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Spin-density wave state in simple hexagonal graphite
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Simple hexagonal graphite, also known as AA graphite, is a metastable configuration of graphite. Using
tight-binding approximation, it is easy to show that AA graphite is a metal with well-defined Fermi surface.
The Fermi surface consists of two sheets, each shaped like a rugby ball. One sheet corresponds to electron
states, another corresponds to hole states. The Fermi surface demonstrates good nesting: a suitable translation
in the reciprocal space superposes one sheet onto another. In the presence of the electron-electron repulsion, a
nested Fermi surface is unstable with respect to spin-density-wave ordering. This instability is studied using the
mean-field theory at zero temperature, and the spin-density-wave order parameter is evaluated.
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I. INTRODUCTION

Since recent isolation of the graphene layer [1], the interest
to layered carbon systems was reignited. It has been known
for some time already that such systems are very diverse, and
demonstrate interesting many-body electron properties. For
example, graphite in magnetic field undergoes [2] a transition
into a field-induced charge-density-wave (CDW) state. After
intercalation, graphite may become a superconductor. For
example [3], the critical temperature for graphite intercalated
with Ca equals to Tc = 11.5 K, as for Yb-intercalated graphite,
it is characterized by Tc = 6.5 K.

In this paper, a purely carbon system, simple hexagonal
graphite [also known as AA graphite (AA-G)] is discussed.
A fragment of simple hexagonal lattice is shown in Fig. 1. It
is believed [4] that the simple hexagonal lattice has higher
energy than the hexagonal (also referred to as ABA) and
rhombohedral (ABC) lattices. In other words, among the three
possible highly symmetric layered structures of carbon, the
simple hexagonal lattice is the least stable. This implies that
experimental realization of the AA-G is bound to run into
difficulties: AA lattice will try to relax into either ABA or
ABC structures to reduce the chemical energy. Yet, samples
of AA-G (as well as bilayer and multilayer AA graphene,
which are similar to the AA-G) were synthesized by several
groups [5–8]. These experimental advances make the studies
of electron properties of the AA-G a timely theoretical task.

From the band theory standpoint, the AA-G is a metal
with a well-defined Fermi surface [4,9,10]. The Fermi surface
consists of two sheets, or two components. One component cor-
responds to electron states, the other component corresponds
to hole states. Both sheets have shapes of rugby balls. The sheet
shapes are almost identical, and suitable translation superposes
them. The latter property of the Fermi surface is called nesting.

A Fermi surface with the nesting is unstable with respect to
the spin-density-wave (SDW) order. The instability is driven
by electron-electron repulsion. The main purpose of this paper
is to discuss the SDW instability of the AA-G electronic liquid
at zero temperature. Using tight-binding approximation, we

will evaluate the Fermi surface structure of the AA-G, and
demonstrate that the nesting of the Fermi surface is indeed
present. After that, the SDW zero-temperature state will be
studied with the help of mean-field approximation.

The paper is organized as follows. In Sec. II we formu-
late the tight-binding description of the AA-G. The zero-
temperature mean-field calculations are performed in Sec. III.
Finally, Sec. IV presents both the discussion and the conclu-
sions of the study. Technically involved details are relegated to
the Appendices.

II. TIGHT-BINDING MODEL OF THE AA GRAPHITE

A. Geometry and tight-binding description of graphene

Tight-binding model of the AA-G is a straightforward
generalization of the tight-binding model of graphene. The
latter is mostly determined by the geometrical properties of
the honeycomb lattice of graphene (for more details, one can
consult a review on graphene, for example, Ref. [11]). The
graphene has hexagonal lattice consisting of two triangular
sublattices A and B (see Fig. 1). Thus, the elementary unit cell
of graphene contains two atoms. The elementary translation
vectors may be chosen as follows:

a1 = a

2
(3,−

√
3), a2 = a

2
(3,

√
3), (1)

where a ≈ 1.42 Å is the distance between the nearest-neighbor
carbon atoms. The reciprocal lattice vectors are

b1 = 2π

3a
(1,−

√
3), b2 = 2π

3a
(1,

√
3). (2)

The Dirac cones of the graphene are located in the corners of
the hexagonal Brillouin zone. Without loss of generality, we
can assume that these cones are centered at points

K =
(

2π

3a
,

2π

3
√

3a

)
, K′ =

(
2π

3a
,− 2π

3
√

3a

)
. (3)

