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Topological properties of Harper and generalized Fibonacci chains are studied in crystalline cases, i.e., for
rational values of the modulation frequency. The Harper and Fibonacci crystals at fixed frequency are connected
by an interpolating one-parameter Hamiltonian. As the parameter is varied, one observes topological phase
transitions, i.e., changes in the Chern integers of two bands due to the degeneracy of these bands at some parameter
value. For small frequency, corresponding to a semiclassical regime, the degeneracies are shown to occur when
the average energy of the two bands is approximately equal to the energy of the classical separatrix. Spectral
and topological features of the Fibonacci crystal for small frequency leave a clear imprint on the corresponding
Hofstadter butterfly for arbitrary frequency.
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I. INTRODUCTION

Systems having a band spectrum with a nontrivial topolog-
ical characterization [1–29] are relatively robust to perturba-
tions. Quantum-transport properties determined by the band
topological Chern integers, e.g., quantum Hall conductances
[1–10], are not altered unless some drastic change occurs in
the band spectrum, such as the closing and reopening of a gap
as parameters are varied. This is a topological phase transition
in which the Chern integers of two bands, which degenerate as
the gap closes, change by integer amounts that depend on the
system considered and the nature of the degeneracy.

A classic example of a condensed-matter system having
a topologically nontrivial band spectrum is that of two-
dimensional (2D) crystal electrons in a perpendicular uniform
magnetic field. This system was considered in the paper by
Thouless et al. (TKNN) [1], where the topological characteri-
zation of band spectra was introduced. Using this characteriza-
tion, TKNN explained the quantum Hall effect in a 2D periodic
potential for “rational” magnetic fields with flux φ = φ0p/q

per unit cell, where φ0 = hc/e is the quantum of flux and (p,q)
are coprime integers: The contribution of a magnetic band b

to the quantum Hall conductance in linear-response theory is
σbe

2/h, where σb is the Chern integer of the band and satisfies
the Diophantine equation [1,4,6,7]:

pσb + qμb = 1. (1)

Here μb is a second integer. Equation (1) holds for general
periodic potentials and follows from magnetic (phase-space)
translational invariance [6,7]. Summing Eq. (1) over N filled
bands, one gets [6]:

ϕσ + μ = ρ, (2)

where ϕ = φ/φ0 = p/q, ρ = N/q is the number of electrons
per unit cell, and (σ,μ) are integers with σe2/h being the
quantum Hall conductance of the system. Unlike Eq. (1),
Eq. (2) can be extended to irrational ϕ [6] by taking the limit
of p, q → ∞. For irrational ϕ and for ρ in a gap, Eq. (2)
has only one solution (σ,μ), which is thus universal (system
independent) [6,16]. In contrast, for rational ϕ, Eq. (2) has

an infinite number of solutions (σ,μ) = (σ ′ + rq,μ′ − rp),
where (σ ′,μ′) is some solution and r is any integer. In fact, the
value of σ (or μ) for rational ϕ is system dependent [1,4,9,10].

In the case of a periodic potential that is weak relative to
the Landau levels spacing, the approximate energy spectrum
consists of p magnetic bands splitting from each Landau
level [7]. If the potential is cosinusoidal in one direction,
the spectrum is that of a generalized Harper model [30–38],
described by a one-dimensional (1D) tight-binding chain with
nearest-neighbor hopping from site n to site n ± 1 and an
on-site potential U (τ + 2πνn); here U is 2π periodic, τ is
some phase, and the frequency ν = 1/ϕ (see also Sec. II). For
irrational ν (or ϕ), this chain is a 1D quasiperiodic system. The
nature of the spectrum and the localization properties of the
eigenstates of this system depend significantly on U [30–46].
Extreme cases are the ordinary Harper model [30–36], with a
cosine potential U , and the generalized Fibonacci quasicrystal
[36–46], with discontinuous U (see Sec. II). However, due to
the universality above of the Chern integers (σ,μ) for irrational
ϕ (or ν), the topological properties of these basically different
systems are the same, in the sense that open gaps with the same
ρ in Eq. (2) for the two systems are labeled by the same values
of (σ,μ) [6,13,16]. Thus, 1D quasiperiodic systems whose gaps
are all open are topologically equivalent. Also, no topological
phase transition can occur by the closing and reopening of a
gap as parameters are varied.

For rational ν = q/p, on the other hand, one has a periodic
system, a 1D “crystal,” so that the values of (σ,μ) for given ρ

in a gap should depend on U [1,4,9,10], as mentioned above.
Also, consistent with Eq. (2), (σ,μ) in periodic systems change
generically by (±q,∓p), respectively, at band degeneracies
[3,10,24]. It is then natural to study the topological properties
of crystal versions of generalized Harper models, in particular
to understand topological phase transitions occurring when U

is varied.
This study is performed in the present paper. The two

extreme cases of an ordinary Harper crystal and a gener-
alized Fibonacci crystal are connected by an interpolating
Hamiltonian depending on one parameter. Starting from the
Harper crystal and gradually increasing the parameter, one
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approaches the Fibonacci crystal via a sequence of topolog-
ical phase transitions due to band degeneracies. For small
frequency ν, corresponding to a semiclassical regime, the
degeneracies are shown to occur when the average energy of
the degenerating bands is approximately equal to the energy
of the classical separatrix. The band corresponding to the
separatrix is in the middle of the spectrum in the case of
the Harper crystal, while it is the one just before the highest
band in the case of the Fibonacci crystal. In the latter case,
the separatrix band is separated from the highest band by the
largest spectral gap. These spectral and topological features of
the Fibonacci crystal for small frequency are clearly exhibited
by the corresponding “Hofstadter butterfly” (plot of spectra at
all frequencies) for arbitrary frequency.

