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Efficient evaluation of nonlocal operators in density functional theory
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We present a method which combines plane waves (PW) and numerical atomic orbitals (NAO) to efficiently
evaluate nonlocal operators in density functional theory with periodic boundary conditions. Nonlocal operators
are first expanded using PW and then transformed to NAO so that the problem of distance-truncation is avoided.
The general formalism is implemented using the hybrid functional HSE06 where the nonlocal operator is the
exact exchange. Comparison of electronic structures of a wide range of semiconductors to a pure PW scheme
validates the accuracy of our method. Due to the locality of NAO, thus sparsity of matrix representations of the
operators, the computational complexity of the method is asymptotically quadratic in the number of electrons.
Finally, we apply the technique to investigate the electronic structure of the interface between a single-layer black
phosphorous and the high-κ dielectric material c−HfO2. We predict that the band offset between the two materials
is 1.29 eV and 2.18 eV for valence and conduction band edges, respectively, and such offsets are suitable for 2D
field-effect transistor applications.
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I. INTRODUCTION

Density functional theory (DFT) [1] is one of the most
powerful atomistic methods in physics, chemistry, material sci-
ence, and engineering for predicting structural and electronic
properties of materials. While DFT is, in principle, exact [1],
its practical implementation inevitably requires a few approxi-
mations to solve realistic and practical problems. A clever and
important approximation is to reduce the nonlocal exchange
and correlation interaction between electrons into some local or
semilocal form such that the many-body interacting problem in
solids is reduced to an effective single particle problem within
a mean field. In the well-known local density approximation
(LDA) [2] and generalized gradient approximation (GGA)[3],
the nonlocal exchange and correlation is written in terms of
the electron density, which is local, and derivatives of the
density. LDA/GGA have played extremely important roles in
practical applications of DFT and they give acceptable results
for many materials and physical quantities [4,5]. On the other
hand, as perhaps the most visible issue, the local and semilo-
cal exchange-correlation functionals systematically underes-
timate band gaps of semiconductors in comparison to experi-
mental values and possess the self-interaction problem [6]. One
of its direct consequences is that the band alignment at the inter-
face of two different semiconductors, i.e., the energy difference
between their valence band maximum (VBM) and conduction
band minimum (CBM), is difficult to predict accurately.

Moving forward from local and semilocal exchange correla-
tion functionals, nonlocal hybrid functionals have been devel-
oped to overcome various issues of LDA/GGA, including the
band gap problem [6,7]. The main idea of a hybrid functional
is to mix nonlocal exact exchange (EXX) with local/semilocal
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exchange-correlation functionals. EXX partially removes the
self-interaction error in the Hartree potential [6]. However, the
nonlocality of EXX makes its computational cost significantly
higher than that of LDA/GGA. With plane wave (PW) basis,
the computational scaling of EXX is O(N3) where N is propor-
tional to the number of electrons [8]. This unfavorable scaling
makes calculations extremely expensive for crystals even when
the unit cell contains only a few tens of atoms, let alone a
few hundred atoms. Therefore, attempts have been made to
lower the scaling by transforming PW to maximally localized
Wannier functions (MLWF) [9]. Here, the key is the locality of
MLWF, i.e., it has a finite range in real space, which is indepen-
dent of the system size. Since locality is the inherent property
of other localized basis sets such as Gaussian type orbitals and
numerical atomic orbitals (NAO), computational reduction of
EXX should also be achievable by these localized bases.

Very briefly, a main bottleneck for calculating EXX in
localized base is the calculation of electron repulsion integrals
(ERIs). For a given basis set {φi(r)}, where i = 1,2, · · · N , ERI
is defined by

〈ij |mn〉 =
∫∫

φi(r)φj (r)φm(r′)φn(r′)
|r − r′| d3rd3r′. (1)

Even though ERIs are unchanged during the self-consistent
(SC) process, and thus can, in principle, be calculated only once
and saved in memory, the total number of ERIs is O(N4), which
becomes computationally and memorywise prohibitive when
N becomes relatively large. An effective approach to handle
this problem is the resolution of identity (RI) approxima-
tion [10,11], which significantly enhances the computational
efficiency of ERI by introducing a separate, auxiliary basis
{Pμ(r)}:

φi(r)φj (r) ≡
∑

μ

C
μ

ijPμ(r),
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where C
μ

ij are the expansion coefficients. Using {Pμ(r)}, the
O(N4) ERIs are decomposed to a combination of O(N2) and
O(N3) matrices

〈ij |mn〉 =
∑
μν

C
μ

ijVμνC
ν
mn,

Vμν =
∫∫

Pμ(r)Pν(r′)
|r − r′| d3rd3r′. (2)

Considering sparsity, C
μ

ij and Vμν scale as O(N2) and O(N),
respectively, hence are much less memory demanding. On
the accuracy side, a very simple single-zeta (SZ) plus one
polarization orbital basis can already yield electronic structure
values within 10% of the referenced PW results for higher-level
theory [12].

The practical application of RI-type approaches to simulate
crystals requires an additional approximation. For crystal
supercells with periodic boundary conditions (PBC), the lo-
calized basis that satisfies the Bloch theorem is

ψI (r) = 1√
L

∑
R

eiki ·Rφi(r − R), (3)

where L is a normalization constant, R runs over the lattice
basis and all lattice vectors, the label I ≡ (i,ki) is a shorthand
notation of two indices (i,ki), which are the index of localized
basis i and a crystal momentum in the first Brillouin zone
(BZ) ki . The use of basis Eq. (3) requires summing over all
pairs of periodic images and the primary supercell, which
becomes prohibitively expensive. For this and other reasons, a
common assumption is that the interaction can be neglected if
the distance between two atoms and/or two supercell images
is larger than a cutoff [13–15]. This way, the numerically
intensive computation is focused on the primary supercell and
its immediate neighboring images. This “distance-truncation”
is efficient when using the short-range (SR) truncated Coulomb
operator [13,16,17].

Nevertheless, in general, the bare Coulomb operator and
other nonlocal operators have a long coupling range and the
distance-truncation approximation degrades accuracy. This
difficulty, rooted in using the localized basis Eq. (3), is well ad-
dressed by the PW basis, which requires no distance-truncation
due to the extended nature of the PWs. From this point of view,
a combination of localized basis and PW should achieve both
low computational cost and high accuracy when dealing with
nonlocal operators for crystals under PBC. This idea has been
widely applied in calculating the Hartree potential in crystals
[18,19]. The charge density is firstly constructed in localized
base and then expressed in terms of PWs by fast Fourier
transform. The Poisson equation is solved in PW base and the
resulting Hartree potential is free from the distance-truncation
approximation. Extending this idea to compute ERI is possible
[20,21], but as mentioned above, the number of ERIs scales as
O(N4) and quickly becomes computationally prohibitive as the
system size increases.

In this paper, we adopt the spirit of RI as well as combining
PW and localized basis to formulate a general approach to
determine nonlocal operators in PBC. The resulting formu-
lation is free of the distance-truncation approximation, thus
achieving high accuracy, while the computational complexity
is drastically reduced. In particular, we apply the formulation

with the 2006 version of the Heyd-Scuseria-Ernzerhof hybrid-
functional (HSE06) [22] to a series of zinc-blende semicon-
ductors, and accurate results of band gaps and dispersions are
shown. We then apply this formulation to a semiconductor
interface to properly calculate the band alignment. Another
practical application of our formulation presented here can be
found in Ref. [23], where dilute doped GaSbxN1−x alloy with x

as small as 0.175%—the supercell contains 1,152 atoms—was
analyzed at the HSE06 level for band engineering in solar fuel
systems. Such large problems could not be done before at the
hybrid functional level on modest computational resources,
owing to the lack of an efficient methodology, a void this work
fills.