For the single layer (thus, abbreviation “sl”) of graphene, the
simplest tight-binding Hamiltonian for π bonds of carbon
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FIG. 1. Simple hexagonal lattice of AA graphite. It consists of
layers of graphene stacked upon each other. Lattice vectors are a1,
a2, and az. The distance between neighboring atoms inside the layer
is a = 1.42 Å, while the distance between the layers is c ≡ |az| ≈
3.3 Å according to Ref. [4] and c ≈ 3.4 Å according to Ref. [5].
Elementary unit cell of the lattice of AA graphite consists of two
atoms corresponding to two nonequivalent sublattices of the graphene
layer. The SDW ordering doubles the lattice period in the z direction,
making spins configurations in neighboring graphene layers different
from each other. As a result, the magnetic unit cell contains four
atoms. Short thick arrows show the spin configuration inside this unit
cell.

atoms equals

H sl = −t
∑

〈nm〉σ
(d†

nAσdmBσ + H.c.). (4)

Here, d†
nασ and dnασ are the creation and annihilation operators

of the electron with spin projection σ , located at the unit cell
n = (n,m) (n and m are integers) in the sublattice α = A,B.
The summation in Eq. (4) is performed over nearest-neighbor
sites, and t ≈ 2.7 eV is the nearest-neighbor hopping integral.
We introduce the Fourier-transformed electronic operators
dkασ = ∑

n eikrα
n dnασ /

√
N , where rα

n is the position of a
carbon atom in the nth unit cell for sublattice α, while N
is the number of unit cells in the sample. We also define the
(pseudo)spinor

ψkσ =
(

dkAσ

dkBσ

)
. (5)

The Hamiltonian (4) can be rewritten as

Hsl =
∑
kσ

ψ
†
kσ Ĥ sl

k ψkσ , (6)

where 2 × 2 matrix Ĥ sl
k is

Ĥ sl
k = −t

(
0 f (k)

f ∗(k) 0

)
. (7)

In this expression, function f is equal to

f (k) = e−iakx

[
1 + 2e3iakx/2 cos

(√
3

2
aky

)]
. (8)

For a given value of quasimomentum k, the eigenvalues of
Eq. (6) are equal to ε

(1,2)
k = ±t |f (k)|. Near the Brillouin zone

corners, function f (k) can be expanded as

f (K + q) ≈ 3a

2
e− 2πi

3 (qy − iqx), (9)

f (K′ + q) ≈ 3a

2
e− 2πi

3 (−qy − iqx). (10)

If we substitute Eqs. (9) and (10) into Hamiltonian (6), the
latter becomes equivalent to two two-dimensional (2D) Dirac-
Weyl Hamiltonians of massless relativistic fermions. Their
dispersion is

ε(1,2)
q = ±vF|q| . (11)

Here, the Fermi velocity vF = 3at/2 plays the role of speed of
light.

B. Tight-binding description of the AA graphite

Hamiltonian (6) can be easily modified to describe AA
graphite. The generalized Hamiltonian should account for a
macroscopic number of stacked graphene layers coupled by
single-electron hopping. Electrons with different spins are
decoupled from each other. Consequently, we can write

H AA =
∑

σ

H AA
σ , (12)

where

H AA
σ = −t

∑
〈nm〉i

(d†
niAσ dmiBσ + H.c.)

− t0
∑
niα

(d†
ni+1ασ dniασ + H.c.). (13)

In this expression, integer i enumerates the layers. The first
sum describes the in-layer electron hopping, while the second
sum corresponds to the nearest-neighbor interlayer hopping.
The interlayer hopping amplitude t0 is about 0.3–0.4 eV.

Elementary unit cell of the AA-G contains two atoms and is
characterized by vectors a1, a2, and az = c ez, where ez is the
unit vector along the z axis perpendicular to the layers, while
c ≈ 3.3 Å is the interlayer distance. Reciprocal unit cell of the
AA-G is characterized by vectors b1, b2, and bz = 2πez/c.
We introduce Fourier-transformed operators

dkασ = 1√
N

∑
nj

eikrα
nj dnjασ . (14)

Here, vectors rα
nj = rα

n + jaz describe positions of sites in
the AA graphite, N is the number of elementary unit cells
in the three-dimensional (3D) sample of graphite, and k =
(kx, ky, kz) now is a 3D momentum. Its 2D projection, k‖ =
(kx,ky), is confined to the usual hexagonal Brillouin zone of
the single-layer graphene, while kz lies in the region 0 < kz <

2π/c. The Brillouin zone of the AA-G has a shape of right
hexagonal prism with height 2π/c (see Fig. 2).
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FIG. 2. Fermi surface of the AA-G inside the first Brillouin zone
calculated for t = 2.7 eV and t0 = 0.4 eV. The Brillouin zone is
shifted by −π/(2c) along the z axis for clarity. The Fermi surface
emerges near each corner of the Brillouin zone. The Fermi surface
consists of two sheets with a shape of a rugby ball. The lower sheet is
electronlike, while the upper one is the holelike. Two sheets coincide
upon the translation by the nesting vector Q0 = (0, 0, π/c).