The paper is organized as follows. In Sec. II, we present
the model systems to be studied. In Sec. III, we give a
background on the basic spectral and topological properties of
these systems. In Sec. IV, we consider the semiclassical regime
of small frequency. Semiclassical approximations of the band
energy spectrum are calculated and compared with the exact
spectrum. In Sec. V, we show that the topological properties
of the band spectrum reflect the nature of the corresponding
classical orbits. We study the topological phase transitions,
i.e., the variations of the band Chern integers occurring as the
system is gradually changed from an ordinary Harper crystal
to a Fibonacci crystal. These transitions are explained using
a semiclassical approach. We also study the metamorphosis
of the Hofstadter butterfly for ordinary Harper crystals into
that for Fibonacci crystals. A summary and conclusions are
presented in Sec. VI.

II. THE MODEL SYSTEMS

Consider a 2D crystal potential V (x,y) in a perpendicular
uniform magnetic field with ϕ flux quanta per unit cell. As it
is well known [7,31,32] and detailed in Appendix A for reader
convenience, a sufficiently weak V (x,y) causes a broadening
and splitting of a Landau level into an energy spectrum approx-
imately given by that of an effective Hamiltonian Ĥeff (X̂,Ŷ );
here the operators X̂ and Ŷ are the coordinates of the cy-
clotron orbit center and form a conjugate pair, [X̂,Ŷ ] = 2πiν

(ν = 1/ϕ). In the case of V (x,y) = 2λW (x) + 2χ cos(y),
where W (x) is 2π periodic and (λ,χ ) are some constants, one
finds, by proper choice of χ , that (see Appendix A):

Ĥeff (X̂,Ŷ ) = 2λU (X̂) + 2 cos(Ŷ ), (3)

where U (X̂) is 2π periodic. As shown in Appendix A, the
eigenvalue equation for the operator (3) in the X̂ representation
can be written as

ψn+1 + ψn−1 + 2λU (τ + 2πnν)ψn = Eψn, (4)

where τ = X0 is some arbitrary initial condition. Equation (4)
describes a tight-binding chain with nearest-neighbor hopping
and with modulation frequency ν. For irrational (rational) ν,
this is a 1D quasiperiodic (periodic) system. Extreme cases
of this system are the ordinary Harper model, with U (X) =
cos(X), and the generalized Fibonacci quasicrystal or crys-
tal, with U (X) = 2[�X/(2π ) + ν/2� − �X/(2π ) − ν/2�] − 1,
where �·� is the floor function. The ordinary Fibonacci qua-
sicrystal corresponds to ν = (

√
5 − 1)/2. A potential that

0 πν π π(2- ν) 2π

-1

0

1

X

U(X)

FIG. 1. Fibonacci potential in the basic interval 0 � X < 2π for
ν = 2/5 (black solid line) and its approximations by formula (5) for
β = 3 (green dashed line) and for β = 7 (blue dotted line).

interpolates between the two cases above is given by a modified
version of the one in Ref. [13]:

Uβ(X) = tanh{β[cos(X) − γν]}
tanh(β)

+ γν[1 − tanh(β)], (5)

where β is a parameter and γν = cos(πν). It is easy to see that
Uβ=0(X) is the ordinary Harper potential while Uβ=∞(X) is
the Fibonacci potential. As shown in Fig. 1, the main features
of the Fibonacci potential, i.e., its discontinuities at X = πν,

π (2 − ν), are well approximated by formula (5) for β suffi-
ciently large.

A well known basic difference between the Harper model
and the Fibonacci quasicrystal in the case of ν = (

√
5 − 1)/2 is

as follows [36]: For the Harper model, the states ψn in Eq. (4)
at fixed τ are extended for λ < 1, localized for λ > 1, and
critical (poorly localized and not normalizable) for λ = 1; for
the Fibonacci quasicrystal, on the other hand, the states are
critical for all λ 	= 0.

III. BAND EIGENSTATES AND THEIR
TOPOLOGICAL PROPERTIES

A. Band eigenstates and energies

In the case of rational ν, the system (4) is periodic and one
thus expects a band energy spectrum E. As it is well known
for similar systems [6,7,13], such a spectrum results from the
fact that the Hamiltonian (3) commutes with translations in
the (X̂,Ŷ ) phase plane and these translations also commute
with each other. Then, the simultaneous eigenstates of the
Hamiltonian and the phase-plane translations will be Bloch
states associated with energy bands. This is shown in some
detail in Appendix B and we present here the main results.
For rational ν = q/p, a general expression for the Bloch
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eigenstates of Ĥeff (X̂,Ŷ ) in the X representation is

�b,k(X) =
p−1∑
m=0

φb(m; k)�k1+2πmν,k2 (X). (6)

Here b is a band index (to be explained below), k = (k1,k2)
is a 2D Bloch quasimomentum ranging in the Brillouin zone
(BZ)

0 � k1 < 2πν, 0 � k2 < 2π/p, (7)

φb(m; k) (m = 0, . . . ,p − 1) are p coefficients to be deter-
mined, and �k(X) are “kq” (Zak) distributions [47],

�k(X) =
∞∑

j=−∞
exp(ijpk2)δ(X − k1 − 2πjq), (8)

forming a complete set for 0 � k1 < 2πq, 0 � k2 < 2π/p.
By requiring the state (6) to be an eigenstate of the effective
Hamiltonian (3) and using the independence of the p kq

distributions �k1+2πmν,k2 (X) (m = 0, . . . ,p − 1) in Eq. (6),
one can easily derive the eigenvalue equation satisfied by the
p coefficients φb(m; k):