In the rest of the paper, we present the theoretical formula-
tion, numerical implementation, verification, and application
of the combined PW and NAO (PW-NAO) representation
of nonlocal operators in PBC. The paper is organized as
follows. In Sec. II, the general nonlocal operator is derived
in terms of the PW-NAO. Section III presents the numerical
implementation in terms of the HSE06 functional, and the
method is applied to calculate electronic properties of 19
semiconductors. The computational scaling and comparisons
with other methods are also discussed. In Sec. IV, the interface
between a single-layer black phosphorus (sBP) and a c−HfO2

surface is investigated to predict the band alignment. Finally,
a conclusion and future direction are presented in Sec. V.

II. THEORETICAL FORMULATION

The theoretical formulation of a general nonlocal operator
in terms of the PW-NAO basis is discussed in this section. We
present a general derivation followed by the particular case
of the HSE06 hybrid functional [22] in which the nonlocal
operator is the SR EXX.

A. Nonlocal operators: General formulation

In a periodic atomic lattice, any nonlocal potential operator
A(r,r′) satisfies the discrete translation symmetry:

A(r + R,r′ + R) =A(r,r′),

where R is a lattice vector. Fourier transforming to momentum
space, this symmetry becomes

A(r,r′) =
∑

q

∑
G,G′

e−i(q+G)·rAG,G′ (q)ei(q+G′)·r′
,

AG,G′ (q) =
∫∫

ei(q+G)·rA(r,r′)e−i(q+G′)·r′
drdr′. (4)

Here bold letters (q,G,G′,r,r′) are vectors, q is also the crystal
momentum restricted in the first BZ, G and G′ are reciprocal
lattice vectors. Aq(G,G′) is the Fourier coefficient of A(r,r′)
and the integral is performed in whole space.

Expanding A(r,r′) in terms of the basis ψI (r) defined in
Eq. (3), the matrix element of AG,G′ (q) in Eq. (4) is AIJ,MN (q):

AIJ,MN (q) =
∑
GG′

{∫
ψ∗

I (r)ei(q+G)·rψJ (r)dr
}∗

×AGG′(q) ×
{∫

ψ∗
M (r′)ei(q+G′)·r′

ψN (r′)dr′
}

. (5)
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Introducing the following quantity,

YAB(q + G) ≡
∫

ψ∗
A(r)ei(q+G)·rψB(r)dr , (6)

Eq. (5) is reduced to a simpler form,

AIJ,MN (q) =
∑
GG′

Y ∗
IJ (q + G)AGG′(q)YMN (q + G′). (7)

Momentum conservation restricts YAB(q + G) to be nonzero
only if ka = kb + q. Therefore, we can omit one quantum
number to simplify the equation. Replacing the shorthand label
(IJMN ) by their corresponding NAO indices and momen-
tums, the final expressions are

Yab(kb,q + G) =
∫

�

ψ∗
a,kb+q(r)ei(q+G)·rψb,kb

(r)dr , (8)

AIJ,MN (q) = Aij,mn(kj ,q,kn)

=
∑
GG′

Y ∗
ij (kj ,q + G)AGG′(q)Ymn(kn,q + G′) .

(9)

Note that the range of the integral of Eq. (8) can be limited
within a unit cell � instead of the whole space because the
quantity to be integrated is periodic. From Eq. (8), the quantity
Y (k,q + G) can be viewed as a transformation that turns
the momentum space representation AGG′(q) into its NAO
representation Aijmn(kj ,q,kn). Following the same derivation,
the inverse transformation from Aijmn(kj ,q,kn) to AGG′(q) can
also be achieved using the Y matrix, and it is straightforward
to prove

AGG′ (q) =
∑
ijmn

∑
kj ,kn

Yij (kj ,q + G)Aij,mn(kj ,q,kn)

×Y ∗
mn(kn,q + G′). (10)

The Y matrix in Eq. (8) is the key quantity for expressing
any nonlocal operator A(r,r′) in the PW-NAO basis. It has
three important properties from the computation point of view.
First, it decomposes the four-index matrix into two- and three-
index matrices, which greatly reduces computational cost and
computer memory consumption. The expansion accuracy is
systematically controlled by the kinetic energy cutoff Ecut of
the PWs. Second, the use of PWs and, thus, Y matrix, allows the
interaction range of any nonlocal operator to be infinite, since
the number of unit cells in Eq. (3) is not limited. The error
from distance-truncation is therefore eliminated, which is very
important if the nonlocal operator decays slowly in real space.
Finally, the Y matrix is a sparse matrix under (I,J ) indices, i.e.,
YIJ is nonzero only if the basis functions ψI , ψJ have direct
overlap.