In terms of spinor (5) (where now k is the 3D vector),
Hamiltonian (13) takes the form

H AA
σ = −

∑
k

ψ
†
kσ

(
2t0 cos(kzc) tf (k‖)

tf ∗(k‖) 2t0 cos(kzc)

)
ψkσ . (15)

This Hamiltonian can be easily diagonalized. The correspond-
ing bands are

ε
(1)
k = −2t0 cos(kzc) − t |f (k‖)| ,

(16)
ε

(2)
k = −2t0 cos(kzc) + t |f (k‖)| .

In a generic situation, the Fermi surface of the AA-G consists
of two sheets defined by equations ε(1,2) = μ, where μ is the
chemical potential. In this paper, we consider the undoped
compound only. As we will show below, this corresponds to
the case μ = 0. For such a value of μ the Fermi surface sheets
are given by the relations

ε
(1)
k = 0 ⇒ 2t0 cos(kzc) = −t |f (k‖)| , (17)

ε
(2)
k = 0 ⇒ 2t0 cos(kzc) = t |f (k‖)| . (18)

The AA-G Fermi surface is shown in Fig. 2. The sheet
corresponding to the band ε

(1)
k is the hole sheet because the

component of the velocity vector v(1)
k = ∂ε

(1)
k /∂k normal to

the sheet is negative for all momenta on this sheet. Similarly,
one can prove that the sheet corresponding to the band ε

(2)
k

is electronlike. The states inside the electron (hole) sheet are
filled (empty). Since the sheets have identical volumes, the total
number of electrons in the system per atom is equal to unity.
Thus, the case μ = 0, indeed, corresponds to the undoped
AA-G. The Fermi surface of the AA-G has been studied in
several publications [4,9,10]. The results of theses studies are
similar to those shown in Fig. 2.

The surfaces specified by Eqs. (17) and (18) can be super-
posed by a parallel translation along the z axis. Indeed, after
transformation kz → kz + π/c, Eq. (17) becomes Eq. (18),
and vice versa. When a hole Fermi surface sheet may be
superposed with an electron sheet by a suitable translation in
momentum space, one refers to such a Fermi surface as nested.
The translation vector superposing the sheets is called a nesting
vector. In our case, the nesting vector is

Q0 =
(

0,0,
π

c

)
. (19)

The bands ε
(1)
k and ε

(2)
k satisfy the relation ε

(1)
k+Q0

= −ε
(2)
k . A

Fermi surface with nesting becomes unstable in the presence
of arbitrary weak electron-electron repulsion. Vector Q0 char-
acterizes the spatial oscillations of the most unstable mode.
The instability will be discussed in the next section.

III. SPIN-DENSITY WAVE IN THE AA GRAPHITE

The instability of the electron liquid with a nested Fermi
surface is a well-known feature. In the majority of pa-
pers studying the systems with Fermi surface nesting, it is
accepted that the electron-electron interaction stabilizes the
spin-density-wave ground state. Such a picture is used, for
example, to describe antiferromagnetism in chromium and its
alloys [12,13], superconducting iron pnictides [14–16], and
AA-stacked bilayer graphene [17–19]. Minimal model with
electron interaction is the Hubbard model. It accounts for onsite
electron-electron interaction only. In this paper, we will study
the AA-G version of the Hubbard model in the framework of
the mean-field approximation. The Hamiltonian of this model
is H = H AA + Hint, where H AA is given by Eq. (12), and

Hint = U
∑
niα

(
nniα↑ − 1

2

)(
nniα↓ − 1

2

)
. (20)

Parameter U > 0 characterizes onsite electron-electron repul-
sion, and operator nniασ = d

†
niασ dniασ .