φb(m − 1; k) + φb(m + 1; k) + 2λU (k1 + 2πmν)φb(m; k)

= Eφb(m; k), (9)

m = 0, . . . ,p − 1, with periodic boundary conditions:

φb(−1; k) = exp(−ipk2)φb(p − 1; k),

φb(p; k) = exp(ipk2)φb(0; k). (10)

While Eqs. (4) and (9) are similar, no boundary conditions
are imposed on Eq. (4). Equations (9) and (10) define the
eigenvalue problem of a k-dependent p×p matrix M̂(k)
with column eigenvectors Vb(k) = {φb(m; k)}p−1

m=0. Clearly,
this matrix is periodic in k in the zone

0 � k1 < 2π, 0 � k2 < 2π/p. (11)

For any given value of k in the zone (11), one has p energy
eigenvalues E = Eb(k), b = 1, . . . ,p, in Eq. (9). We shall
assume that these eigenvalues are all different, i.e., there is
no degeneracy. Then, as k varies in the zone (11), these
eigenvalues become p isolated (noncrossing) energy bands
Eb(k). As shown in Appendix B, Eb(k) is periodic in both k1

and k2 with period 2π/p, defining a periodicity zone q times
smaller than the BZ (7); this implies that the Bloch states (6)
are q-fold degenerate.

B. Topological Chern integers and Diophantine equation

For an isolated band b, the Bloch eigenstates (6) must be
periodic in the BZ (7) up to phase factors that may depend on
b and on k:

�b,k1+2πν,k2 (X) = exp[ifb(k)]�b,k(X), (12)

�b,k1,k2+2π/p(X) = exp[igb(k)]�b,k(X), (13)

where fb(k) and gb(k) are the phases. Similarly, the column
vector of coefficients Vb(k) = {φb(m; k)}p−1

m=0 in Eq. (9) must

be periodic in the zone (11) up to phase factors:

Vb(k1 + 2π,k2) = exp[iwb(k)]Vb(k), (14)

Vb(k1,k2 + 2π/p) = exp[igb(k)]Vb(k), (15)

where wb(k) is another phase and the phase in Eq. (15) is the
same as that in Eq. (13) as one can easily verify from Eqs. (6)
and (8). Now, because of the single valuedness of �b,k(X) in
k, the total phase change of �b,k(X) when going around the
boundary of the BZ (7) counterclockwise must be an integer
multiple of 2π . This integer, which we denote by −σb, is a
topological characteristic of band b and we shall refer to σb

as a Chern integer. Similarly, the total phase change of Vb(k)
when going around the boundary of zone (11) (zone BZ1)
counterclockwise must be 2πμb, where μb is a second Chern
integer. Assuming Vb(k) to be normalized, one can write:

μb = 1

2πi

∮
BZ1

V†
b(k)

dVb(k)

dk
· dk

=
∫∫

BZ1
dk

∑
b′ 	=b



{V†

b(k) dM̂†(k)
dk1

Vb′V†
b′ (k) dM̂(k)

dk2
Vb

π |Eb′ (k) − Eb(k)|2
}
,

(16)

where 
 denotes imaginary part and M̂(k) is the p × p matrix
defined by Eqs. (9) and (10); the sum over b′ 	= b in the second
line of Eq. (16) (following from the first line by use of Stoke’s
theorem) is Berry’s curvature.

The two Chern integers σb and μb are connected by the
Diophantine equation (1). After μb is calculated from Eq. (16),
σb is determined from Eq. (1). For the convenience of the
reader, Eq. (1) is derived in Appendix B.

IV. SEMICLASSICAL APPROXIMATIONS
OF BAND SPECTRA

A good understanding of the topological properties of
the band spectrum can be obtained by using semiclassical
approximations of this spectrum in order to connect it with
orbits of the classical version of the Hamiltonian (3). Typical
such orbits for the potential (5) with β = 4 are shown in
Figs. 2(a) and 2(b) for two values of λ. One can see in Fig. 2(a)
three topologically different kinds of orbits: Closed orbits that
are contractible to a point, open orbits that are not contractible,
and two separatrices or critical orbits, also not contractible. The
latter orbits separate between the closed and open orbits. For
the special value of λ in Fig. 2(b), there are only closed orbits
and just one separatrix. As shown in Appendix C, this case of
a single separatrix occurs only for

λ = λβ = 2 tanh(β)

tanh[β(1 − γν)] + tanh[β(1 + γν)]
. (17)

We also calculate in Appendix C the classical energy of the
separatrix for this value of λ:

ES,β = 2 + 2λβ

{
γν[1 − tanh(β)] − tanh[β(1 + γν)]

tanh(β)

}
. (18)
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FIG. 2. Classical phase-space diagrams of the Hamiltonian (3)
with potential (5) for ν = 1/11, β = 4, and (a) λ = 1, (b) λ = λβ ,
see Eq. (17). Three topologically different kinds of orbits are shown.
The blue dotted lines are closed orbits that are contractible to a
point. The green dot-dashed lines are open orbits that are not
contractible. The red solid lines are the separatrices that are also not
contractible. In case (a), one has two separatrices which are separated
by open orbits [one separatrix consists of the lowest and upper-
most solid lines meeting at (X = π,Y = 0), equivalent to (X = π,

Y = 2π )]. In case (b), one has only one separatrix and no open orbits.

For λ 	= λβ and arbitrary β, open orbits will be always present.
For the sake of definiteness and simplicity, we shall assume
from now on the case of Fig. 2(b) (λ = λβ).