B. Nonlocal operators: Exact exchange

Having established the general formalism of expressing any
nonlocal operator A(r,r′) in terms of PW-NAO basis, in the
following we reduce the formalism for a special case where
A(r,r′) is the EXX potential. In particular, we consider the
HSE06 hybrid-functional [22], which expresses the exchange-

correlation energy Exc as

Exc =Epbe
xc + 1

4Eexx,sr
x − 1

4Epbe,sr
x ,

where E
pbe
xc is the PBE exchange-correlation energy, Eexx,sr

x is
the EXX energy calculated with the SR Coulomb interaction,
and E

pbe,sr
x is the SR PBE exchange energy calculated by

rescaling the exchange hole with a SR Coulomb screening
factor. For more details of the HSE06 hybrid functional, we
refer interested readers to the original article in Ref. [22].

The real-space expression of the SR EXX potential [22] is
(collinear spin assumed)

V σ
exx,sr(r,r

′) = −
∑

occ,k′
ϕk′σ

occ(r)
erfc(μ|r − r′|)

|r − r′| ϕ∗,k′σ
occ (r′), (11)

where μ = 0.11 Bohr−1 and the sum is over occupied eigen-
states (OCC) of the spin channel σ and k′-points in the BZ. The
Fourier coefficient of the SR coulomb operator can be derived
analytically,

VG(q) =4π

�
δGG′

[1 − exp(−|q + G|2/4μ2)]

|q + G||q + G′| , (12)

which is diagonal in reciprocal space. Using Eqs. (9) and (12) to
rewrite the kernel of Eq. (11) [the part with erfc(· · · ) function],
expanding the eigenstates with a PBC NAO basis in Eq. (3),
the EXX matrix VF,ij (k) can be expressed as

V σ
F,ij (k) = −

∑
mn

Vmi,nj (k,q,k)Dσ
mn(k + q)

= −
∑
mn

∑
qG

Y ∗
mi(k,q + G)VG(q)Ynj (k,q + G)

×Dσ
mn(k + q) , (13)

where Dσ
mn is the density matrix defined by the expansion

coefficient of OCC in NAO base

ϕk′σ
occ(r) =

∑
l

cocc
l (k′σ )ψl,k′ (r),

Dσ
mn(k′) =

∑
occ

cocc
m (k′σ )c∗,occ

n (k′σ ). (14)

In Eq. (13), the Y matrix is unchanged during the SC process
thus it is calculated only once and saved in memory. With a
set of given k-points, the q vectors are chosen to ensure that
k + q is always equal to another k-point. All q + G vectors
with kinetic energy lower than Ecut are used in the Y-matrix
calculation. Usually Eq. (8) is used to calculate the Y matrix,
but in the case that k sampling is dense, Eq. (3) is used to
rewrite Y (k,q + G) in Eq. (8) as a sum of Y (T,q + G) by the
following:

Yij (T,q + G) = δ(T − Rj + Ri)
∑

Ri ,Rj

e−iq·Ri

×
∫

�

φi(r − Ri)e
i(q+G)·rφj (r − Rj )dr ,

(15)

Yij (k,q + G) =
∑

T

eik·TYij (T,q + G) . (16)
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Here, the sums over translation vectors Ri and Rj only include
unit cells containing basis orbitals having a nonvanishing
contribution in the primary unit cell. Equation (15) is more
memory efficient since Y (T) is sparser than Y (k). After the
Y matrix is calculated, the density-matrix D(k) is updated,
followed by updating VF (k) according to Eq. (13), until the
total energy is converged self-consistently.

