act in the layer space, and it can
be checked that these transformations satisfy the relations of
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the C3v group. This choice is motivated by the fact that if we
focus on Mx and ignore the rest of the symmetry, then layer
i = 1 hosts an Ising SPT edge on the mirror axis. The same is
true for MxC3 and layer i = 2, and for MxC

2
3 and layer i = 3.

Therefore, we guess that stacking these three layers with the
given symmetry action produces the Z2 root state C3v pgSPT
phase, as we now show.

We couple the layers by adding the C3v invariant term

Lm = mϒ̄Xϒ, (44)

where

X =
⎛
⎝ 0 i −i

−i 0 i

i −i 0

⎞
⎠. (45)

This matrix has eigenvalues 0,±√
3, and it gaps out 8 of the

12 two-component fields, leaving the low-energy field 
 ′ =
(
1 + 
2 + 
3)/

√
3. Symmetry acts on this field by

Mx : 
 ′ → γ1

′ (46)

C3 : 
 ′ → eiπγ0/3
 ′. (47)

In this theory, reducing onto any of theMx,MxC3,MxC
2
3 mirror

axes results in the edge of an Ising SPT state, so we have indeed
obtained a theory of the Z2 root state C3v pgSPT surface.

Finally we consider C6v symmetry. Again we introduce
three Nf = 4 QED3 layers, with fields labeled as in the C3v

case above. Here, we take each layer to be invariant under the
C2v subgroup generated by Mx and My , while C6 cyclically
permutes the layers. The symmetry action is

Mx : ϒ →
⎛
⎝1 0 0

0 0 1
0 1 0

⎞
⎠γ1ϒ (48)

My : ϒ →
⎛
⎝1 0 0

0 0 1
0 1 0

⎞
⎠μxγ2ϒ (49)

C6 : ϒ →
⎛
⎝0 1 0

0 0 1
1 0 0

⎞
⎠eiπγ0/6μxϒ. (50)

This symmetry action allows the same mass term as in the C3v

case above, which again leaves a low-energy field 
 ′, on which
symmetry acts by

Mx : 
 ′ → γ1

′ (51)

My : 
 ′ → μxγ2

′ (52)

C6 : 
 ′ → eiπγ0/6μx
 ′. (53)

This is a Nf = 4 QED3 theory for the surface of the Z2a root
state C6v pgSPT phase. Similarly, the surface theory for the
Z2b root state can be obtained by a rotation.

D. 1d root states: Haldane chain on the Cnv axis

While our main focus is on surfaces of pgSPT phases built
from two-dimensional states, we briefly digress to discuss the

Cnv pgSPT phases built from a Haldane chain on the mirror
axis, which occur for n = 2,4,6 [37]. We refer to this state as
the 1d root state, and we show it also admits a Nf = 4 QED3
surface theory for an appropriate action of symmetry on the
continuum fields. We focus on C2v and briefly explain why
similar results hold for n = 4,6 at the end of this section.

In the dimensional reduction picture, the surface of the
1d root state is a single projective representation of the
effective Z2 × Z2 onsite symmetry, which lies at the C2v

center where the surface mirror axes intersect. In contrast
to pgSPT phases built from two-dimensional states, this sur-
face can occur in a strictly two-dimensional system, if spins
transform projectively. In that setting, the anomalous nature
of the surface is manifest as a generalized Lieb-Schultz-Mattis
constraint forbidding a trivial gapped state. This bulk-boundary
correspondence between Lieb-Schultz-Mattis constraints and
certain SPT phases was proposed in Ref. [55] and studied for
C2v and other point group symmetries in Ref. [37]. (See also
Ref. [56].)

To obtain a surface theory of the 1d root state, we take
advantage of existing works that start with a S = 1/2 Heisen-
berg model and use parton gauge theory methods to obtain
Nf = 4 QED3 as an effective low-energy theory [57–59].
In this context, such states are often referred to as algebraic
[60] or Dirac [61] spin liquids. For concreteness, we focus
on the particular example of the S = 1/2 square lattice and
the so-called staggered flux algebraic spin liquid, for which
the action of microscopic symmetries on continuum fields was
obtained in Ref. [54].

Reference [54] considered square lattice symmetry, SO(3)
spin rotation, and time reversal symmetry. We consider the C2v

subgroup generated by “spin-orbit coupled reflections,” which
act on spin operators S(x,y) by

Mx : S(x,y) → Rx(π )S(−x,y) (54)

My : S(x,y) → Ry(π )S(x,−y), (55)

where Rx(π ) and Ry(π ) are spin rotations by the angle π about
x and y axes. Such an action of symmetry is appropriate in a
spin-orbit coupled system and makes the spin at the origin into
a projective representation of C2v .