To connect the band spectrum with the classical orbits, we
shall assume a semiclassical regime, i.e., small values of a
scaled (dimensionless) Planck constant h̄s. From the relation
[X̂,Ŷ ] = 2πiν between the dimensionless conjugate variables
(X̂,Ŷ ), we see that h̄s = 2πν. Thus, the semiclassical regime
is that of small ν � 1. In addition, for rational ν = q/p, a
classical-quantum correspondence can be established in the
simplest way in the “pure” case [32] of q = 1. In fact, the
Hamiltonian (3) is classically invariant under 2π translations
in both X and Y (giving a 2π×2π unit cell of periodicity,
see Fig. 2). The closest quantum analog to this invariance is
the case when the corresponding quantum translations (B1)
commute. From Eq. (B2), we see that this is possible only for
q = 1, i.e., ν = 1/p. We shall assume these values of ν and
also odd p (see note [48]).

For ν � 1 or p � 1, the simplest semiclassical or WKB
approximation of energy bands are flat (infinitely degenerate)
energy levels El (l integer) associated with classical orbits.
For the contractible closed orbits in Fig. 2, this association is
expressed by the formula∮

Y (X)dX = 2πh̄s(l + 1/2) = 4π2ν(l + 1/2), (19)

i.e., El is the energy of the classical orbit whose phase-plane
area is given by Eq. (19) for some integer l. The semiclassical
energy level associated with the separatrix in Fig. 2(b) is
just the classical energy (18). Figure 3 shows, for ν = 1/p

(p = 11) and for several values of β, the exact energy bands,
their semiclassical approximations from Eq. (19), and the
corresponding classical orbits. These results can be under-
stood as follows. Figure 3(a) corresponds essentially to the
ordinary Harper model (β = 0) with λβ = 1 and ES,β = 0
from Eqs. (17) and (18). Thus, the separatrix orbit is defined

-4

-2

0

2

4

Eb

0 2π
0

2π

(c)

X

Y

-6

-4

-2

0

2

Eb

0 2π
0

2π

(b)

X

Y

-4

-2

0

2

4

Eb

0 2π
0

2π

(a)

X

Y

FIG. 3. Energy bands and their semiclassical-level approxima-
tions (left diagrams) and classical phase spaces (right diagrams) for
ν = 1/11, λ = λβ , and (a) β = 0.01, (b) β = 4, (c) β = 500. In the
left diagrams, the yellow (light gray) regions are the energy bands,
the blue dotted lines are the semiclassical levels, and the red solid
line is the separatrix energy. In the right diagrams, the red solid line
is the separatrix and the blue dotted lines are the classical orbits
corresponding to the levels in the left diagram. As β is increased,
the area of the separatrix region and the number of orbits inside this
region increase. In case (c), corresponding essentially to the Fibonacci
crystal (β = ∞), the area of the separatrix region is maximal and there
is only one quantized orbit outside this region, indicated by arrows.

by cos(X) + cos(Y ) = 0, i.e., the square of area 2π2 in
Fig. 3(a), which partitions symmetrically the 2π×2π unit
cell into two regions of equal area. Therefore, the closed
orbits satisfying Eq. (19) can be divided into two groups,
each consisting of (p − 1)/2 orbits. One group is inside the
separatrix, surrounding the elliptic fixed point (π,π ), while the
other group is outside the separatrix, surrounding the elliptic
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fixed point (0,0) and translationally equivalent points. The
p − 1 semiclassical levels associated with these orbits, as well
as the exact bands, are then symmetrically positioned below
and above the separatrix energy E = 0.

As β is increased, the area of the separatrix region increases,
see Fig. 3(b). Then, the number of closed orbits satisfying
Eq. (19) in this region, i.e., the number of semiclassical energy
levels below ES,β in Eq. (18), increases beyond (p − 1)/2. The
number of levels above ES,β decreases below (p − 1)/2.

For β = ∞, corresponding to the Fibonacci crystal, one has
again λβ = 1 and ES,β = 0 from Eqs. (17) and (18). The area
of the separatrix region is maximal, see Fig. 3(c). This region
and all the orbits inside it lie within the interval π/p < X �
2π − π/p, where the potential U (X) = −1 (see Fig. 1). Thus,
from Eq. (3) with Heff equal to the orbit energy E, we find that
each orbit assumes just two Y values in the X interval above:

Y1,2 = arccos(E/2 + 1), 2π − arccos(E/2 + 1). (20)

Therefore, each orbit is the boundary of the rectangle π/p <

X � 2π − π/p, Y1 � Y � Y2. One can then explicitly calcu-
late the area in Eq. (19) for ν = 1/p:∮

Y (X)dX = 2π (1 − 1/p)[2π − 2 arccos(E/2 + 1)]. (21)

Using Eq. (21) in Eq. (19), we obtain the semiclassical energy
levels

El = −2 − 2 cos

[
π

p − 1

(
l + 1

2

)]
, (22)

where l = 0, . . . ,p − 2, since for l > p − 2 the area (19) is
larger than that of the separatrix region, 4π2(1 − 1/p). The
level Ep−2 ≈ 0 should correspond to the separatrix and will
be replaced by the classical energy E = 0. Since there can be
only p levels approximating the p bands, there remains only
one level to find and this must correspond to an orbit outside
the separatrix, in the intervals 0 < X � π/p and 2π − π/p <

X � 2π , where U (X) = 1, see Fig. 3(c). Proceeding as above,
we now find that arccos(E/2 − 1) = π (l + 1/2), giving the
remaining level:

Ep−1 = 2. (23)

We note that all p − 1 levels (22) lie in the interval −4 <

El < 0, so that the average gap between neighboring levels,
�E ≈ 4/(p − 1), vanishes as p → ∞. On the other hand, the
highest and largest gap, between the separatrix energy E = 0
and the last level (23), is independent of p.