In the SDW state, each site acquires a nonzero magnetic
moment. We assume here that all spins are directed parallel or
antiparallel to the z axis. Thus, the nonzero spin projections
are Sz

niα = (〈nniα↑〉 − 〈nniα↓〉)/2. We assume also that the
total charge in each site remains constant, that is, 〈nniα↑〉 +
〈nniα↓〉 = 1. The nesting vector Q0 determines the form of the
spin-density wave in real space. Specifically, one can write for
the SDW state under study the following equality:

Sz
njα = eiQ0rα

nj Sα. (21)

Substituting expression (19) for Q0 into Eq. (21), one derives

Sz
njα = (−1)j Sα. (22)

This shows that spin arrangements in odd and even layers
are different from each other: spin polarizations at two sites
separated by vector az are antiparallel. Yet, Eq. (22) does not
specify Sα . Precise structure of Sα has physically relevant
consequences. For example, the case SA = SB corresponds
to the antiferromagnetically ordered ferromagnetic layers,
while in the case SA = −SB we obtain the so-called G-type
antiferromagnetism, where both in-plane and out-of-plane
neighboring spins are antiparallel. One can prove that for the
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case SA = SB , the gap at the Fermi level does not arise and
this state is unstable. At the same time, the SDW state with
SA = −SB does open the gap at the Fermi level for arbitrary
small U , and corresponds to the mean-field ground state of the
model (20). Spin configuration for this SDW order is shown in
Fig. 1.

To describe such an ordered state, we introduce the SDW
order parameter

�iα = U

2
(n̄iα↑ − n̄iα↓). (23)

Here, n̄iασ = 〈nniασ 〉. The order parameter satisfies the condi-
tions

�iα = (−1)i�α, �A = −�B ≡ �. (24)

In mean-field approximation, we decompose the density
operator in Eq. (20) as follows: nniασ = n̄iασ + δnniασ , where
operators δnniασ = nniασ − n̄iασ describe fluctuations near the
average density n̄iασ . Mean-field interaction Hamiltonian is
obtained by neglecting the terms quadratic in δnniασ . As a
result, we derive

H MF
int =

∑
niα

[
−�iα(nniα↑ − nniα↓) + �2

iα

U

]
. (25)

The considered SDW state doubles the lattice period in the z

direction, while preserving the translation invariance along the
layers. Consequently, the elementary cell in the ordered phase
contains four sites: two sites in one layer and two sites in an
adjacent layer. Due to the doubling of the elementary cell, the
Brillouin zone shrinks in the kz direction: now, projection kz

varies from 0 to π/c. For further analysis, it is convenient to
introduce the following 4-component spinor:


kσ =
√

2

N
∑
nj

eikrα
n2j

⎛
⎜⎜⎜⎝

dn2jAσ

dn2jBσ

dn2j+1Aσ

dn2j+1Bσ

⎞
⎟⎟⎟⎠. (26)

In terms of this spinor, the total mean-field Hamiltonian can
be written as

H MF = 2N �2

U
+

∑′

kσ



†
kσ Ĥ MF

kσ 
kσ , (27)

where the summation symbol with prime denotes the summa-
tion over the reduced Brillouin zone, and 4 × 4 matrix Ĥ MF

kσ

equals to

Ĥ MF
kσ = −

⎛
⎜⎝

�σ tf (k‖) t0g(kz) 0
tf ∗(k‖) −�σ 0 t0g(kz)
t0g

∗(kz) 0 −�σ tf (k‖)
0 t0g

∗(kz) tf ∗(k‖) �σ

⎞
⎟⎠. (28)

Here, �↑ = �, and �↓ = −�, and function g is defined as
g(kz) = 1 + e2ikzc. Matrix Ĥ MF

kσ can be easily diagonalized.
The mean-field eigenenergies are independent of electron spin
and equal to

E
(1)
k = −

√
�2 + [t |f (k‖)| + 2t0 cos(ckz)]2 , (29)

E
(2)
k = −

√
�2 + [t |f (k‖)| − 2t0 cos(ckz)]2 , (30)

E
(3)
k =

√
�2 + [t |f (k‖)| − 2t0 cos(ckz)]2 , (31)

E
(4)
k =

√
�2 + [t |f (k‖)| + 2t0 cos(ckz)]2 . (32)

At half-filling and zero temperature T = 0, the first two bands
are filled, the last two are empty, and the system is an insulator
with the gap equal to 2�. Consequently, the zero-temperature
mean-field energy is

EMF = 2N �2

U
+ 2

∑′

k

(
E

(1)
k + E

(2)
k

)
. (33)

Self-consistent equation for the order parameter is obtained
by minimization of EMF with respect to �. Taking into account
that

∑′
k[E(1)

k + E
(2)
k ]=∑

kE
(2)
k , where the summation on the

right-hand side is performed over the full AA-G Brillouin zone,
we can write the self-consistency equation ∂EMF/∂� = 0 as