Using the results of Ref. [54], we obtain the following
symmetry action on the continuum fermion field 
:

Mx : 
(x,y) → σxμyγ1
(−x,y) (56)

My : 
(x,y) → σyμxγ2
(x,−y). (57)

This defines a Nf = 4 QED3 surface theory of the 1d root
state.

To obtain a similar surface field theory for the 1d root
state with C4v symmetry, we can start with the same S = 1/2
algebraic spin liquid and focus on a C4v subgroup made up of
point group operations combined with appropriate spin rota-
tions that make each S = 1/2 spin into a nontrivial projective
representation of C4v . For C6v symmetry, we can consider
the π -flux Dirac spin liquid on the S = 1/2 triangular lattice
[62], following the same strategy to choose an appropriate C6v

subgroup.
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IV. CLUSTON SURFACE FIELD THEORIES OF SPT
PHASES BUILT FROM E8 STATES

We now discuss surface field theories of bosonic and
fermionic pgSPT phases built by placing an E8 state on a mirror
plane. In particular, we consider two related such SPT phases.
First, we consider the E8 paramagnet TCI [34], which is a
strongly interacting electronic SPT phase built by placing an
E8 state on the mirror plane. Our surface field theory is based on
the “cluston” construction of Ref. [42] and is a noninteracting
Dirac theory with both charge-1 and charge-3 Dirac fermions.
Once we obtain this surface field theory, we gauge the U(1)
symmetry to obtain a theory for a bosonic pgSPT phase built
by placing an E8 state on the mirror plane. This theory is
a variant of QED3 with both charge-1 and charge-3 Dirac
fermions. We then discuss a route to obtain a gapped surface
with three-fermion topological order from this field theory.

Electronic TCIs protected by U (1) × ZP
2 symmetry have

a Z8 × Z2 classification [21,34], where the Z2 factor is
generated by the E8 paramagnet TCI [34]. In the dimensional
reduction picture, the E8 paramagnet TCI is described by plac-
ing a neutral bosonic E8 state on the mirror plane, together with
a trivial electronic insulator. The E8 state can be characterized
by its chiral central charge c mod 16 = 8 and vanishing Hall
conductance. Upon coupling the electron charge to a compact
U(1) gauge field, we eliminate the trivial fermionic sector and
obtain a bosonic state with an E8 state on the mirror plane. This
is a bosonic pgSPT state protected byZP

2 and more specifically
is the E8 root state of Ref. [34]. Because the fermionic sector
is trivial, we can consistently gauge the U(1) symmetry on the
surface alone; this gives a route to obtain surface theories of
the E8 root state.

An equivalent description of the E8 paramagnet TCI can be
obtained as follows. Starting with an E8 state with c = −8 on
the mirror plane, we also place a ν = 8 IQH state on the mirror
plane. This leaves the system in the same phase, because the
ν = 8 IQH state alone on the mirror plane is a trivial pgSPT
phase. The resulting state is characterized by c = 0 and Hall
conductance ν = 8. This is equivalent to placing a bosonic
integer quantum Hall (BIQH) state on the mirror plane, built
from charge-2 Cooper pairs. Therefore, the E8 paramagnet TCI
can equally well be viewed as the product of a BIQH state on
the mirror plane with trivial gapped fermions.

We now give a Dirac surface theory of the E8 paramagnet
TCI, which we then justify using dimensional reduction. The
key insight comes from Ref. [42], which showed that simple
descriptions of the d = 2 BIQH and E8 states can be obtained
by binding three electrons into “cluston” bound states and
then putting the clustons into a Chern band. This results in
a simple theory of noninteracting clustons and noninteracting
(unbound) electrons. In particular, the Cooper pair BIQH state
can be obtained by combining a ν = 1 IQH state of clustons
with a ν = −1 IQH state of electrons, resulting in ν = 8
and central charge c = 0. A description of a neutral E8 state
(embedded in an electron system) is obtained by combining
nine copies of ν = 1 IQH states of electrons with a single copy
of a ν = −1 IQH state of clustons.