V. TOPOLOGICAL PHASE TRANSITIONS

Using Eqs. (1) and (16), we have calculated the Chern
integers σb of the bands for rational values of ν and for β

varying from β = 0 (ordinary Harper model) to very large
values corresponding essentially to the Fibonacci crystal. For
ν = 1/p (q = 1) and for all β, we found that only one band
has a nonzero Chern integer, σb = 1; for the other p − 1
bands, σb = 0. Figure 4 shows results for p = 11. The solid
line is the classical energy (18) of the separatrix versus β.
It can be seen that as β is varied the band with σb = 1 is
always the one associated semiclassically with the separatrix.
All the other bands, associated with closed orbits inside or

1 2 3 4 5 6 7 8 9 10

-4

-2

0

2

β

Eb

FIG. 4. Energy bands as functions of β for ν = 1/11 and λ = λβ .
The bands corresponding to contractible orbits, with Chern integer
σb = 0, are the yellow (light gray) regions bounded by blue dashed
lines. The bands corresponding to the separatrix, with σb = 1, are the
red (gray) regions bounded by red solid lines. The thick red solid line
is the separatrix energy. Values of β where band degeneracies occur
are indicated by vertical black segments.

outside the separatrix region (see Fig. 3), have σb = 0. This
can be understood from the fact that the separatrix orbit is
not contractible to a point, since it extends over all a torus,
i.e., the 2π×2π unit cell of periodicity, in both the X and Y

directions. On the other hand, all other closed orbits are not
extended, being localized inside the unit cell and therefore
contractible to a point. This topological difference between
the separatrix and other orbits manifests itself in the nonzero
value of σb = 1 for the separatrix band, in contrast with σb = 0
for the other bands.

As we have shown in Sec. IV (see also Fig. 3), the position of
the separatrix band relative to the other bands varies with β and
is approximately given by Eq. (18). For β = 0, corresponding
to the ordinary Harper model, this band is b = (p + 1)/2, in
the middle of the spectrum, see Fig. 3(a). As β is increased, the
value of b for the separatrix band increases beyond (p + 1)/2,
see Fig. 3(b). For very large β (Fibonacci crystal), this band is
the one with b = p − 1, just before the highest band. Thus,
as β is increased, the value σb = 1 of the Chern integer
is “transferred” from band b to band b + 1, starting from
b = (p + 1)/2 and ending at b = p − 1. There are, therefore,
(p − 3)/2 transfers or topological phase transitions indicated
by vertical bars in Fig. 4; these transitions are due to band
degeneracies, see also Fig. 5.

Thus, for sufficiently large β, the total Chern integer in the
gap above the separatrix band is σ = 1. As indicated already
by the semiclassical approximation (23), this is the largest gap
in the spectrum, see Fig. 4. Figure 6 shows the “Hofstadter
butterfly” (plot of the spectra at arbitrary rational ν = q/p)
for increasing values of β. We see that already for β � 10
[Figs. 6(c) and 6(d)] the maximal gap for ν ∼ 1/p is actually
almost independent on ν, unlike cases of smaller β [Figs. 6(a)
and 6(b)]. Clearly, for all ν < 1/2, this gap is associated with
a total Chern integer σ = 1. Thus, because of the general
sum rule

∑p

b=1 σb = 1 [7], the total Chern integer of all the
bands above this gap is σ = 0. The number of these bands is
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FIG. 5. Plot of the second degeneracy at β ≈ 1.2144 in Fig. 4.
This is the degeneracy between bands 7 and 8 (counting from the
lowest band in Fig. 4) at the point k = (0,0). In accordance with the
Von-Neumann-Wigner theorem [50], three parameters (k1, k2, and β)
of the Hermitian matrix M̂(k) [defined by Eqs. (9) and (10)] must
be varied to get a degeneracy. This plot also clearly illustrates the
periodicity of the band functions Eb(k) with period 2π/p in both k1

and k2, as mentioned after Eq. (11) (see also Appendix B).

approximately q and they correspond to the highest band in
the case of q = 1 (ν = 1/p). For p � 1, one can show [49]
that the width of the latter band (approximately equal to the
total width of the ∼q bands corresponding to it) is entirely
due to the discontinuity of the Fibonacci potential (β = ∞)
and that this band extends from E = E− = 4/3 to E = E+ =
2(

√
5 − 1) ≈ 2.4721, i.e., its width isE+ − E− ≈ 1.1388. The

average energy (E+ + E−)/2 ≈ 1.9027 of this band should be
compared with the semiclassical approximation (23).

VI. SUMMARY AND CONCLUSIONS

The Harper and generalized Fibonacci quasiperiodic sys-
tems (with irrational modulation frequency ν) are known to
exhibit energy spectra and eigenstates of basically different
nature [30–46]. In this paper, we have studied the topological
properties of these systems in their crystal (periodic) versions,
i.e., for rational frequency ν = q/p. By introducing an inter-
polating Hamiltonian (3) with potential (5) depending on a
parameter β, the Harper crystal (β = 0) can be transformed
into a Fibonacci crystal (β = ∞). The basic topological
differences between the two systems can be clearly seen in
the semiclassical regime of ν � 1, when the band energy
spectrum is approximated by energy levels associated with
classical orbits. The classical phase spaces of the two systems
are significantly different, compare Figs. 3(a) and 3(c). For
ν = 1/p, with p odd and sufficiently large, the only band
with nonzero Chern integer, σb = 1, is the one whose energy
is closest to the energy (18) of the classical separatrix orbit.
The latter orbit is indeed topologically different from the
contractible closed orbits associated with all other bands, with
σb = 0. As β is increased from β = 0, the separatrix energy
(18) varies and, as a result, the band with σb = 1 is shifted
from the center of the spectrum [b = (p + 1)/2], for β = 0, to
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FIG. 6. “Hofstadter butterflies,” i.e., energy bands as functions of
rational values of ν, for λ = λβ and (a) β = 0.001, (b) β = 3, (c)
β = 10, (d) β = 1000. In all cases, ν = q/p with p = 1, . . . ,20 and,
for each p, q assumes all integer values that are relatively prime to p