After self-consistency is reached in DFT, an inverse Fourier
transform is performed to obtain VF (R) from VF (k),

V σ
F (R) = 1

Nksc

∑
ksc

exp(−ik · R)V σ
F (ksc), (17)

where ksc is the k-point used in the SC cycle. Incidentally, if
enough ksc is sampled in the SC cycle, the resulting VF (R) can
be used to find VF (knsc) at other knsc points which were not
sampled in the SC cycle, namely

V σ
F (knsc) =

∑
R

exp(iknsc · R)V σ
F (R). (18)

We caution that the trick of Eq. (18) cannot be used if the ksc

sampling in the SC cycle is not dense enough—for instance,
if only the �-point is sampled. A direct evaluation of Eq. (17)
leads to

V σ
F (R) = (−1)×δ(R − RD − T2 + T1)

×
∑

T1,T2

∑
RD

∑
qG

Y †(T1,q + G)Dσ (RD)Y (T2,q + G)

× exp(iq · RD)VG(q) , (19)

where D(RD) is obtained from D(k) by inverse Fourier trans-
form. Equarion (19) is used to get VF (R) when k sampling is
sparse/� only.

In summary, the key result of our theoretical formalism
using PW and NAO together to express nonlocal operators
with PBC is the Y matrix of Eq. (8). As discussed above,
the properties of Y matrix allow a drastic reduction of the
computational complexity. In the next section, we show that
the methodology also produces results with high accuracy.

III. RESULTS AND DISCUSSION

Due to the mathematical advantages of the formalism
presented above, first-principles DFT calculation at the hybrid
functional level can now be carried out for supercells having
large sizes, as shown in Ref. [23]. In this section, we focus
on demonstrating the accuracy of the method. The error due
to incompleteness of the basis set is controlled by increasing
the number of both PWs and NAO, according to the need
of practical applications. The computational scaling is also
discussed.

A. Numerical results

Using the PW-NAO scheme, band structures of a series of
zinc-blende semiconductors are calculated and compared with
those obtained by PW and projector augmented wave (PAW)
as implemented in the Vienna Ab initio Simulation Package
(VASP) [24,25]. The PW-NAO algorithm, and the calculations
presented in this paper, were done by the electronic package
RESCU, which is a real-space/NAO Kohn-Sham DFT solver

TABLE I. The valence electrons and the NAO basis for each ele-
ment used in HSE06 calculations in this paper. SZ or DZ correspond
to one or two zeta function(s) for each valence state.

Elements Valence SZ or DZ Polarization Total # of basis

B 2s2p DZ 3d 13
C 2s2p DZ 3d 13
N 2s2p DZ 3d 13
Al 2s2p3s3p SZ 3d4d 18
Si 3s3p DZ 3d 13
P 3s3p DZ 3d 13
S 3s3p DZ 3d 13
Zn 3s3p3d4s SZ 4p4d4f 25
Ga 3s3p3d4s4p SZ 4d 18
Ge 3s3p3d4s4p SZ 4d 18
As 3s3p3d4s4p SZ 4d 18
Se 3s3p3d4s4p SZ 4d 18
Cd 4s4p4d5s SZ 5p5d4f 25
In 4s4p4d5s5p SZ 5d4f 25
Sb 4s4p4d5s5p SZ 5d 18
Te 4s4p4d5s5p SZ 5d 18

[26]. The core-valence interaction is represented by optimized
norm-conserving Vanderbilt (ONCV) pseudopotentials (PP)
with the PBE exchange-correlation functional [27]. It is known
that in hybrid-functional and/or higher-level theory such as
GW, including semicore shell explicitly as valence electrons is
necessary for reliable results [28–34]. Therefore, whenever an
element contains d electrons, the outmost shell (n shell) and
the semicore shell [(n-1) shell] are always treated as valence
states. Al has no d electrons, but its (n-1) shell is still included
because the scattering property is improved significantly by
doing so. ONCV-PPs allow more than one valence state per
angular momentum channel. Here, two projectors are always
used in one angular momentum channel. The quality of the
PP is verified by inspecting the logarithmic derivative. PP-
scattering property results are comparable to all-electron up to
8 hartree above the reference eigen energy. Spin-orbit coupling
is not considered in this paper.