The surface theory has two Dirac fermion fields

L = −iψ̄γ μ∂μψ − iψ̄cγ
μ∂μψc, (58)

where ψ carries charge-1 and ψc is a charge-3 cluston. This
was shown to be a surface theory of a strongly interacting
topological insulator with U (1) � ZT

2 symmetry, where ZT
2 is

time reversal [42,43]. To see that the same theory can describe
the surface of the E8 paramagnet TCI, we need to specify the
mirror symmetry action, which we take to be

M : ψ(x,y) → −τxψ(−x,y), (59)

M : ψc(x,y) → τxψc(−x,y). (60)

To dimensionally reduce the surface, we add the following
mass term to Eq. (58):

Lm = −m(x)ψ̄ψ + m(x)ψ̄cψc, (61)

with m(x) as in Sec. II B. This results in a counterpropagating
pair of chiral modes on the mirror axis, described by the
Hamiltonian density

Hedge = ivF ψ†∂yψ − ivF ψ†
c ∂yψc. (62)

The symmetries act on the 1d fields by

U (1) : ψ† → eiα ψ†, (63)

U (1) : ψ†
c → ei3α ψ†

c , (64)

M : ψ† → ψ†, (65)

M : ψ†
c → ψ†

c . (66)

It follows immediately that the state on the mirror plane has ν =
8 and c = 0 and is thus adiabatically connected to a Cooper
pair BIQH state. Therefore, Eq. (58) is a surface theory for the
E8 paramagnet TCI.

We can now gauge the U (1) symmetry to obtain a sur-
face field theory for the bosonic E8 root state. The gauged
Lagrangian has the following form:

Lg = −iψ̄γ μ(∂μ + iaμ)ψ − iψ̄cγ
μ

× (∂μ + i3aμ)ψc + LMaxwell. (67)

This field theory belongs to a series of self-dual theories studied
in Ref. [63], labeled by the charge k of ψc. In the large-k limit
the field theory flows to a CFT fixed point that can be studied
in a 1/k expansion and which may be relevant to the surface
physics of pgSPT phases built from E8 states, if it survives
to k = 3 and is sufficiently stable for realistic microscopic
symmetries.

To connect this surface theory to the surface topological
order, we introduce a charge-2 Higgs field φ, which is odd
under reflection, M : φ(x,y) → −φ(−x,y). The Higgs field φ

couples to the Dirac fermions in the following way:

Lp = iφ∗ψτyψ + i(φ∗)3ψcτyψc + H.c. (68)

This form of the coupling makes it clear that introducing φ is
justified; the presence of the first term implies we can view φ

as a charge-2 bound state of two ψ’s, which then couples to a
bound state of two ψc’s as in the second term.

Condensing the Higgs field φ reduces the gauge structure
down to Z2, resulting in a theory where a deconfined Z2
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gauge field is coupled to the fermions. In this Higgs phase,
Lp becomes a pairing term,

Lp = i�ψτyψ + i�3ψcτyψc + H.c. (69)

Here, � = 〈φ〉, and � and −� are two vacuua related by
mirror symmetry. These vacuua are gauge equivalent, so mirror
symmetry is preserved in the Higgs phase. It is thus convenient
to redefine the mirror operation by combining it with a gauge
transformation. The new reflection symmetry M̃ acts on the
fermions by

M̃ : ψ(x,y) → −iτxψ(−x,y), (70)

M̃ : ψc(x,y) → −iτxψc(−x,y). (71)

The properties of this surface superconductor have been
analyzed in Ref. [42]. In particular, the fundamental vortex
is a fermion, denoted by ef here. We identify the fermionic
Bogoliubov quasiparticle as εf . The two particles ef and εf

have a nontrivial semionic braiding statistics since they see
each other as a π flux. The bound state of ef and εf is thus
another fermionic anyon mf . Therefore, the Z2 topological
order we obtained is a reflection symmetric three-fermion state.

Now, we discuss the reflection symmetry fractionalization
patterns of the three-fermion state, following Refs. [34,64,65].
Let a be one of the three anyon types and Sa a string operator
creating two a particles in states that go into one another under
reflection symmetry. Then, under reflection,

M : Sa → μaSa, (72)

where μa = ±1 characterizes the two possibilities for reflec-
tion symmetry fractionalization of a. Because μεf = μef μmf ,
it is enough to specify μa for ef and mf . Denoting μa = 1 by
0 and μa = −1 by P , the only two distinct fractionalization
patterns are ef 0mf 0 and ef Pmf P . Here we have taken
into account that two fractionalization patterns related by a
relabeling of anyons should be viewed as the same pattern.

It was shown in Ref. [34] that the E8 root state admits a
surface with three-fermion topological order and the ef Pmf P

reflection fractionalization pattern. From Eqs. (70) and (71),
we know the reflection squares to −1 on a single Bogoli-
ubov quasiparticle εf . Due to Fermi statistics, this implies
μεf = 1 [64,65], which is consistent with both fractionalization
patterns. The next question is then how does the reflection
act on the fundamental vortex ef . One way to obtain the
reflection symmetry action on the vortex would be to solve the
Bogolioubov de-Gennes equation for the vortex directly and
obtain the fractionalization pattern from that. Another way to
proceed would be to observe that dimensional reduction tells
us that we started with a surface theory for the E8 root state,
for which Ref. [34] showed that the fractionalization pattern is
ef Pmf P . The other ef 0mf 0 fractionalization pattern is not
possible, because it occurs at the surface of the E8 ⊕ Z2 state.
Therefore, the fractionalization pattern must be ef Pmf P .