and less than p. In case (a), close to the Harper limit of β = 0, there
is no dominant large gap in the semiclassical regime of ν � 1. As β

is increased, a dominant large gap starts to form below the highest
cluster of bands. In case (d), close to the Fibonacci limit of β = ∞,
the width of this gap is relatively constant over a large interval of ν,
much beyond the semiclassical regime.

the band just below the highest one (b = p − 1) for β = ∞;
see Fig. 4. There occur, therefore, a relatively large number
[(p − 3)/2] of topological phase transitions as β is varied from
β = 0 to β = ∞.

It is interesting to compare the pure case [32] of ν = 1/p

with that of irrational ν for which no topological phase
transition can occur (see Introduction). One would like to
understand how the topological phase transitions for ν = 1/p

gradually disappear when approaching an irrational value of
ν, close to 1/p, by its rational approximants. To this end,
we use methods in Refs. [19,23,24] which we illustrate by
the example of ν = 1/[5 + (

√
5 − 1)/2] (close to ν = 1/5),

whose first approximants are 1/5 and 2/11. For ν = 1/5, one
has five bands and (p − 3)/2 = 1 topological phase transition
occurring at β ≈ 1.2, see Fig. 7(a). For ν = 2/11 and general β
[see Fig. 7(b)], the 11 (sub)bands are grouped into five clusters
splitting from the five bands for ν = 1/5. The total Chern
number of a cluster is the same as that of the corresponding
band for ν = 1/5. Each of the four clusters splitting from a
(ν = 1/5, σb = 0) band consists of two subbands with σb =
±1. The cluster splitting from the (ν = 1/5, σb = 1) band
consists of three subbands with σb = ±1,1. For β � 1, this
is the third cluster, at the center of the spectrum. However,
as β is increased the upper subband of this cluster, indicated
by an arrow in Fig. 7(b) and having σb = 1, leaves the cluster
and joins the fourth cluster. The total Chern number of the
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FIG. 7. (a) Similar to Fig. 4 but for ν = 1/5, with only one band
degeneracy at β ≈ 1.2. (b) Case of ν = 2/11, featuring 11 subbands
that are grouped into five clusters splitting from corresponding bands
in (a). The red (gray) subbands have σb = 1 while the dark gray
subbands have σb = −1. See more details in text.

latter cluster thus changes from 0 to 1 while that of the third
cluster changes from 1 to 0. This is in accordance with Fig. 7(a)
but now these changes occur without any topological phase
transitions due to degeneracies. In fact, the only degeneracies
in Fig. 7(b) occur within clusters, so that the cluster Chern
number does not change. But even the changes in the Chern
numbers of the subbands in the latter clusters can be explained,
at the next approximant level (ν = 3/17), by the “motion” of
one sub-subband from one subcluster to a neighboring one
without the occurrence of any degeneracy.

The problem of Bloch electrons in a magnetic field can
be considered on an infinitely long strip of some width [11].
For a sufficiently wide strip and weak periodic potential at
fixed Landau level (see Appendix A), this problem corresponds
essentially to the truncation of Eq. (4) to |n| � N , i.e., ψn = 0
for |n| > N . Then, for arbitrary ν, there emerge edge states
with in-gap energy depending on a phase such as τ in Eq. (4)
or k1 in Eq. (9) [without Eq. (10), since k2 is not a good quantum
number now]. The winding number of the edge-state energy in
the gap as k1 is varied turns out to be equal to −σ , where σ is the
Chern integer of the gap for the infinite system (N = ∞) [11].
In this way, the edge states for a strip feature the topological
properties of the infinite system.

These properties have been experimentally observed and
used in realizations of 1D quasiperiodic systems (irrational ν)
on a strip by “photonic quasicrystals” (PQs) [12,14,17], i.e.,
finite quasiperiodic lattices of coupled single-mode optical
waveguides. Localized edge states were observed for both
Harper models and “off-diagonal” (OD) quasiperiodic sys-
tems, i.e., systems (4) without the on-site potential but with
hopping constants modulated by the potential (5). The transfer
of an edge state from one side of the strip to the other
by varying τ or k1 (with the edge-state energy traversing a
gap) was experimentally achieved by adiabatic pumping of
light in PQ realizations of OD Harper and Fibonacci models
[12,17]. The topological nonequivalence (equivalence) of two
OD systems with different (equal) irrational values of ν

was experimentally demonstrated by observing the presence
(absence) of topological phase transitions in PQ realizations
of the systems [14].