After proper PBE PPs are constructed, NAO is generated
with PBE by either the energy-shift method or the confined
scheme [19,35]. For elements without the (n-1) shell, a stan-
dard double-zeta (DZ) plus one polarization orbital basis,
with an energy-shift 50 meV and a split-norm 0.2, is used
[19]. For elements with two shells, the basis is generated
by the following strategy. First, the cutoff radius (rc) of the
first-zeta basis is determined by a 50 meV energy shift. This
parameter produces rc around 3 ∼ 6 Bohr for the (n-1) shell,
and 6 ∼ 11 Bohr for the n shell. Then a confined potential
with the same rc is applied to generate the desired NAO basis
[35]. The strength of the confined potential is 0.1 hartree. In
this way, the shape of the first-zeta basis is almost the same
as the free-atom state while it decreases smoothly to zero near
rc. Only one zeta function is used for occupied states. One
polarization orbital, with quantum number (n,lh + 1), where
lh is the highest angular momentum of the occupied states in
the n shell, is generated using the same confined potential. Its
rc is equal to the basis with the longest cutoff, which is usually
the (n,lh) state. For Al, Zn, Cd, and In, additional polarization
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FIG. 1. Calculated HSE06 band gap of 19 semiconductors. Blue triangles are from this paper and the red dashed line with diamonds are
from VASP.

orbitals are included to ensure the basis completeness. Table I
summarizes the NAO basis of all elements.

In the SC DFT iteration process, 5 × 5 × 5 Monkhorst-Pack
k and q sampling is used for BZ integrations, except for C
and BN, which use 7 × 7 × 7 sampling. The Ecut is set to
12 hartree for the materials with Cd/Zn, and 6 hartree for
the rest. The distance between two real-space points along
one direction is 0.3 Bohr. The LibXC library is used to
generate the PBE exchange-correlation part of HSE06 [36]. All
results are converged with these control parameters. In VASP
calculations, PBE PAW is used and d electrons are included
if possible. The energy cutoff is 500 eV and the PREC is
set to “accurate.” The same BZ sampling is used for k and q
sampling.

The lattice constant we used and the complete band structure
comparison are provided in the Supplemental Material [37],
where the VBM is shifted to zero to make the comparison to
those obtained by VASP, and the agreement is excellent for the
states near Fermi level. Here we show the band gap comparison
in Fig. 1. In general, our results agree with the VASP results,
with an 0.1 ∼ 0.2 eV underestimation. In practical applications
of the method presented here, there are some issues to be noted.
First, when a material has rather localized states (e.g., rather,
flatbands), more PWs are needed. This is why a higher energy
cutoff is used for materials with Cd/Zn in our calculations, to
ensure the convergence of the localized d bands. Dispersive
states, on the other hand, are converged with much lower Ecut.
Second, the minor difference can be attributed to the NAO basis
as only one zeta function was used for transition elements. This
aspect can be systematically improved by using more zeta and
polarization functions [38,39].

B. Computational complexity

It is very useful to understand the computational complexity
of our method for evaluating the nonlocal operators in DFT.
As shown in Eq. (13), the Y matrix and the density matrix D
are needed to calculate the EXX matrix VF . When the system
is very large such as the one in Ref. [23] having 1,152 atoms,
�-point is adequate for both k and q sampling. The Y matrix
has NG × N2

NAO matrix elements where NG is the number
of PWs and NNAO is the number of NAO. For each matrix
element, Eq. (8) or Eq. (15) is calculated by projecting the
basis and the exponential phase terms onto the real-space
grid for integration. Due to the locality of NAO basis, the
number of real-space grid needed is independent of the system

size and the computational time for each matrix element is
therefore fixed. Furthermore, if two basis functions are not
directly overlapping, the corresponding Y matrix element is
zero. We conclude that N2

NAO is reduced to M1 for large systems
where M1 is the number of overlapping basis pairs. The overall
computational scaling of Y matrix is actually NG × M1.

