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Realization of a scenario with two relaxation rates in the Hubbard Falicov-Kimball model
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A single transport relaxation rate governs the decay of both longitudinal and Hall currents in Landau Fermi
liquids (FL). Breakdown of this fundamental feature, first observed in two-dimensional cuprates and subsequently
in other three-dimensional correlated systems close to the Mott metal-insulator transition, played a pivotal role
in emergence of a non-FL (NFL) paradigm in higher dimensions D(>1). Motivated hereby, we explore the
emergence of this “two relaxation rates” scenario in the Hubbard Falicov-Kimball model (HFKM) using the
dynamical mean-field theory (DMFT). Specializing to D = 3, we find, beyond a critical Falicov-Kimball (FK)
interaction, that two distinct relaxation rates governing distinct temperature (T ) dependence of the longitudinal
and Hall currents naturally emerges in the NFL metal. Our results show good accord with the experiment in V2−yO3

near the metal-to-insulator transition (MIT). We rationalize this surprising finding by an analytical analysis of the
structure of charge and spin Hamiltonians in the underlying impurity problem, specifically through a bosonization
method applied to the Wolff model and connecting it to the x-ray edge problem.
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I. INTRODUCTION

It is well known that a single transport relaxation rate
governs the decay of both longitudinal and Hall currents in
a Landau Fermi liquid (FL) metal. This is obviously related
to the fact that both result from scattering processes involving
the same Landau quasiparticle, carrying the quantum numbers
of an electron. Observation of distinct relaxation rates in dc
resistivity (ρdc) and Hall angle (θH) [1] data for cuprates
led to a paradigm shift in the traditional view of strongly
correlated electrons in metals in dimension D > 1. While such
anomalous behavior can be rationalized in D = 1 Luttinger
liquids (LL) by appealing to fractionalization of an electron
into a neutral spinon and a spinless holon, the specific nature
of electronic processes leading to the emergence of such
features in D > 1 is an enigma. In fact, Anderson [2] predicted
such a feature from a generalized “tomographic” LL state
in D = 2, by hypothesizing spin-charge separation: ρdc(T ) �
T arose from holon-spinon scattering, while cotθH(T ) � T 2

emerged from spinon-spinon scattering. Though very attrac-
tive, a derivation of such a higher D LL-like state remains an
open and unsolved issue of great current interest.

Surprisingly, subsequent experiments revealed similar “two
relaxation rates” in D = 3 correlated systems as well. Specifi-
cally, simultaneous resistivity and Hall measurements in the
classic Mott system V2−yO3 revealed the following: in the
lightly doped (0 < y � 1) case, (i) the dc resistivity, ρdc(T ) =
ρ(y) + AT η(y), with η(y) varies between 1.5 and 2, while the
Hall angle’s cotangent, cot θH � C1(y) + C2(y)T 2 for all T >

TN, the Néel ordering temperature [3,4]. This is an example of a
D = 3 correlated metallic system exhibiting “two” relaxation
rates. Later in ruthenates [5,6] and heavy fermionic materials
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[7] similar behavior also has been noticed. These observations
show that such features are not unique to D = 2 systems,
but generic to metallic states on the border of the Mott
metal-to-insulator transition (MIT). It is also interesting that
disorder seems to be a very relevant perturbation in V2−yO3:
The resistivity is well accounted for by a variable-range
hopping form, attesting to the importance of disorder near the
Mott transition [8]. In multiorbital CaRuO3 and YbRh2Si2,
orbital-selective physics generically leads to extinction of
FL metallicity via “Kondo breakdown” and onset of “spin
freezing” [5,9], wherein one would expect low-energy charge
dynamics to be controlled by the (strong) “intrinsic disorder”
scattering between the quasi-itinerant and effectively Mott
localized components of the full one-particle spectral function
(though, strictly speaking, consideration of YbRh2Si2 would
require a multiband periodic Anderson model). The actual
Mott transition in V2O3 is by now also established to involve
multiorbital correlations and orbital-selective localization: in
LDA+DMFT studies [10–13], the eπ

g states remain Mott
localized, while the a1g states remain bad metallic in the bad
metal close to the MIT. In the quantum paramagnetic state
where the Mott transition occurs, one may view the eπ

g states
as an “intrinsic disorder,” providing a strong scattering channel
for the a1g carriers. Thus, it seems that the anomalous two-
relaxation times are linked to the breakdown of FL metallicity
arising from strong scattering processes involving either intrin-
sic scattering channels or extrinsic disorder close to the MIT.