Here we present a different argument, based on an ob-
servation due to Chong Wang [66]: Recall that in topologi-
cal crystalline superconductors (TCSCs) with only reflection
symmetry, the bosonic E8 root state in the presence of trivial
fermions is a trivial pgSPT phase, no matter whether M2 = ±1
acting on electrons [34]. Reinterpreting this result in terms of

the surface topological order of the E8 root state, it means
that, in the presence of the electrons, the surface topological
order can be trivialized by condensing a bosonic anyon, which
is a bound state of an electron and one of the fermionic
anyons of the three-fermion state. Applying this condition to
the ef 0mf 0 and ef Pmf P states, it is easy to see that only
ef Pmf P can be trivialized in the presence of either M2 = +1
or M2 = −1 electrons. The other symmetry fractionalization
pattern ef 0mf 0 cannot be trivialized if M2 = 1 acting on the
electrons. This is because it corresponds to a product of the
bosonic E8 ⊕ Z2 root state with trivial fermions, which is a
nontrivial TCSC [34].

We can use this observation to show the fractionalization
pattern must be ef Pmf P , by showing that the surface field
theory also has the property that it can be trivialized in the
presence of electrons on which M2 = 1. (There is no need to
consider M2 = −1 electrons.) We start with the Lagrangian
Eq. (67) and introduce Dirac electrons ci with i = 1, . . . ,8
obeying the Lagrangian

Lelectron = −i

8∑
i=1

c̄iγ
μ∂μci, (73)

and transforming under reflection by

M : ci → τ xci . (74)

While our theory so far has a globally conserved U(1) electron
charge, we ignore this symmetry, so that the electron sector of
the theory is the surface of a trivial TCSC. We could equally
well add terms breaking the global U(1), but there is no need
to do this explicitly. Now, we condense the Higgs field c

†
8τ

zψ ,
which carries unit charge of the U(1) gauge field and thus
eliminates the gauge field from the low-energy theory. The
low-energy theory thus has a term

LHiggs = mc
†
8τ

zψ + H.c., (75)

which gaps out both the c8 and ψ fermions. This leaves us with
the seven fermions ci (i = 1, . . . ,7) and the single fermion
ψc, all of which transform identically under mirror reflection,
and none of which are coupled to a fluctuating gauge field.
Therefore, we have obtained a surface theory for a trivial
TCSC.

V. BOSONIC PARENT SURFACE FIELD THEORY:
NONLINEAR SIGMA MODEL AND C P1 MODEL

In this section, we use a coupled-wire approach to construct
a surface theory for pgSPT phases with U(1) × ZP

2 symmetry.
We focus on states obtained by placing d = 2 SPT states with
U(1) × Z2 symmetry on the mirror plane, and the “wires” are
the edges of a stack of such states at a symmetry-preserving
surface. The field theory is an O(4) nonlinear sigma model
with a theta term at θ = π and with O(2) × O(2) anisotropy,
or, equivalently, a noncompact CP1 model [45]. The different
pgSPT phases are distinguished by the symmetry action on the
continuum fields. Our approach is based on the construction of
the O(4) sigma model in d = 2 + 1 with theta term by coupling
d = 1 + 1 SU(2)1 Wess-Zumino-Witten (WZW) models [45].
Moreover, it is very closely related to, but conceptually some-
what simpler than, the network model constructions of surface
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field theories for bosonic topological insulators introduced in
Ref. [46].

In Appendix B, we discuss the classification of bosonic
pgSPT phases with U(1) × ZP

2 symmetry. The classification
is Z4

2, where one of the Z2 factors is generated by placing
a neutral bosonic E8 state on the mirror plane. We will not
consider the surface of this state in the following discussion.
The remaining three Z2 factors are generated by root states
given by placing different U(1) × Z2 SPT states [50,51] on
the mirror plane. These states are the bosonic integer quantum
Hall (BIQH) state, the Ising SPT state, and a state we refer to as
the U(1) − Z2 state. The U(1) − Z2 state is so named because
both symmetries are required to protect it. Edges of these SPT
states can be described in a chiral boson formulation [51], or
equivalently as SU(2)1 WZW models [50]. (We note that theZ4

2
classification ignores SPT states obtained by stacking BIQH
layers of the same chirality; see Appendix B.)