During the SC DFT iterations, the density matrix D is
updated and used to calculated VF . Many O(N ) techniques
are proposed, but we do not discuss them in this paper. In
our calculations, a full D is used and the time complexity is
O(N3

NAO). With a given D, the Schwarz screening is used to
preselect the significant elements of VF by the following:

|VF,ij | �
∑
mn

|Dmn||Vmi,nj |

�
∑
mn

|Dmn||Vmi,mi | 1
2 |Vnj,nj | 1

2 . (20)

The number of significant elements, M2, is proportional to the
system size [14,15], M2 should be larger than M1. Then each
significant matrix element VF,ij is calculated using Eq. (13).
The summation of mn is limited to basis (m,i) overlap and
(n,j) overlap, and is independent of the system size. Therefore,
the overall computational scaling of VF is asymptotically
NG × M2.

From the above analysis, the computational complexity
appears to be more dominated by the density-matrix D calcula-
tion. Practically however, we found that the prefactor of the D
calculation is rather small, and hence it becomes a bottleneck
when the number of atoms is larger than several thousands. On
the other hand, the Y matrix is calculated only once. Therefore,
the calculation time is actually dominated by VF . Since the
magnitude is roughly N2

NAO 	 M2 ∼ M1 > NG > NNAO, the
time complexity of our method turns out to be slightly larger
than quadratic with respect to system size. Compared to the
PW scheme whose scaling is O(N3

G), it is understandable
that significant computational savings are achieved by our
method, so that it is not surprising that HSE06 hybrid functional
calculations can now be easily performed for over 1,000 atoms
on modest computers [23].

C. Further discussion

Although our formulation is applied to HSE06, it can be
used for other higher level theories such as the GW under
PBC [40]. The local operators are written in NAO basis and
computations benefit from the relatively small basis set. The
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nonlocal operators are written in PW basis and transformed to
NAO whenever necessary and vice versa, based on Eqs. (8), (9),
and (10). The distance-truncation approximation is avoided
and the accuracy of spatially slow-decaying operators can
be guaranteed. When a basis transformation is performed,
the locality of NAO makes the computation more efficient
and lowers the computational complexity. These properties
make our formulation a potential pathway toward large-
scale, high-level, theoretical calculations. We note that if
the original coulomb operator is used, its Fourier coefficient
VG(q) is

VG(q) =4π

�

δGG′

|q + G||q + G′| , (21)

and has a divergence at q=G=0. To handle the divergence,
we follow the spirit of Ref. [41], and generate its value by an
integral

V0(q0 → 0) =4π

�

∫
BZ∈q0

1

|q|2 d3q. (22)

The integral is limited in the part of BZ near �-point and
it’s solved by Monte Carlo technique. We test this scheme by
calculating the band gap of bulk silicon with PBE0 [42], which
is similar to HSE06 but replaces the SR Coulomb interaction
with the bare one. The band gap is 1.91 eV, consistent to the
result from the PAW and full-potential method [43].

IV. APPLICATION: BAND ALIGNMENT AT
SEMICONDUCTOR INTERFACE

Having demonstrated the accuracy of our method, we now
show its efficiency by revealing a computationally challenging
problem requiring HSE06.

Thin-film BP field-effect transistors (FETs) have shown
excellent electrical properties with an on-off current ratio
as large as 105 and a high mobility of 1000 cm2 V−1s−1.
A principal challenge associated with phosphorene is its
environmental stability. Capping materials are needed to
prevent BP from exposure to oxygen, light, and moisture [44].
In the meantime, the capping material should not alter BP’s
electronic structure. For example, Al2O3, a common gate
oxide, will oxidize BP and destroy its band gap [45]. Existing
calculations suggest that the property of sBP is well preserved
when grown on the HfO2 (111) surface [46]. Therefore, it is
an interesting perspective that HfO2 could serve as both the
gate oxide and capping material to BP. To this end, a very
important material property is how bands align at the BP/HfO2

interface.
In this section, we apply our method to predict the electronic

properties of the interface between sBP and HfO2. Here,
the HfO2 is in the cubic crystalline phase and the (111)
surface orientation is chosen. We first perform calculations
for two individual systems. For Hf atom 5s, 5p, 5d, and
6s, states are treated as valence electrons, and SZ plus po-
larization orbitals up to f are included. The band gap of
sBP is found to be 0.90eV by PBE and 1.65eV by HSE06,
the band gap of HfO2 is 3.76eV by PBE and 5.25eV by
HSE06. These calculated values are consistent with previous
literature [47,48], confirming the quality of the NAO basis and
pseudopotentials.