II. MODEL AND METHOD

Motivated by these observations, we introduce a Hubbard
Falicov-Kimball model (HFKM) in standard notations

H HFKM = −t
∑

〈i,j〉,σ
(c†iσ cjσ + H.c.) − μ

∑
iσ

(
n̂c

iσ + n̂d
i

)

+U
∑

i

n̂c
i↑n̂c

i↓ + Ucd

∑
i,σ

n̂c
iσ n̂d

i (1)
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as an effective model that captures the interplay between
itinerancy (t) and strong electronic correlations (Hubbard
interaction U ) and intrinsic or extrinsic (Fallicov Kimball
interaction Ucd ) disorder scattering, μ being the chemical
potential. Qualitatively, (i) Ucd can mimic an effectively Mott-
localized band in an orbital-selective Mott transition (OSMT)
scenario [10,11], or (ii) Ucdn

d
i (nd

i ≡ 〈n̂d
i 〉) can also be viewed

as an extrinsic disorder potential experienced by the correlated
c fermions (in V2−yO3, one can regard this as disorder arising
from a concentration y of V vacancies in the host system) [8].
The Falicov-Kimball (FK) model (Eq. (1) without Hubbard U

term) has been widely studied where it is found that increasing
Ucd leads to a MIT where the metallic (M) phase is a non-Fermi
liquid (NFL) [14,15]. OSMT can occur in the presence or
absence of Hund’s coupling (when hopping varies in different
orbitals) [16] and it has been found that the effective two
orbital Hamiltonian with Hund’s coupling reduces to the FK
Hamiltonian when there is no spin flip or pair hopping term,
resulting in a NFL physics [17].

This sets up a motivation to investigate how FL and NFL
metallic phases compete, due to the interplay of the FK and
Hubbard interactions, in the transport properties. We solve
H HFKM using the dynamical mean-field theory (DMFT) with
iterated perturbation theory (IPT) as the solver for the effective
impurity problem [18,19]. IPT is a second order perturbation
approximation around the Hartree Fock self-energy, which
satisfies both the atomic limit (t = 0) and weak-coupling limit
(U = 0). Hence it acts as a scheme to capture the physics at
moderate U/t , “interpolating” the two limits. Despite being
an approximation, IPT has shown remarkable agreement with
exact diagonalization (ED) and quantum Monte Carlo results
on the single and multi-band Hubbard models [20,21]. Being
easy-to-implement (no analytical continuation required since
quantities are evaluated directly on real frequency axis). IPT
has become a popular quantum impurity solver to gain a
quick insight of a correlated lattice problem [19]. In our
method, Ucd is treated as site-diagonal disorder within the
coherent potential approximation (CPA) [22–24] at half filling
with disorder concentration x between 0.4 to 0.5, using a
semicircular band density of states for the c electrons as an
approximation to the actual D = 3 system (it keeps the correct
energy dependence near the band edges in D = 3). Within
DMFT, it is long known that a correlated FL metal for small
Ucd smoothly goes over to an incoherent bad metal without
FL quasiparticles as Ucd increases [22]. Motivated by the fact
that the two-relaxation times seem to be linked to proximity
to the (pure or selective) Mott transition, we focus on the
evolution of the (magneto)transport when Ucd is cranked up
in the regime where U/t = 3.3 is chosen to be close to the
critical (U/t)c � 3.4 where a purely correlation-driven Mott
transition occurs [18]. A short discussion of the relevant DMFT
formalism and the associated equations, adapted from Ref. [22]
in the related context of a binary-alloy disordered Hubbard
model, has been provided in Appendix A.

III. RESULTS AND DISCUSSION

In Fig. 1, we exhibit the dc resistivity ρdc(T ,Ucd ) for differ-
ent Ucd and fixed U/t = 3.3 as a function of T . Several features
stand out clearly: a correlated FL up to small Ucd < 0.2U ,
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FIG. 1. DC resistivity vs temperature plot at (a) U = 3.3t and
(b) U = 2.0t . Dashed lines are power-law fits at low T .

where ρdc = ρ0(U,Ucd ) + A(U )T 2, smoothly evolves into an
incoherent metal for Ucd = 0.2U , where we find ρdc(T ) =
ρ0 + AT α , with α = 1.76. It is very interesting that α seems to
vary continuously with Ucd , (α = 1.6 for Ucd = 0.25U , α =
1.2 for Ucd = 0.3U ), and the fact that ρdc remains bad metallic
at intermediate-to-low T , crossing over to an insulatorlike
form at high T for Ucd = 0.3U . Repeating the calculations
for smaller U/t = 2.0, we find that while qualitatively similar
features retain, ρdc(T → 0) rises to much higher values when
Ucd is cranked up. This testifies to the increasing relevance
of the strong scattering (from localized channels or extrinsic
disorder as above) when U/t is in the weak-to-intermediate
coupling regime. Since transport properties in DMFT do not
involve vertex corrections in the Bethe-Salpeter equations for
the conductivities, these features must be tied to loss of the
FL quasiparticle pole structure in the DMFT one-electron
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FIG. 2. Cotangent of Hall angle (θH) vs temperature plot at
(a) U = 3.3t and (b) U = 2.0t . Dashed lines are power-law fits at
low T . Insets show the same against T 2.

propagator, which is now the sole input to the renormalized
bubble diagram for the conductivities [18].