2

U
=

∫ ∞

−∞
dε

ρ(ε)√
�2 + ε2

. (34)

In this equation, the AA-G density of states ρ(ε) is defined
according to the formula

ρ(ε) =
∫

d3k
vBZ

δ[t |fk‖ | + 2t0 cos(kzc) − ε], (35)

in which the integration is performed over the full AA-G
Brillouin zone, and vBZ = 16π3/(3

√
3ca2) is the Brillouin

zone volume. Since for any k‖ one has 0 < |f (k‖)| < 3, the
density of states (35) is nonzero in the range −2t0 < ε <

3t + 2t0.
It is convenient to express the density of states [Eq. (35)] as

a sum

ρ(ε) = ρgr(ε)�(ε) + δρ(ε), (36)

where ρgr(ε) is the density of states of the single-layer
graphene, �(ε) is the Heaviside step function, and correction
δρ(ε) vanishes when t0 = 0. The term δρ corresponds to
modification of the density of states due to the interlayer
hopping. In the (realistic) limit t0 � t and for small energy
ε � t the following approximate expression for δρ may be
established (see Appendix A):

δρ(ε) ≈ 2√
3π2t2

�(2t0 − |ε|)

×
[√

4t2
0 − ε2 − |ε| arccos

( |ε|
2t0

)]
. (37)

Formally, this expression was derived in the low-energy limit
ε � t . Fortunately, decomposition (36) with δρ given by
Eq. (37) works quite well almost everywhere, except near the
van Hove singularity ε ∼ t , and the band edge ε ∼ 3t (see
discussion in Appendix A and Fig. 4).

Equations (36) and (37) allow one to estimate the integral
in Eq. (34) and obtain an analytical expression for the SDW
order parameter in the limit � � t . To this end, we rewrite
Eq. (34) in the following manner:

2

U
=

∫ 3t

0
dε

ρgr(ε)√
�2 + ε2

+
∫ 2t0

−2t0

dε
δρ(ε)√
�2 + ε2

. (38)
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FIG. 3. The dependence of the SDW order parameter on the onsite
repulsion energy U . The plots are calculated for t0 = 0.37 eV and t =
2.7 eV, which corresponds to the ratio t0/t = 0.136. Red solid curve
is found numerically by solving Eq. (34), while dashed blue curve
corresponds to approximate formula (42). Inset shows the dependence
of � on t0 calculated by solving Eq. (34) at U/Uc = 0.9.

Since ρgr(ε) ∝ ε at small energies, the first integral in this
formula is well defined for � → 0. It equals

∫ 3t

0
dε

ρgr(ε)√
�2 + ε2

≈
∫ 3t

0
dε

ρgr(ε)

ε
≡ 2

Uc

. (39)

Constant Uc, defined by this equation, has the dimension
of energy. Its physical meaning will be described below.
Numerical calculations of the integral (39) with full density of
states of graphene give Uc = 2.23t . For t = 2.7 eV, we have
Uc ≈ 6.02 eV.

The second integral in Eq. (38) diverges logarithmically
when � vanishes. It requires a more cautious approach. The
detailed calculations are relegated to Appendix B. The resultant
expression is

∫ 2t0

−2t0

dε
δρ(ε)√
�2 + ε2

≈ 2ρ0

(
ln

8t0

�
− 2

)
, (40)

where the AA-G density of states at the Fermi level equals

ρ0 = ρ(0) = δρ(0) ≈ 4t0√
3π2t2

. (41)

Combining Eqs. (38), (39), and (40), we derive the following
relation for the SDW order parameter:

� ≈ 8t0 exp

[
− 1

ρ0

(
1

U
− 1

Uc

)
− 2

]
. (42)

This equation is valid for small �. As the gap grows, this
analytical expression becomes progressively less accurate. In
such a situation, one is forced to solve Eq. (34) numerically. The
dependence of � on U calculated numerically and estimated
according to approximation (42) are shown in Fig. 3. The data

in the figure demonstrate an excellent agreement between the
two approaches if U < Uc.

IV. DISCUSSION

A. Single-layer graphene physics in SDW transition

Our theory implies that the AA-G is a SDW insulator at low
temperature. The value of the insulating gap 2� substantially
depends on the interaction parameter U and the interlayer
hopping amplitude t0 [see inset to Fig. 3 and Eq. (42)]. The
sensitivity to U is a familiar feature of a mean-field theory. As
for the dependence on t0, it is a consequence of the fact that
the AA-G density of states at the Fermi level ρ0 is proportional
to t0. Reducing t0 to zero, we enter a regime where our model
describes a collection of decoupled graphene layers. Due to its
importance, let us analyze this limit in more detail.