(a)

(b)

FIG. 2. (a) Top view and (b) side view of the interface structure.
The purple, gold, and red balls are P atoms, Hf atoms, and O atoms,
respectively.

The interface is modeled by sBP on (111) surface of a HfO2

slab, containing 120 Hf atoms, 240 O atoms, and 108 P atoms.
As shown in Fig. 2, the slab contains three layers of HfO2

and its thickness is 7.29Å. A vacuum with thickness 14.25Å
is included in the z direction. The top layer of HfO2 and sBP
are fully relaxed at the PBE level, and used in both PBE and
HSE06 calculations. After the relaxation, the sBP is about 2.9Å
above the HfO2 surface. The z variation from perfect flat x-y
plane of the sBP is less than 0.1Å, and is less than 0.02Å of the
top HfO2 layer. We can therefore expect the a relatively weak
hybridization between the sBP and HfO2 states.

Figure 3 shows the projected density of states (PDOS)
contributed from the sBP, the top layer, and the rest of the layers
of HfO2. When the energy is 0.7eV below sBP’s VBM, a hy-
bridization between the top HfO2 layer and sBP occurs and cre-
ates states contributed from both. Nevertheless, the band gaps
after the interaction are still close to the values before the inter-
action. We consider the band edge of sBP and the rest of the lay-
ers of HfO2, and show the band gap and band offset in Table II.
Clearly, the band gap, as well as the band offset of the VBM
(�VBM) and the CBM (�CBM), are different between PBE
and HSE06 values. Especially, there’s a 0.66 eV difference
of �CBM between PBE and HSE. Since the HSE06 results
suggest that HfO2 does not change the band gap of sBP, it can
serve as both the high-κ gate oxide and capping material for BP.

TABLE II. The calculated band gap and band alignment by PBE
and HSE06, derived from the PDOS of the interface.

Property PBE HSE

sBP Eg 0.95 1.69
HfO2 Eg 3.76 5.20
�CBM 1.52 2.18
�VBM 1.25 1.29
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FIG. 3. Density of States by PBE and HSE.

V. CONCLUSION

In this paper, we presented a new method which combines
PW and NAO to efficiently evaluate nonlocal operators with
PBC. Nonlocal operators are first expanded using PW and
then transformed to NAO; as such, the problem of distance
truncation is avoided. The general formalism is employed to
implement the hybrid functional HSE06 in which the nonlocal
operator is the SR EXX interaction. Comparison to a state-of-
the-art PW scheme validates the accuracy of our method. Due
to the locality of NAO, thus sparsity of matrix representations
of the operators, the computational complexity of our method is
nearly quadratic in the number of electrons, which is the reason
why very large systems can now be analyzed at the hybrid
functional level [23]. In this paper, we applied our method to
the SR EXX, although this general approach is applicable for
all nonlocal operators under PBC.

In electronic structure calculations, hybrid functional
HSE06 [22] can provide good predictions of band gaps and
dispersions for many semiconductors and insulators. For pris-

tine crystals, the primitive cell does not typically contain a large
number of atoms such that the hybrid functional HSE06 can
be applied despite its very heavy computational cost. There
are, however, many other important problems that involve
impurities, defects, roughness, interfaces, surfaces, and/or
heterojunctions, for which the unit cell necessarily includes
a large number of atoms to capture experimental reality. The
method presented in this paper is very useful in predicting
the electronic structure of these large systems. We provide an
example by studying the interface between sBP and c−HfO2.
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