Upon evaluating the off-diagonal conductivity (to first order
in the vector potential A as done before [25]) for H HFKM in
DMFT, we have computed the Hall constant (RH) and Hall
angle (cotθH) for the same parameter values as above. Even
more remarkably, we find (see Fig. 2) that cotθH � C1 + C2T

2,
up to T/t = 0.05 for both Ucd/U = 0.25, 0.3, while RH

exhibits a strong T dependence right down to the lowest
T (see Fig. 3). This is the same parameter regime where
ρdc(T ) exhibits NFL T dependence, with a Ucd -dependent
exponent 1.0 < α < 2.0. Thus, our DMFT results directly
reveal two-relaxation rates, and it is indeed notable that
cotθH � C1 + C2T

2 continues to hold over a wide T range,
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FIG. 3. Hall coefficient (RH) vs temperature plot at (a) U = 3.3t

and (b) U = 2.0t . Dashed lines are power-law fits at low T .

even as the exponent α continuously varies between 1.0 and
2.0. Our results are completely consistent with data for V2−yO3

in all respects: (i) specifically, ρdc(T ) � ρ0(y) + AT α with
1.5 � α < 2 in data agrees well with our estimate 1.2 � 1.76
in the NFL regime of H HFKM [3,4], (ii) cotθH(T ) = C1 + C2T

2

up to T � 500 K upon choosing t = 1.0 eV in the model,
again in nice accord with data [3]. (iii) Concomitantly, RH(T )
exhibits a strong T dependence, increasing slowly at low T

and forming a clear peak at high Ucd , and decreasing rapidly
at T increases further [3]. Like found in the experiment, at U

close to the Mott insulator and low Ucd , an upturn in cotθH is
noticed showing a C1 + (C2 − C3T )2 dependence on T . This
occurs because the Hall coefficient RH’s peak changes position
with Ucd at U/t = 3.3, which is close to the Mott MIT whereas
away from the MIT (U = 2t) the peak is merely formed (in
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fact RH has a negligible T dependence at low U as can be
expected for low U/t). Though in the V2−yO3 experiment in
Ref. [3] the origin of the upturns due to HFKM physics remains
inconclusive since the Néel phase almost commences after the
turning point, our formalism at least offers a scenario where
a deviation from strict cotθH(T ) = C1 + C2T

2 may occur.
While more such experiments are demanded in correlated
bulk materials, such upturns have been also noticed in several
cuprate materials [26,27].

Thus, (magneto)transport responses in H HFKM within
DMFT exhibit comprehensive qualitative agreement with the
complete set of data for V2−yO3. In particular, our results now
strongly support the notion that emergence of two relaxation
rates, or that the different decay rates for longitudinal and
Hall currents, is a direct consequence of breakdown of the
FL metal by strong scattering. As discussed above, the FK
term in Eq. (1) can mimic either “intrinsic” scattering coming
from selectively Mott localized states in a multiband system,
or arising from strong “disorder” scattering. This is because
correlations have already drastically renormalized the band
energy scale to a much lower value associated with collective
Kondo screening induced “heavy” FL. In such a situation,
even modest disorder will appear “strong,” since the relevant
scale that sets the relevance of disorder is now Ucdn

d
i /kBTcoh

(with coherence temperature Tcoh being small near the Mott
transition) rather than Ucdn

d
i /W , with W , the free bandwidth

for U = 0 bandwidth for U = 0.