Equation (42) implies that � → 0 when t0 → 0, provided
that U is smaller than the critical threshold Uc. For U > Uc,
Eq. (42) predicts that � diverges when t0 → 0, indicating
the failure of approximation (42) for large U . The value
Uc ≈ 2.23t ≈ 6.02 eV is found using Eq. (39). It can be also
calculated from Eq. (34) in the limit � = t0 = 0.

The difference between U < Uc and U > Uc regimes is
physically significant. Once U > Uc, Eq. (34) has a solution
even for uncoupled layers, when t0 = 0. In other words, the
ground state of the Hubbard model for single graphene layer
is antiferromagnetic for U > Uc. This is a well-known result
[20–22]. The experiments show that graphene remains
semimetal even at low temperatures. Thus, we expect that
U < Uc. The approach exploring Monte Carlo simulations
[20,21] gives Uc/t ≈ 4.5 (or Uc ≈ 12.15 eV for t = 2.7 eV),
which is larger than the presented above mean-field result Uc ≈
2.23t ≈ 6.02 eV [22]. Ab initio calculations of the Hubbard U

in graphene performed in Ref. [23] give U ≈ 9.3 eV, that is,
the value close, but somewhat smaller than critical value Uc

obtained by Monte Carlo simulations. While the single-layer
graphene physics cannot generate the ordering transition for
U < Uc, it affects the magnitude of � significantly: large factor
exp[1/(ρ0Uc)] in Eq. (42) introduces strong renormalization of
preexponential energy scale t0.

B. Comparison with AA bilayer graphene

The presented theory of the SDW order in AA graphite is an
extension of SDW theory for the AA bilayer graphene, whose
lattice has similar geometric structure. For the SDW order in
AA bilayer graphene, the mean-field calculations have been re-
ported in Refs. [17–19,24,25], the investigations by numerical
methods have been presented in Refs. [26–29]. These results,
as well as some others, were reviewed in Ref. [30].

Experimental data for AA graphene are quite limited. This
is a consequence of small number of samples. If one is
interested in possible SDW in AA bilayer graphene, there is
additional experimental complication. The bilayer, being true
2D material, contains too little amount of matter for currently
extant neutron scattering techniques to be of use. On the other
hand, AA graphite is a 3D system. Therefore, synthesis of
sufficiently bulky AA graphite samples may bear significant
implications for understanding of possible magnetism of the
AA bilayer graphene.
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C. Other types of order parameters

As it follows from Eqs. (21) and (22), the induced mag-
netization oscillates in space with the nesting wave vector
Q0. This spatial modulation is an important feature for it
guarantees the coupling of the two nested Fermi surface
sheets, leading to the SDW instability. There are other order
parameters, which oscillate in space with Q0. One of them
was already mentioned above. It is the order parameter of the
SDW type, with magnetization described by Eq. (21) in which
Sα is chosen according to SA = SB . This order corresponds to
layered antiferromagnetic state. While it oscillates with the
required wave vector Q0, it does not open a gap at Fermi
level, and only modifies the Fermi surface. This can be easily
shown performing calculations similar to that presented in the
previous section. As a result, such an order cannot benefit from
nesting. Similar argumentation was used in Ref. [17] for the
AA bilayer graphene.

Another possible order parameter oscillating with wave
vector Q0 describes the CDW state. It can be written as

�CDW
njα = U

2
(〈nnjα↑〉 + 〈nnjα↓〉) = eiQ0rα

nj �CDW
α . (43)

Similar to Eq. (24), the gap at Fermi level is opened, when
�CDW

A = −�CDW
B . However, in our model, the CDW is stable

only if U < 0, otherwise, such an order parameter is absolutely
unstable. (In principle, even in repulsive models, the CDW can
be induced by a sufficiently strong magnetic field [2,31,32], or
lattice participation [33]. However, studying these factors is
beyond the present discussion.)

D. Denesting

It is important to discuss the effects of the violation of
perfect nesting in our model. Analyzing Eq. (42), we notice that
�vanishes exponentially for vanishing interactionU , however,
it remains finite for any finite U . In this respect, our calcula-
tions are very similar to the BCS result for superconducting
order parameter. This feature is a consequence of the perfect
nesting of the Fermi surface sheets. The perfect nesting is an
approximation. It may be destroyed by longer-range hopping
processes in the kinetic energy term. For a Fermi surface with
an imperfect nesting, the interaction parameter U must exceed
some critical strength U ∗ to induce the ordering transition
[16]. The value of U ∗ depends on a degree of the denesting.
Therefore, sufficiently strong denesting prevents SDW order
by pushing U ∗ above U .