We follow the WZW model description, where the edge
theory is

S =
∫

dydτ
1

2λ
tr(∂μg†∂μg) + iSWZW[g], (76)

where SWZW[g] is the SU (2)1 WZW term, and g is a SU (2)
matrix field that we write as

g =
(

b1 −b∗
2

b2 b∗
1

)
, (77)

with complex fields b1 and b2 satisfying |b1|2 + |b2|2. We
consider the following action of U(1) and Z2 symmetry:

U(1) : bi → einiαbi (78)

M : bi(y,τ ) : → eiπmi bi(y,τ ), (79)

where we write the generator of Z2 as M , anticipating its
connection tox → −x mirror symmetry. Here the four integers
ni and mi are each either 0 or 1. For the SPT edges of interest
we have [50]

(i) BIQH state: n1 = n2 = 1 and m1 = m2 = 0.
(ii) Ising state: n1 = n2 = 0, while m1 = m2 = 1.
(iii) U(1) − Z2 state: n1 = m2 = 1 and n2 = m1 = 0.
We construct each of the root states by stacking the

corresponding d = 2 U(1) × Z2 SPT state on mirror planes.
We choose to stack along the x direction, with x = aJ the
x coordinate of each plane, where J is an integer and a the
lattice constant. The discrete lattice symmetry of the stack is
generated by x → −x reflection and translation x → x + 2a.
This choice of symmetry means that the x = 0 and x = a

mirror planes are not related by symmetry and can host
different states. This is important to obtain the BIQH root
state, which is realized by stacking BIQH states of alternating
chiralities. The Ising and U(1) − Z2 root states are realized by
simply stacking the corresponding d = 2 SPT state on every
mirror plane.

A symmetry-preserving surface is naturally described by
coupling the edge states of each mirror plane. The x = aJ

edge is described by a SU(2)1 WZW model with field gJ (y,τ ),
and the action on the surface is

Ssurface = S0 + SW + St , (80)

where

S0 =
∑

J

∫
dydτ

1

2λ
tr(∂μg

†
J ∂μgJ ), (81)

SW = i
∑

J

(−1)J SWZW [gJ ], (82)

St = −t
∑

J

tr(g†
J gJ+1 + H.c.). (83)

The action of U(1) × ZP
2 symmetry on gJ follows from

Eqs. (78) and (79).
Though we are considering different symmetries, this is

exactly the same problem of coupled WZW models studied in
Ref. [45] and employed in Ref. [46]. Reference [45] took the
continuum limit and obtained the surface field theory

Ssurface =
∫

d2xdτ
1

2κ
tr(∂μg†∂μg) + iπSθ , (84)

where

Sθ =
∫

d2xdτ
1

24π2
εμνλtr(g−1∂μgg−1∂νgg−1∂λg). (85)

This is an O(4) nonlinear sigma model with a topological theta
term (at θ = π ) as one can see by substituting g = n0 + i
n · 
τ ,
for Pauli matrices τμ, and rewriting the action in terms of
the O(4) vector n̂ = (n0,
n), where n2

0 + (
n)2 = 1. The action
of U(1) symmetry is still given by Eq. (78), while reflection
acts by

M : bi(x,y,τ ) → eiπmi bi(−x,y,τ ). (86)

Reference [45] considered an O(2) × O(2) anisotropy,
which corresponds to separate U(1) rotations of b1 and b2,
and showed that this O(4) nonlinear sigma model is dual to the
easy-plane noncompact CP1 (NCCP1) model, with action

S =
∑
s=±

∫
d2xdτ |(∂μ − ia1μ)ψ2s |2 + SMaxwell[a1μ]. (87)

Here we have a two-component complex field ψ2± satisfying
|ψ2+|2 + |ψ2−|2 = 1, and a noncompact U(1) vector potential
a1μ. The second term is the usual Maxwell action for a1μ. We
write eiχ1 ∼ b1 to denote the operator creating a unit-strength
monopole in a1μ. By following the duality transformation of
Ref. [45], and keeping track of the U(1) × ZP

2 symmetry, we
obtain the symmetry action

U(1) : 
2 → exp

(
iαn2

2
τ z

)

2 (88)

U(1) : eiχ1 → ein1αeiχ1 (89)

M : 
2 → τ x
∗
2 (m2 = 0) (90)

M : 
2 → τ y
∗
2 (m2 = 1) (91)

M : eiχ1 → eiπm1eiχ1 , (92)

where 
2 = (ψ2+ ψ2−)T .
Following Ref. [46] for time-reversal invariant bosonic

topological insulators, one application of this surface field
theory is to study gapped, topologically ordered surfaces.
This symmetry action allows us to condense the charge-2
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field ψ2+ψ2− without breaking symmetry, which results in a
gapped Z2 gauge theory. The field ψ2+ ∼ ψ∗

2− remains as a
well-defined, gapped excitation carrying the Z2 gauge charge.
It carries half the U(1) charge ifn2 = 1. Ifm2 = 1, theZ2 gauge
charge transforms with M2 = −1, i.e., it carries the nontrivial
projective action of the reflection symmetry [67].