IV. CHARGE-SPIN SEPARATION

The above observations call for a deeper understanding in
terms of basic microscopic responses involving the interplay
between the FK and onsite Hubbard interaction terms. Since
DMFT is a self-consistently embedded impurity problem, and
the anomalies are seen in the strongly correlated metallic
state, we choose to tease out the deeper underlying reasons
by analyzing the Wolff Falicov Kimball (WFKM) model as a
simplified d-impurity model. The WFKM lacks the impurity-
lattice hybridization compared to the actual Anderson impurity
model, however, the Weiss Green’s retains the same form [18]
and it is amenable to bosonization through a generalization of
earlier attempts [28]. Such an analysis has the potential to bare
the asymptotic separation of spin and charge modes, facilitat-
ing DMFT observation of two relaxation rates. Wolff impurity
model including the FK coupling reads (see Appendix B for
details)

H WFKM =
∑
k,σ

ε̃kc
†
kσ ckσ + Un0,d,↑n0,d,↓

+Ucd

∑
σ

n0,c,σ n0,d − μ
∑

σ

n0,c,σ . (2)

The WFKM for Ucd = 0 is bosonized as usual on a (1 +
1) D half line and the result is a set of two independent
gaussian models for bosonic spin (S) and charge (C) fluctuation
modes emanating from the “impurity” (site 0) in each radial
direction. The bosonized Hamiltonian is H WFKM = HC + HS

where

HC = vF

2

∫
dy

[
	2

C(y) + (∂yφC)2
]

+ (Un0 − μ + Ucdn̄
d )√

2π
[∂y�C(0)]

+ U

8π2
[∂y�C(0)]2 , (3)

HS = vF

2

∫
dy

[
	2

S(y) + (∂yφS)2
] − U

8π2
[∂y�S(0)]2 (4)

for a nonmagnetic ground state, where φν(y) and 	ν(y)
(ν = C,S) are conjugate bosonic fields: �ν(y) = √

π [φν(y) −∫ y

−∞ dy ′ 	σ (y ′)], vF is the Fermi velocity, n0 and n̄d cor-
respond to the occupation of noninteracting c fermions and
average occupation of the d electron over a disorder distri-
bution (i.e., effectively the disorder contribution x mentioned
before). The FK term couples solely to the charge bosons,
but with a subtlety that would result in interesting anomalies.
Viewed at the basic scattering level, Ucd

∑
i nic〈n̂d

i 〉 acts as a
strong scattering potential. Since [n̂d

i ,H ] = 0 ∀i in the HFKM,
nd

i = 〈n̂d
i 〉 = 0,1 and, viewed by a propagating c fermion,

Ucd〈nd
i 〉 now represents a “suddenly switched on” scattering

potential that successively switches suddenly between 0 and
Ucd . In the local impurity problem, this is thus precisely the
famed x-ray edge (XRE) problem [29,30] (Ucd is the precise
analog of the suddenly switched-on “core-hole” potential) in
the charge channel; the spin channel is left unaffected.

Explicitly, expanding the charge-bosonic field in Fourier
components, φC(x) = ∑

k(
√

2|k|−1
(ake

ikx + a
†
ke

−ikx)e−α|k|/2

and 	C(x) = −i
∑

k

√|k|/2(ake
ikx − a

†
ke

−ikx)e−α|k|/2 (α is
ultraviolet cutoff), one gets

HC =
∑
k>0

ωka
†
kak + i

√
2ρ(Un0 − μ

+Ucdn̄
d )

∑
k>0

√
ωk(ak − a−k)

− ρU

2

∑
k,k′>0

(ak − a−k)(ak′ − a−k′ ), (5)

where a
†
k = a−k , ρ = (2πvF )−1, ωk = kvF . Thus HC now

corresponds to a Luttinger-Tomonaga model with shifted
oscillator modes bk ≡ ak − i(Un0 − μ + Ucd〈nd〉)/(vF

√
k)

(see Appendix B). The effect of this shift has an important
consequence, namely the time-dependent Green’s function
vanishes as a power law at large time G(t) ∝ t−(δ/π)2

where
δ/π = D0(μ)Ucd ,D0 being the noninteracting density of states
(DoS) [30–34] in the s-wave scattering approximation. This
interesting phenomenon is famously known as the Anderson’s
orthogonality catastrophe (OC), where he showed that the
quantum fidelity or overlap between the wave functions with
and without the core potential in the XRE problem vanishes at
the thermodynamic limit [35]. Reference [14] showed that the
XRE problem can be mapped to the FKM since both share the
same solution for the c-electron Green’s function.

Anderson offered a tomographic Luttinger liquid theory
(TLLT) in order to explain the two different relaxation rates
found in the longitudinal and transverse transport properties
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of cuprate superconductors [2]. There he adopted the idea
of spin-charge separation based on the bosonization method
by Luther for higher dimension [36]. Following the TLLT an
external electric field accelerates charge, leading to a spinon
backflow, and induces scattering between spin and charge. In
D = 3, one expects that scattering off local, dynamical spin
fluctuations will lead to the dc resistivity ρdc(T ) � T D/2 =
T 3/2. However, an external magnetic field will couple solely
to the spin modes (equivalently spin fermions or “spinons” as
above), leading to a Hall relaxation rate entirely determined
by “spinon-spinon” scattering, giving cotθH � τ−1

H = C2T
2.