In addition to the longer-range hopping amplitudes, the
denesting may be enhanced by doping: extra electrons “inflate”
the electron Fermi surface sheet and “deflate” the hole sheet.
The hole doping exerts the opposite effect on the sheets.
Regardless of the sign of the doped charge, the shapes of the
sheets become unequal after the doping, violating the nesting.
Doping-induced denesting destabilizes the homogeneous state
of the electron liquid. Theoretical studies of the inhomo-
geneous states (“stripes,” phase separation) were performed
for a variety of systems [15,19,34–44]. It follows from this
research that doped SDW systems have rich phase diagram
and demonstrate interesting physical phenomena. Therefore,
doped AA graphite might deserve a special investigation.

E. Motivation for the use of the Hubbard Hamiltonian

It is well known that the use of the Hubbard model, with
its extremely short-range interaction, may be partially justified
in case of metals with short screening length. Unfortunately,
the screening in AA graphite, as well as in graphene, bilayer
graphene, and related materials is rather poor due to vanishing
or low density of states at the Fermi energy.

For AA graphite, a possible alternative to the Hubbard
interaction is the use of the screened Coulomb interaction
consistent with small, but finite, number of the charge carriers.
However, we believe that at the present phase of the research,
the use of the Hubbard model is warranted. First of all, one
must remember that the SDW instability in our model is nesting
driven. Consequently, at the qualitative level, the SDW is fairly
insensitive to details of the interaction. Furthermore, the mean-
field calculations for the Hubbard Hamiltonian are simple and
well understood. This ensures that mathematical details of
the formalism will not obstruct the qualitative discussion. A
more rigorous and complex analysis could be executed at later
stages.

Currently, the Hubbard model is a common approach
employed for description of graphene and related materials
[45–49]. The ability of the Hubbard interaction to mimic
properties of the longer-range interaction is also discussed [50].
Thus, it appears that, while not without its flaws, the Hubbard
Hamiltonian is a suitable tool for the task at hand.

F. Conclusions

In this paper, we have studied SDW order in AA graphite.
Unlike the single-layer graphene, whose Fermi surface shrinks
to two Fermi points, AA graphite has a well-developed two-
sheet Fermi surface. This Fermi surface is a consequence
of interlayer tunneling, and it disappears when the tunneling
vanishes. The SDW instability is driven by the nesting of two
Fermi surface sheets. Straightforward mean-field calculations
allow one to estimate the SDW order-parameter magnitude.
The derived expression for the SDW magnetization shows
strong enhancement due to single-layer-graphene electron
states.
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APPENDIX A: CALCULATION OF DENSITY OF STATES

In this appendix, we calculate density of states ρ(ε), which
is defined by Eq. (35). In general, the argument of the δ function
in the integral of Eq. (35) is complicated. However, in the limit
ε � t and t0 � t one can replace t |fk‖ | ≈ vF|q|. In this regime,
we evaluate the integral in Eq. (35) explicitly:

ρ(ε) =
∫

d3k
vBZ

δ(t |fk‖ | + 2t0 cos(kzc) − ε)

≈ ND

∫
d2q dkz

vBZ
δ(vF|q| + 2t0 cos(kzc) − ε)
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= 4π

vBZ

∫ 2π/c

0
dkz

∫ ∞

0
q dq δ(vFq + 2t0 cos(kzc) − ε)

= 4π

cv2
FvBZ

∫ 2π

0
dγ (ε − 2t0 cos γ )�(ε − 2t0 cos γ ) .

(A1)

Symbol ND = 2 denotes the number of nonequivalent Dirac
points, and �(x) is the Heaviside step function. Taking into
account that vF = 3ta/2 and vBZ = 16π3/(3

√
3ca2), the den-

sity of states ρ(ε) can be expressed as

ρ(ε) = 2t0√
3π2t2

F (ε/2t0) , (A2)

where dimensionless function F (ξ ) is equal to

F (ξ ) =
∫ 2π

0
dγ (ξ − cos γ )�(ξ − cos γ ) = 2πξ�(ξ )

+ (2
√

1 − ξ 2 + 2ξ arcsin ξ − π |ξ |)�(1 − |ξ |) .