To identify the vison excitation, we follow Ref. [46] and
take advantage of the self-duality of the easy-plane NCCP1

model. Denoting the dual complex field by ψ1±, and the dual
gauge field and monopole creation operator by a2μ and eiχ2 ,
respectively, the symmetry action is found to be

U(1) : 
1 → exp
( iαn1

2
τ z

)

1 (93)

U(1) : eiχ2 → ein2αeiχ2 (94)

M : 
1 → τ x
∗
1 (m1 = 0) (95)

M : 
1 → τ y
∗
1 (m1 = 1) (96)

M : eiχ2 → eiπm2eiχ2 . (97)

The transformation of ψ1± implies that it carries π flux of
the a1μ gauge field, which identifies it as the vison in the
topologically ordered phase. Therefore, the vison carries half
charge if n1 = 1, and transforms with M2 = −1 if m1 = 1.

To summarize, depending on which state we are consider-
ing, we have the following fractionalization patterns:

(i) BIQH state: eCmC.
(ii) Ising state: ePmP .
(iii) U(1) − Z2 state: ePmC � eCmP .

Here, e refers to the Z2 gauge charge and m to the vison, while
C denotes half charge under U(1), and P denotes M2 = −1,
i.e., the nontrivial projective action of reflection symmetry.
Any two fractionalization patterns related by relabeling e ↔ m

are equivalent. In previous work, Ref. [68] identified eCmP

as an anomalous fractionalization pattern via a flux-fusion
anomaly test; here, we identify the corresponding SPT bulk
as the U(1) − Z2 state. ePmP and eCmP are anomalous
fractionalization patterns that can arise at a strongly interacting
topological crystalline insulator surface [26], and ePmP was
identified as a surface of the Ising state in Ref. [34].

It follows from these results that the pgSPT phase given
by adding together the Ising and U(1) − Z2 states admits a
gapped surface with Z2 topological order and eCPmP frac-
tionalization pattern, which was also identified as anomalous
via the flux-fusion anomaly test [68]. To see this, we start
with two decoupled, topologically ordered surface theories,
with fractionalization patterns e1Pm1P and e2Cm2P . The
composite m1m2 has trivial symmetry fractionalization, so
we condense it to obtain a surface with a single copy of Z2

topological order and the claimed fractionalization pattern.

VI. DISCUSSION

In this paper, using dimensional reduction as a tool to
reveal anomalies in a field theory, we considered three different
surface field theories for bosonic pgSPT phases. The first
field theory is Nf = 4 QED, obtained by gauging the U (1)
symmetry at the surface of a TCI with four Dirac fermions.

Surfaces of all bosonic pgSPT phases built by placing d = 2
Ising SPT states on mirror planes, or by placing Haldane chains
on Cnv axes, can be described by this theory.

The second field theory is a variant of QED3 with a single
charge-1 and a single charge-3 Dirac fermions. This field
theory is based on the “cluston” construction, introduced in
Ref. [42] for various interacting topological phases involving
time-reversal symmetry. We showed this field theory can
describe the surface of the mirror-symmetric pgSPT phase
built by placing an E8 state on the mirror plane. We further
discussed how to obtain from the field theory a gapped surface
with three-fermion topological order and ef Pmf P symmetry
fractionalization.

The third field theory is the O(4) nonlinear sigma model with
a topological theta-term at θ = π , which can be mapped to the
NCCP1 model [45]. Based on a coupled wire construction,
we showed this field theory can describe the surfaces of three
of the four root-state bosonic pgSPT phases with U(1) × ZP

2
symmetry. These phases are built by BIQH, Ising SPT, and
U(1) − Z2 states on the mirror plane. Here also, we discussed
the connection between the field theory and gapped, topologi-
cally ordered surfaces.

Although, for the latter two field theories, we focused on
bosonic pgSPT phases with only one reflection symmetry,
we conjecture that the same field theories can describe more
general bosonic pgSPT phases involving multiple reflections.
For bosonic pgSPT phases built from E8 states, the relevant
point groups are Cnv with n = 2,3,4,6, and Fig. 2 shows the
root states built by placing E8 states on mirror planes.