In the presence of additional strong scattering due to either
an intrinsically localized electronic (Ucd ) or disorder channel,
there will generically be a term τ−1

H � C1 in addition to
the above, yielding cotθH � C1 + C2T

2. On the other hand,
since the charge fluctuations are directly affected thereby, the
resulting modification of scattering processes involving charge
and spin modes can lead to deviation from the ρdc(T ) � T 3/2

in addition to contributing a residual ρ0 term.

V. CONCLUSION

The finding of two relaxation rates for decay of longitudinal
and Hall currents can now be rationalized by observing that
these are consequences of the breakdown of FL concepts in
the barely (bad) metallic state close to the Mott transition.
Extinction of FL quasiparticles is associated with a “lattice”
OC, which now occurs due to either a FK interaction [14] or
strong disorder [37] in a metal already close to a correlation-
driven Mott transition. In this context, it is interesting to
observe that the hidden FL [38] also involves a related x-ray
edge mechanism (at U = ∞) for destruction of FL theory. In
our case, given finite U � W (the one-electron bandwidth),
additional intrinsic or extrinsic disorder scattering channels
are necessary to generate such a breakdown of FL theory.

It is worth mentioning the recent work on two-dimensional
electron gases (2DEGs) formed at the interface between band
and Mott insulators (SrTiO3/RTiO3. R = Gd,Sm) also reveal
this striking two-relaxation rate scenario [39]. Further, this
seems to be seen in various cases, irrespective of the nature of
incipient magnetic ordering, degree of disorder, or emergence
of NFL metallicity, pointing to its link to a deeper common
underlying element. If we apply the above theory to 2DEGs
like the above, the two-relaxation rates can arise from (i)
a combination of electronic correlations plus atomic scale
disorder at the interface, or (ii) in view of the multiband nature
of quantum-well states (QWS) due to confinement effects,
wherein interactions could selectively localize a subset of the
QWS. Both these effects would give rise to a model akin
to our Eq. (1), providing a rationale for these findings. It
would be interesting to inquire whether a QCP associated
with partial Mott selectivity (i.e., with an orbital-selective Mott
phase) and/or disorder is implicated in samples which exhibit
two-relaxation rates in (magneto)transport. That an effective
mass divergence, rather than a Lifshitz transition, is implicated
in this phenomenon [39] strongly hints at such a link, but more
work is needed to establish it.

To summarize, we have investigated the emergence of two
relaxation rates in correlated metals close to the Mott transition
effectively in D = 3. We find that this unique feature is tied

to the loss of FL metallicity in symmetry-unbroken metallic
states proximate to Mott transition(s): This can arise from
strong scattering processes either stemming from intrinsic,
(selectively-Mott) localized electrons, or from disorder which
is generically relevant near a MIT. It is thus not specific to low
dimensions. Surprisingly, comparison with data [3] for V2−yO3

reveals very good qualitative accord with all unusual features:
(i) ρdc � ρ0(y) + AT α(y) with 1.2 � α � 1.6, (ii) a strong
T -dependent Hall constant, peaking at low T , and (iii) much
less “unaffected by disorder-induced scattering” behavior of
cotθH(T ) � C1 + C2T

2.
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APPENDIX A: DMFT METHOD

1. Formulation

In the DMFT method, we solve the effective quantum
impurity model by the iterated perturbation theory (IPT), which
is the second order self-energy approximation around the
Hartree-Fock (HF) term [18,19]

�(ω) = �HF + �(2)(ω) (A1)

with

�HF = U 〈n̂σ 〉 = Un/2 ; (A2)

�(2)(ω) = lim
iωn→ω

U 2

β2

∑
m,p

G(iωn + iνm)G(iωp + iνm)G(iωp),

(A3)

where G is the propagator for the noninteracting electrons
(U = 0) connected to the impurity site through a hybridiza-
tion function �(ω) : G(ω) = 1/(ω + μ − �(ω)), μ being the
chemical potential. Since �(ω) is unknown, we determine G
through the Dyson equation once we evaluate the local Green’s
function for a given lattice (steps are discussed below).

Ucd , in Eq. (1) of the main text, is treated as the site-disorder
potential v through the coherent potential approximation
(CPA), given a disorder concentration x at half filling [22]
(n = 1). The DMFT+IPT+CPA approach takes the following
steps.

Step 1. Evaluate �IPT(ω) using Eqs. (A1)–(A3). In the first
iteration, since no information about G is available, we start
with a guess self-energy (typically �guess = �HF).