(A3)

Combining the latter equation with Eq. (A2), we determine

ρ(ε) = 2ε√
3πt2

�(ε) + 2√
3π2t2

�(2t0 − |ε|)

×
[√

4t2
0 − ε2 − |ε| arccos

( |ε|
2t0

)]
. (A4)

The first term in this equation corresponds to the well-known
low-energy approximation for the density of states of the
single-layer graphene:

ρgr(ε) ≈ 2|ε|√
3πt2

. (A5)

The second term, which is equal to δρ(ε) from Eq. (37), is the
correction due to the interlayer tunneling. This correction is of
the order of t0/t . It is nonzero only for |ε| < 2t0.

When the condition ε � t is violated, Eq. (A4) is no longer
valid, and more elaborate approach is necessary. Integrating
over k‖ = (kx,ky) in Eq. (35) one derives

ρ(ε) =
∫ 2π

0

dγ

2π
ρgr(ε − 2t0 cos γ )�(ε − 2t0 cos γ ). (A6)

This integral can be evaluated numerically, using, for example,
numerically exact graphene density of state ρgr(ε). As a result,
one accurately obtains the density of states for Hamiltonian
(12). However, for our mean-field treatment, a less rigorous
form of ρ(ε) is acceptable: we can employ decomposition (36)
with δρ given by the approximate expression (37). Figure 4
attests to the quality of this approximation. We see that both
functions are virtually identical except the energies near the
van Hove singularity ε = t and the high-energy band edge
ε = 3t . Such a success may be explained as follows. Expanding
Eq. (A6) in powers of t0, one writes

ρ(ε) ≈ ρgr(ε) + t2
0 ρ ′′

gr(ε) . (A7)

This expression is valid away from the van Hove singularity
and spectrum edges, where function ρgr(ε)�(ε) does not have
well-defined derivatives. In Eq. (A7) the correction of the order
of t0 is zero. Neglecting small terms of the order of t2

0 , we

FIG. 4. The density of states of the AA graphite versus energy.
The plots are calculated for t0 = 0.37 eV and t = 2.7 eV, which
corresponds to the ratio t0/t = 0.136. Solid red curve is the result
of numerical computation of integral in Eq. (35). Blue dashed curve
corresponds to formula (36) in which approximate expression (37)
for δρ was used.

conclude that, away from the points ε = 0, ε = t , and ε = 3t ,
we can approximate ρ(ε) ≈ ρgr(ε). Taking into account the
low-energy correction δρ(ε) [Eq. (37)], we capture the behavior
of the density of states near ε = 0. Quality of approximation
remains poor near ε = t and 3t . These regions, fortunately,
contribute weakly to the mean-field properties of the model.
Thus, we accept that Eqs. (36) and (37) give a very good
approximation to the AA-G density of states.

APPENDIX B: EVALUATION OF THE
SELF-CONSISTENCY EQUATION

In this appendix, we will evaluate the integral presented in
Eq. (40). It diverges when � → 0. To evaluate this integral,
the divergent term must be treated separately from the finite
contribution. To this end, we write∫ 2t0

−2t0

dε
δρ(ε)√
�2 + ε2

= I1 + I2 , (B1)

where the quantities I1,2 are defined by the following relations:

I1 =
∫ 2t0

−2t0

dε
δρ(ε) − δρ(0)√

�2 + ε2
, (B2)

I2 =
∫ 2t0

−2t0

dε
δρ(0)√
�2 + ε2

= 2ρ0 arsinh

(
2t0

�

)
. (B3)

Symbol ρ0 is defined by Eq. (41). For small � one has

I2 ≈ 2ρ0 ln

(
4t0

�

)
. (B4)

Integral I1 remains finite when � → 0 and can be approxi-
mated by its value at � = 0:

I1 ≈ 8t0√
3π2t2

∫ 2t0

0

dε

ε

[√
1 − ε2

4t2
0

− ε

2t0
arccos

(
ε

2t0

)
− 1

]
.

(B5)
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Since ∫ 2t0

0

dε

2t0
arccos

(
ε

2t0

)
= 1 , (B6)

∫ 2t0

0

dε

ε

[√
1 − ε2

4t2
0

− 1

]
= ln 2 − 1 , (B7)

we can estimate I1 as follows:

I1 ≈ 8t0√
3π2t2

(ln 2 − 2) = 2ρ0 (ln 2 − 2). (B8)

Combining this expression with Eq. (B4), one obtains∫ 2t0

−2t0

dε
δρ(ε)√
�2 + ε2

≈ 2ρ0

(
ln

8t0

�
− 2

)
. (B9)

This concludes the derivation of Eq. (40).
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