We plan to study in future works the topological properties,
including edge states, of systems more general than those
considered in this paper. In particular, OD systems and systems
(3) whose classical counterparts exhibit open orbits such as
those in Fig. 2(a) for λ 	= λβ . The study of the latter systems
requires formalisms and methods much more complicated than
those used in the present paper, see, e.g., Ref. [25]. Results
concerning the behavior of edge states as β is varied should
be useful in the experimental observation of topological phase
transitions for rational ν, such as those predicted in this paper.
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APPENDIX A

For an electron with charge −e and mass M in a pe-
riodic potential V (x,y) and a uniform magnetic field B in
the z direction, the Hamiltonian is Ĥ = �̂2/(2M) + V (x̂,ŷ),
where �̂ = p̂ + eB × r̂/(2c) is the kinetic momentum in
the symmetric gauge. The operator �̂c = p̂ − eB × r̂/(2c)
gives the cyclotron-orbit center (X̂,Ŷ ) = c/(eB)(−�̂c,y ,�̂c,x)
[7,51]. We also define (û,v̂) = c/(eB)(�̂y,�̂x) and assume, for
simplicity, a 2π×2π unit cell of periodicity for the periodic
potential V . The number ϕ of flux quanta φ0 = hc/e per unit
cell is given by 4π2B = ϕhc/e, so that h̄c/(eB) = 2πν, where
ν = 1/ϕ. We then get the commutation relations [7,51]

[û,v̂] = 2πiν, [X̂,Ŷ ] = 2πiν, (A1)

[û,X̂] = [û,Ŷ ] = [v̂,X̂] = [v̂,Ŷ ] = 0. (A2)

Thus, (û,v̂) and (X̂,Ŷ ) are two independent conjugate pairs of
variables. After expressing r̂ and p̂ in terms of these pairs, the
Hamiltonian above reads as follows [7]

Ĥ = Mω2

2
(û2 + v̂2) + V (X̂ + û,Ŷ − v̂). (A3)

This describes a harmonic oscillator in (û,v̂), with cyclotron
frequency ω = eB/(Mc), perturbed by the potential V . If
this perturbation is sufficiently weak relative to the spacing
h̄ω between oscillator (Landau) levels, matrix elements of
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V between different Landau levels may be neglected. One
can then write the (u,X) representation of the eigenstate
corresponding to the perturbed Landau level l (for integer
l � 0), with energy El = (l + 1/2)h̄ω, as Fl(u)G(X); here
Fl(u) is a normalized oscillator function and G(X) satisfies
the eigenvalue equation

Ĥeff (X̂,Ŷ )G(X) = EG(X), (A4)

where

Ĥeff (X̂,Ŷ ) =
∫ ∞

−∞
duF ∗

l (u)V (X̂ + u,Ŷ − v̂)Fl(u)

=
∫ ∞

−∞
duF ∗

l (u)V

(
X̂ + u,Ŷ + 2πiν

d

du

)
Fl(u),

(A5)

after using v̂ = −2πiνd/du from Eq. (A1). The energy E in
Eq. (A4) is measured relative to El .

We now focus on the case of V (x,y) = 2λW (x) +
2χ cos(y), where W (x) is 2π periodic and (λ,χ ) are some real
constants. By expanding W (x) in a Fourier series, W (x) =∑∞

j=−∞ Wj exp(ijx), one gets from Eq. (A5):

Ĥeff (X̂,Ŷ ) = 2λU (X̂) + κ[eiŶ+iα + e−iŶ−iα], (A6)

where

U (X̂) =
∞∑

j=−∞
Wj

∫ ∞

−∞
du|Fl(u)|2eiju eijX̂, (A7)

κ exp(−iα) = χ

∫ ∞

−∞
duF ∗

l (u)Fl(u − 2πν). (A8)

Using Ŷ = −2πiνd/dX from Eq. (A1), the constant phase
α in Eq. (A6) can be removed by writing G(X) =
exp[−iαX/(2πν)]Ḡ(X). Then, choosing χ in Eq. (A8) so that
κ = 1, we see that Eq. (A4) is satisfied with G(X) replaced by
Ḡ(X) and with Ĥeff (X̂,Ŷ ) given by Eq. (3).

The latter equation for Ḡ(X) reads as follows:

Ḡ(X + 2πν) + Ḡ(X − 2πν) + 2λU (X)Ḡ(X) = EḠ(X).

(A9)

Writing X = X0 + 2πnν for all integers n and defining ψn =
Ḡ(X0 + 2πnν), Eq. (A9) reduces to Eq. (4).

APPENDIX B

We show here that Eq. (6) gives Bloch eigenstates of
Ĥeff (X̂,Ŷ ) and we derive some properties of these states. We
also derive the Diophantine equation (1) for the topological
integers. We first note that the Hamiltonian (3) commutes with
translations by 2π in (X̂,Ŷ ):

D̂X,2π = exp(iŶ /ν), D̂Y,2π = exp(−iX̂/ν), (B1)

where we used Ŷ = −2πiνd/dX and X̂ = 2πiνd/dY (from
[X̂,Ŷ ] = 2πiν). In general, the translations (B1) do not com-
mute:

D̂X,2πD̂Y,2π = exp(−2πi/ν)D̂Y,2πD̂X,2π . (B2)

However, for rationalν = q/p, some powers of the translations
(B1) will commute. For example, using Eq. (B2), one can

see that D̂
q

X,2π = D̂X,2πq is the smallest translation of X̂ by
a multiple (q) of 2π that commutes with D̂Y,2π . It is then
easy to check that the states (6) are eigenstates of D̂X,2πq ,
D̂Y,2π , and Ĥeff (X̂,Ŷ ) with respective eigenvalues exp(ipk2),
exp(−ik1/ν), and Eb(k).