Step 2. Using the noninteracting density of states (DoS) D0,
find the local Green’s function:

G(ω) =
∑

k

1

ω+ + μ − εk − �(ω)

=
∫ ∞

−∞
dε

D0(ε)

ω+ + μ − ε − �(ω)
. (A4)

Step 3. For iteration number > 1, check convergence
in G(ω). Typically, convergence C = −Im

∫
dω (Gnow −

Gprevious). Stop if |C| < η where η is a tolerance factor
(typically 10−4 or 10−5) or else proceed to Step 4.
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Step 4. Find the CPA self-energy and Green’s function for
a given disorder concentration x:

�CPA(ω) = xv + x(1 − x)v2

ω − v(1 − x) − �(ω)
, (A5)

GCPA(ω) = 1 − x

ω − �(ω)
+ x

ω − v − �(ω)
, (A6)

where the Dyson equation gives �(ω) = ω + μ − v/2 −
�(ω) − G−1(ω), �(ω) = �IPT + �CPA being the total self-
energy.

Step 5. Assign G = GCPA and go back to Step 1 and repeat
consecutive steps.

Note that at the half filling the chemical potential is
determined from μ = (U + v)/2. Away from half filling one
needs to apply the generalized IPT ansatz and employ the
Luttinger theorem to determine μ in the metallic phase at zero
temperature [40].

In order to find the transport properties we use the transport
functions �xx and �xy for dc conductivity and Hall conduc-
tivity, respectively [25,41–44]:

σxx = cxx

∫ ∞

−∞
dω

−∂f (ω)

∂ω

∫ ∞

−∞
dε �xx(ε) A(ω,ε)2;

(A7)

σxy = cxyB

∫ ∞

−∞
dω

−∂f (ω)

∂ω

∫ ∞

−∞
dε �xy(ε) A(ω,ε)3

(A8)

where A(ω,ε) = −ImG(ω,εk = ε)/π ; cxx = e2π/(2h̄a) (e:
electron’s charge, a: lattice constant); cxy = 2e3π2a/(3h̄2); B

is the external magnetic field in a Hall experiment, and the
transport functions are [25]

�xx(ε) = 1

4d
D0(ε),

�xy(ε) = − 1

4d2
ε D0(ε) (A9)

with d being the dimension and D0(ε) = 2/(πt)
√

1 − (ε/t)2]
being the noninteracting density of states (DoS) for the Bethe
lattice used in our model.

The Hall coefficient (RH) and cotangent of Hall angle θH

are found from Eqs. (A7) and (A8):

RH = σxy/
(
σ 2

xxB
)
, (A10)

cot θH = σxx/σxy . (A11)

In our work, we select the hopping amplitude t = 1 and also
set cxx = cxy = B = d = 1.

2. Spectral density and self-energy

At Ucd = 0 and low interaction strength (U/t < Uc2/t), a
clear quasiparticle resonance in spectral density appears at the
Fermi level (ω = μ = 0). As soon as Ucd is turned on, the
height of the resonance starts diminishing and spectral density
gets broadened (see Figure 4). After a certain threshold value
of U th

cd (�0.35U at U = 2.0t and disorder concentration x =
0.45) the peak melts down to a dip and Landau’s Fermi liquid

-1.5 -1 -0.5 0 0.5 1 1.5
ω/t

0

0.1

0.2

0.3

0.4

0.5

0.6

A

Ucd = 0
Ucd = 0.20 U
Ucd = 0.30 U
Ucd = 0.35 U
Ucd = 0.40 U
Ucd = 0.45 U
Ucd = 0.50 U
Ucd = 0.60 U
Ucd = 0.80 U

FIG. 4. Spectral density A(ω/t) at various Ucd ’s for U = 2.0t

and x = 0.45. Finite Ucd leads to depletion of the height of the
quasiparticle resonance by broadening it around the Fermi level (ω =
0). At Ucd > 0.35U , the resonance starts disappearing by forming a
dip or pseudogap near the Fermi level.

(FL) quasiparticle picture no longer sustains. Further increase
of Ucd enhances the depth of the dip which finally opens a
gap at the Fermi level at Ucd = U crit

cd (�0.60U for x = 0.45,
U = 2.0t) indicating a metal-to-insulator (MIT) transition.
This result qualitatively agrees with earlier calculations with
other methods and cluster variations [20,23,45–48].

The destruction of the quasiparticle and hence FL at Ucd >

U th
cd is evident from the imaginary part of the self-energy �(ω).