If we start with the free Dirac theory with charge-1 and
charge-3 fermions and add a spatially varying mass term to
implement dimensional reduction at the surface, we can obtain
a pattern of BIQH states on mirror planes, where the edge
chiralities match those shown in Fig. 2. To proceed, it needs to
be shown that the U(1) symmetry can be consistently gauged.
In the case of a single reflection symmetry, this is indeed the
case, because the dimensionally reduced surface theory has the
same anomaly type as a neutral E8 state and trivial electronic
insulator on the mirror plane. For Cnv symmetry, making a
similar argument would require treating carefully the junction
of the gapless edge states at the Cnv axis. We expect that such
an analysis will lead to a clean separation of the theory into a
neutral bosonic sector and a trivial fermionic sector carrying
the U(1) charge, so that the U(1) symmetry can indeed be
consistently gauged.

To obtain the O(4) nonlinear sigma model with a theta
term at θ = π for bosonic pgSPT phases involving multiple
reflection symmetries, one possibility would be to modify
the coupled-wire construction to start with an array of wires
invariant under the desired symmetry. This would require
treating couplings at junctions between wires in the process
of taking the continuum limit. An alternative route would
be to start with decoupled copies of O(4) nonlinear sigma
models with a topological theta term at θ = π that are taken
to transform into one another under symmetry, similar to the
approach followed for Nf = 4 QED3 theories in Sec. III C.
One would then need to add symmetry-allowed interactions
with the goal of obtaining a single effective O(4) nonlinear
sigma model at θ = π . We leave such explicit demonstrations
for future work.
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APPENDIX A: PARTICLE-HOLE TRANSFORMATION
IN N f = 4 QED3

In Ref. [26], Qi and Fu introduced a field theory for the
n = 4 TCI surface. They also discussed how to obtain a gapped
surface with Z2 topological order, with reflection squaring to
minus one on e andmparticles (the so-called ePmP state) from
the field theory they obtained. Here we show that Eq. (11) can
be mapped onto the field theory studied by Qi and Fu.

The mapping comprises a particle-hole transformation on
some flavors of the fermions in Eq. (11). We first consider
a single Dirac fermion in Eq. (1). We define a particle-hole-
transformed fermion

ψ ′ = Cψ̄T = iCγ 0ψ∗ (A1)

ψ̄ ′ = ψ ′†(iγ 0) = ψ ′T γ 0C†γ 0. (A2)

The Lagrangian for the new fermion is

L′
Dirac = −iψ̄ ′γ μ∂μψ ′ (A3)

= −i(ψT γ 0C†γ 0)γ μ(C∂μψ̄T ) (A4)

= −iψ̄C†(γ μ)T γ 0C∗γ 0∂μψ, (A5)

where in the last line we exchanged the two terms in the
parentheses (giving a fermion minus sign) and integrated by
parts. Putting C = γ 2, we have

CT (γ μ)T γ 0Cγ 0 = −γ 2γ μγ 2 (A6)

= γ μ. (A7)

Therefore, LDirac = L′
Dirac.

Going back to the gauged theory Eq. (11), we perform
the particle-hole transformation C to the third and fourth
two-component Dirac fermions and define


 ′ =

⎛
⎜⎝

ψ1

ψ2

ψ ′
3

ψ ′
4

⎞
⎟⎠. (A8)

The transformed Lagrangian becomes

L′
g = −i
̄ ′γ μ(∂μ + iμzaμ)
 ′ + LMaxwell. (A9)

Note that the action of reflection symmetry is unaltered by the
transformation:

M : 
 ′(x,y) → γ 1
 ′(−x,y). (A10)

This is the same theory obtained by Qi and Fu.

APPENDIX B: CLASSIFICATION OF 3D BOSONIC pgSPT
PHASES WITH U(1) × ZP

2 SYMMETRY

Here we give the classification of d = 3 bosonic pgSPT
phases protected by U (1) × ZP

2 symmetry, using dimensional
reduction. We first need the classification of invertible d = 2
bosonic topological phases with on-site U (1) × Z2 symmetry.
The classification of 2d SPT phases with this symmetry
was found to be Z2

2 × Z [9,51]. In addition, since we are
considering invertible topological phases and not just SPT
phases, there is an additional Z factor generated by an E8

state, on whose degrees of freedom the symmetries act trivially.
Therefore the desired classification is Z2

2 × Z2.
Actually, simply having the classification will not be enough

for our purposes, as we need a more concrete description of
the SPT states making up the Z2

2 × Z. This was obtained in
Ref. [51] by studying the edge states of these phases. The edge
of 2d bosonic SPT states is described by the Lagrangian

L = 1

4π
(Kij∂xφi∂tφj − Vij ∂xφi∂xφj ), (B1)

with K-matrix

K =
(

0 1
1 0

)
(B2)

and V is a 2 × 2 velocity matrix. The symmetry acts by

U (1) : 
φ → 
φ + θ
t, (B3)