It follows from Sec. III A that for an isolated band b Eb(k)
is periodic with two zones of periodicity, Eqs. (7) and (11).
This is possible only if Eb(k) is periodic in both k1 and k2

with period 2π/p, defining a periodicity zone q times smaller
than the BZ (7). This means that the eigenstates (6) are q-fold
degenerate. In fact, since D̂X,2π in Eq. (B1) commutes with
Ĥeff (X̂,Ŷ ), the q states D̂s

X,2π�b,k(X), s = 0, . . . ,q − 1, are all
degenerate in energy; using Eq. (B2), one finds that these states
are eigenstates in band b associated with the quasimomenta
ks = (k1 − 2πs mod(2πν),k2).

We now derive the Diophantine equation (1). As mentioned
at the end of Sec. III, the total phase change of �b,k(X) when
going around the boundary of the BZ (7) counterclockwise
must be an integer multiple of 2π and we denote this integer
by −σb. From Eqs. (12) and (13), it follows that when k2 is
varied from k2 to k2 + 2π/p (on the vertical axis of the BZ),
the total change in the phase of �b,k1+2πν,k2 (X) relative to that
of �b,k(X) is fb(k1,k2 + 2π/p) − fb(k); when k1 is varied
from k1 + 2πν to k1 (on the horizontal axis of the BZ), the
total change in the phase of �b,k1,k2+2π/p(X) relative to that of
�b,k(X) is gb(k) − gb(k1 + 2πν,k2). Thus, one must have

fb(k1,k2 + 2π/p) − fb(k)

+ gb(k) − gb(k1 + 2πν,k2) = −2πσb. (B3)

Similarly, the total phase change of Vb(k) when going around
the boundary of zone (11) counterclockwise must be 2πμb,
where μb is a second Chern integer determined from Eqs. (14)
and (15):

wb(k1,k2 + 2π/p) − wb(k)

+ gb(k) − gb(k1 + 2π,k2) = 2πμb. (B4)

Now, let us iterate Eq. (12) p times. This gives

�b,k1+2πq,k2 (X) = exp[if̄b(k)]�b,k(X), (B5)

where

f̄b(k) =
p−1∑
r=0

fb(k1 + 2πrν,k2). (B6)

On the other hand, using Eq. (6) with Eq. (8) and the qth
iteration of Eq. (14), we get

�b,k1+2πq,k2 (X) = exp[iw̄b(k) − ipk2]�b,k(X), (B7)

where

w̄b(k) =
q−1∑
r=0

wb(k1 + 2πr,k2) (B8)

and wb(k) are the phases in Eq. (14). Then, by comparing
Eq. (B5) with Eq. (B7), it follows that

w̄b(k) − pk2 = f̄b(k) + 2πz, (B9)

where z is some integer. Next, let us add p equations (B3) for
k1,k1 + 2πν, . . . ,k1 + 2πν(p − 1). Using Eq. (B6), we find
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that

f̄b(k1,k2 + 2π/p) − f̄b(k)

+ gb(k) − gb(k1 + 2πq,k2) = −2πpσb. (B10)

Similarly, by adding q equations (B4) for k1,k1 + 2π, . . . ,k1 +
2π (q − 1) and using Eq. (B8), we get

w̄b(k1,k2 + 2π/p) − w̄b(k)

+ gb(k) − gb(k1 + 2πq,k2) = 2πqμb. (B11)

Because of Eq. (B9), Eq. (B10) can be rewritten as

w̄b(k1,k2 + 2π/p) − w̄b(k) − 2π

+ gb(k) − gb(k1 + 2πq,k2) = −2πpσb. (B12)

Finally, by subtracting Eq. (B12) from Eq. (B11) and dividing
by 2π , we obtain Eq. (1).

APPENDIX C

The classical Hamilton equations for the Hamiltonian (3)
are:

Ẋ = ∂Heff

∂Y
, Ẏ = −∂Heff

∂X
. (C1)

The fixed points of the motion are determined from Ẋ = Ẏ = 0.
Using Eqs. (3) and (C1), we get from ∂Heff/∂X = 0 that
sin(Y ) = 0 or Y = 0,π . Similarly, from Eqs. (3) and (5), we
find

∂Heff

∂Y
= 2λ sin(X)

tanh(β) cosh2{β[cos(X) − γν]} , (C2)

so that ∂Heff/∂Y = 0 implies sin(X) = 0 or X = 0,π . There are
therefore four fixed points, (X,Y ) = (0,0),(π,0),(0,π ),(π,π ),
within the 2π×2π unit cell of periodicity of the Hamiltonian
(3). Let us determine the linear stability of these points, R ≡
(X,Y ) (a column vector), under small perturbations δR around
them. By linearizing Eqs. (C1) around R, we get

˙δR = DHeffδR, (C3)

where DHeff is the matrix

DHeff =
(

∂2Heff
∂X∂Y

∂2Heff
∂Y 2

− ∂2Heff
∂X2 − ∂2Heff

∂X∂Y

)
. (C4)

Assuming the time dependence δR(t) = δR0 exp(ξ t) in
Eq. (C3), we get the eigenvalue equation

DHeffδR0 = ξδR0. (C5)

Since the matrix (C4) has vanishing trace, the two eigenvalues
satisfy ξ1 + ξ2 = 0. The fixed points are unstable only if these
eigenvalues are real. A simple calculation of ξ1,2 using Eq. (C4)
with Eqs. (3) and (5) shows that this is the case only for
the points R = (π,0),(0,π ). From each of these points there
emanates a separatrix orbit [see, e.g., Fig. 2(a)] whose energy
is the energy E = Heff (X,Y ) of the point. However, if the two
points have the same energy, there will be only one separatrix
connecting both points, as in the case of Fig. 2(b). After
calculating E = Heff (X,Y ) for the two points and requiring
that Heff (π,0) = Heff (0,π ), we obtain the results (17) and (18).
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