Im�(ω) follows A + Bω2 behavior at very low Ucd in the
vicinity of ω = 0 (A = 0 when Ucd = 0). As Ucd is increased,
Im�’s quadratic dependence on ω wears off and instead a
peaklike structure arises near the Fermi level, again signifying
a transition from coherent to incoherent metal. In the coherent
regime the quasiparticle residue Z ≡ [1 − ∂Re�(ω)/∂ω]−1

ω=0
increases with Ucd and in the incoherent regime it loses any
physical meaning [22] (see Figure 5). It is intuitive and evident
from Figure 4 that Ucd competes against the onsite Coulomb in-
teraction U as the former broadens the quasiparticle resonance
whereas the latter shrinks it in the FL regime. Such broadening
effectively enhances the quasiparticle lifetime and hence Z

increases with Ucd � U th
cd , as already shown in the inset of

Figure 5. However, since disorder also piles up the incoherent
scattering, Ucd > U th

cd eventually leads to an insulating gap in
the spectral density even though the clean system (Ucd = 0
case) is metallic. Therefore increasing onsite interaction U

encourages coherent-to-incoherent metal transition to occur
sooner and hence U th

cd and U crit
cd diminishes. Figure 6 approves

the same plot for x = 0.5.

APPENDIX B: BOSONIZATION METHOD

Here we present some details of the bosonization approach
used in the main text.
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FIG. 5. Imaginary part of self-energy plotted (with −1/π factor)
as functions of ω at various Ucd ’s at U = 2.0t and x = 0.45. For low
Ucd , Im�(ω) behaves FL-like: Im�(ω → 0) = A + Bω2 (A = 0 at
Ucd = 0). However, for Ucd = U th

cd � 0.35U , FL starts developing
a peak near the Fermi level signifying incoherent or bad metallic
behavior. The inset shows that quasiparticle residue Z increases as
Ucd is enhanced up to U th

cd , beyond that Z becomes meaningless or
unphysical.

1. Wolff model

The Wolff model bears the same relation to the lattice
Hubbard model as the Anderson impurity model bears to the
periodic Anderson model. It describes a band of conduction
electrons (dispersion denoted by ε̃k) interacting only at site-0
via a Hubbard term

H W =
∑
k,σ

ε̃k c
†
kσ ckσ + Un0↑n0↓ − μ

∑
σ

n0σ . (B1)

2 2.2 2.4 2.6 2.8 3 3.2
U

0.3

0.4

0.5

0.6

0.7

U
cd

cr
it /U

FIG. 6. U crit
cd vs U for x = 0.5.

This impurity model can also be recast as

H W =
∑

σ

[
ivF

∫ ∞

−∞
dy �†

σ (y)∂y�σ (y)

+ U

2
: �†

σ (0)�σ (0) :: �
†
σ̄ (0)�σ̄ (0) :

−μ : �†
σ (0)�σ (0) :

]
, (B2)

where the radial motion of the band electrons is described by
chiral (right movers) real space fermion fields �σ (y), vF =
∂kε̃k|k=kF

, σ̄ = −σ and : Â : implies the normal ordering of Â

(: Â :≡ Â − 〈0|Â|0〉; |0〉 is the ground state). We want to use
the standard bosonization identity

�σ (y) = 1√
2πα

ei�σ (y);

�σ (y) = √
π

[
φσ (y) −

∫ y

−∞
dy ′ 	σ (y ′)

]
, (B3)

where φσ (y) and 	(y) are the conjugate bosonic fields satis-
fying the commutation [φσ (y),	σ ′ (y ′)] = iδσσ ′δ(y − y ′) and
α is the ultraviolet cutoff [49].

Now we introduce the charge and spin field as

�C =
∑

σ

�σ ; �S =
∑

σ

σ�σ (B4)

and break the Hamiltonian into charge (C) plus spin (S) parts:

H W = H W
C + H W

S (B5)

with

H W
C = vF

2

∫ ∞

−∞
dy

[
	2

C(y) + (∂yφC(y))2
]

− Un0 − μ√
2π

∂y�C(0) + U

8π2
(∂y�C(0))2 , (B6)

H W
S = vF

2

∫ ∞

−∞
dy[	S + (∂yφC(y))2] − U√

2π
(∂y�S(0))2

− U

8π2
(∂y�S(0))2 , (B7)

: �†
σ (0)�σ (0) := 1

2π
∂y�σ (0) , (B8)

and

n0 = 〈�†
σ (0)�σ (0)〉U=0 (B9)

consider as the ground state occupancy. Now once we resolve
the bosonic field operators into their Fourier components, i.e.,

φν(y) =
∑

k

1√
2|k| (aν,k eiky + a

†
ν,k e−iky)e−α|k|/2, (B10)

	ν(y) = −i
∑

k

√
|k|
2

(aν,k eiky − a
†
ν,k e−iky)e−α|k|/2 (B11)
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(where ν = C,S), we reexpress the Hamiltonians in terms of
momentum based bosonic operators aν,k:

H W
C =

∑
k>0

ωka
†
C,kaC,k+ i

√
2ρ(Un0−μ)

∑
k>0

√
ωk(aC,k−a

†
C,k)

− ρU

2

∑
k,k′>0

(aC,k − a
†
C,k)(aC,k′ − a

†
C,k′) (B12)

H W
S =

∑
k>0

ωka
†
S,kaS,k + ρU

2

∑
k,k′>0

√
ωkωk′

× (aS,k − a
†
C,k)(aS,k′ − a

†
S,k′ ), (B13)

where ωk ≡ kvF and ρ ≡ 1/(2πvF ).
Now within this formalism, it may not be straightforward

to find the finite temperature transport properties and capture
their distinct behaviors arising from HC and HS . However, for
a simple demonstration, one can show that zero temperature
response functions behave differently, particularly adopting the
equation of motion method and taking the zero frequency limit
[50], one can show that the local charge susceptibility:

χC = 1

ρ(Uc + U )
(B14)

and the local spin susceptibility:

χS = 1

ρ(Uc − U )
(B15)

withUc ≡ 2ρ2. ClearlyχS is enhanced with increasingU while
χc is suppressed.

2. Effect of Falicov-Kimball interaction

The WFKM in Eq. (2) of the main text is written in the
impurity limit by separating the FK term

H HFKM = H W + Ucd

∫
dy

∑
σ

: �†
σ (0)�σ (0) : nd (y) .

(B16)

Upon bosonization, we find that the d electrons couple only to
the charge sector

H WFKM
C = vF

2

∫ ∞

−∞
dy

[
	2

C(y) + (∂yφC(y))2
]

− U/2 − μ + Ucdn̄
d

√
2π

∂x�C(0)

+ U

8π2
(∂y�C(0))2 , (B17)

H WFKM
S = vF

2

∫ ∞

−∞
dy[	S + (∂yφC(y))2] − U√

2π
(∂y�S(0))2

− U

8π2
(∂y�S(0))2, (B18)

where n̄d is the average d occupancy that depends on the
disorder distribution (x in DMFT+CPA context).

Similar expressions have been found by Brydon and Gulácsi
[51] for the Falicov-Kimball model while they considered
spinful d electrons and Klein operators. As evident from
Eq. (B18), the spin sector, however, does not experience Ucd ,
and continues to exhibit characteristics of the Wolff model
[where Ucd = 0; cf. Eq. (B15)].

Again in a similar fashion, the Hamiltonians in momentum-
space representation will be

H WFKM
C =

∑
k>0

ωka
†
C,kaC,k + i

√
2ρ(Un0 − μ+Ucdn̄

d )

×
∑
k>0

√
ωk(aC,k − a

†
C,k)

− ρU

2

∑
k,k′>0

(aC,k − a
†
C,k)(aC,k′ − a

†
C,k′) (B19)

H WFKM
S =

∑
k>0

ωka
†
S,kaS,k + ρU

2

∑
k,k′>0

√
ωkωk′(aS,k − a

†
S,k)

× (aS,k′ − a
†
S,k′ ). (B20)

Here the terms that appear in the form A(k)a†
ν,kaν,k +

iB(k)(aν,k − a
†
ν,k) + C(k)) can be easily rearranged as

A(k)b†ν,kbν,k − B2(k)/A(k); bν,k ≡ aν,k − iB(k)/A(k) =
aν,k − i(Un0 − μ + Ucd〈nd〉)/(vF

√
k), which is nothing but

a Tomonaga-Luttinger model with shifted oscillator modes,
as first demonstrated by Schotte and Schotte in order to
solve the x-ray edge problem [31]. The shift iB(k)/A(k)
clearly depends on the strength of FK interaction. The form
C(k,k′)(aν,k − a

†
ν,k)(aν,k′ − a

†
ν,k′) in the last term becomes

C(k,k′)(bν,k − b
†
ν,k)(bν,k′ − b

†
ν,k′).

Thus we see that the high-dimension spin-charge separation
addressed to the main text arises because Ucd shifts the
charge bosonic modes [cf. Eq. (B17)] but does not affect
the spin bosons. Thus, the charge fluctuation modes develop
low-energy incoherent structure due to an “orthogonality
catastrophe” due to the sudden switching on of the FK potential
(Ucd ), while the spin fluctuation modes continue to exhibit
an infrared polelike structure. One may say that the holons,
viewed as emergent, collective charge fluctuation modes have a
branch-cut propagator, while the spinons, viewed as emergent,
collective spin fluctuation modes, have a pole in the associated
propagator.
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