M : 
φ → 
φ + π (m1,m2)T , (B4)

where M is the generator of the Z2 symmetry, 
te = (1,q)T ,
with q an arbitrary integer, and m1,m2 = 0,1. Different SPT
states are labeled by [q,m1,m2]. The generator of the Z factor
is [1,0,0], which is the bosonic integer quantum Hall (BIQH)
state [51,52]. The two Z2 factors are generated by [0,1,1] and
[0,0,1]. The [0,0,1] state is the U(1) − Z2 SPT phase discussed
in Sec. V. It can be shown that the [0,1,1] ⊕ [0,0,1] state is the
same as the Ising SPT phase as discussed in Sec. V: Combining
these two edge theories, it is possible to gap out modes to obtain
a new theory with the same 2 × 2 K matrix, where 
t = 0 and
m1 = m2 = 1.

To obtain the classification of d = 3 pgSPT phases, we first
need to apply dimensional reduction to obtain an invertible
topological phase on the mirror plane. In the present case, a
pgSPT state can be trivialized away from the mirror plane
as long as it is trivial ignoring the mirror symmetry and
considering only the U(1) symmetry. There are believed to
be no d = 3 SPT phases with only U(1) symmetry, so this will
be the case. Actually, there is an exception to this statement: A
stack of BIQH states, all of the same chirality, is a nontrivial
d = 3 SPT phase. In the absence of translation symmetry, it
is subtle to characterize such a state; nonetheless, it has chiral
charge transport at a U(1) symmetry-preserving surface, which
is expected to be robust as long as U(1) symmetry is present.
For simplicity, we exclude such states from consideration and
focus only on states that become trivial when we consider only
the U(1) symmetry.

Next, we need to consider the effect of adjoining layers. It is
possible to adjoin both E8 and BIQH layers. For the case with
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only ZP
2 symmetry, Ref. [34] showed that adjoining E8 layers

reduces the Z factor generated by the E8 state in the d = 2
classification to a Z2 factor in the d = 3 classification. The
same conclusion holds here, because U(1) symmetry plays no
role for these states.

It remains to understand the effect of adjoining BIQH layers.
We will show that [2,0,0] state is equivalent to a trivial state
by adjoining [−1,0,0] layers. We consider the state [2,0,0] ⊕
[−1,0,0] ⊕ [−1,0,0], where the last two summands are the
adjoined layers. The Lagrangian of the edge theory is of the
same form as Eq. (B1), with the 6 × 6 K matrix

K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (B5)

Symmetry acts by

M : 
φ → WM

φ (B6)

U(1) : 
φ → 
φ + α
t, (B7)

where 
t = (1,2,1,−1,1,−1)T and

WM =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (B8)

Note that the mirror reflection symmetry exchanges the two
adjoined layers, as is required.

Now we make a change of variables 
φ′ = W 
φ, where W is
a GL(6,Z) matrix:

W =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 1
0 0 0 0 0 −1
0 0 1 0 −1 0

⎞
⎟⎟⎟⎟⎟⎠

. (B9)

The K matrix is invariant under the change of variables. The 
t
vector and the WM matrix in the new basis becomes 
t ′ = W 
t =
(1,2,1,−2,1,0)T and

W ′
M =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 −1
0 0 0 1 0 0
0 0 0 −1 −1 0
0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎠

. (B10)

All the edge modes can be gapped out while preserving
symmetry, by the following two-step procedure. First of all,
notice that 
t ′ = (1,2,1,−2,1,0)T suggests that the lower-right
2 × 2 block of the K matrix describes a trivial bosonic state.
We add a coupling V1 = λ1 cos (φ′

6), which pins φ′
6 = 0 and

gaps out both φ′
5 and φ′

6. We integrate out the gapped modes to
obtain a new 4 × 4 K matrix, which consists of the upper-left
4 × 4 block of K , where 
t ′ = 
t ′ = (1,2,1,−2)T , and where
W ′

M becomes the identity matrix. This remaining sector looks
like [2,0,0] ⊕ [−2,0,0].

In the second step, we add the symmetry-preserving cou-
plings V2 = λ2 cos (φ′

1 − φ′
3) and V3 = λ3 cos (φ′

2 + φ′
4) to gap

out all the remaining modes. The arguments of these cosine
terms commute, so the fields φ′

1 − φ′
3 and φ′

2 + φ′
4 can be

pinned simultaneously. The absence of spontaneous symmetry
breaking can be checked by using the method introduced in
Ref. [69]. We have thus gapped out the edge theory, and we
conclude the [2,0,0] state is equivalent to a trivial state upon
adjoining BIQH layers. Therefore, the Z factor generated by
BIQH state in the pgSPT classification reduces to a Z2 factor.
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