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Using finite-temperature determinantal quantum Monte Carlo calculations, we reexamine the pairing suscep-
tibilities in the Hubbard model on the honeycomb lattice, focusing on doping levels onto and away from the Van
Hove singularity (VHS) filling. For this purpose, electronic densities of 0.75 (at the hole-doping VHS) and 0.4
(well below the VHS) are considered in detail, where due to a severe sign problem at strong coupling strengths,
we focus on the weak-interaction region of the Hubbard model Hamiltonian. By analyzing the temperature
dependence of pairing susceptibilities in various symmetry channels, we find the singlet d + id wave to be the
dominant pairing channel both at and away from the VHS filling. We furthermore investigate the electronic
susceptibility to a specific chiral spin density wave (SDW) order, which we find to be similarly relevant at the
VHS, while it extenuates upon doping away from the VHS filling.
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I. INTRODUCTION

In recent years, graphene [1–3] has attracted a lot of
attention due to its unusual electronic properties. At charge
neutrality, corresponding to a half-filled lattice in the Hubbard
model description of graphene’s π -electron system, a vanish-
ing density of states at the Fermi level (the Dirac points) renders
a semimetallic state stable against instabilities from electron-
electron interactions, even in the intermediate-coupling regime
[4–7]. In contrast, upon doping well away from the Dirac points
through chemical doping [8] or electrical gating [9], correlation
effects are expected to no longer be limited to the strong-
interaction regime. Indeed, various possible phases, such
as superconducting instabilities, magnetism, and charge/spin
density waves, have been considered to emerge in doped
graphene: Several theoretical studies focused on superconduct-
ing states of correlated electrons on the honeycomb lattice of
graphene, mainly within a local Hubbard model description
[10]. Based on mean-field theory, Black-Schaffer and Doniach
[11] suggest that graphene may become a (d + id)-wave
superconductor over a wide range of doping, while Uchoa and
Castro Neto [12] suggest extended s-wave and (p + ip)-wave
pairing states. Functional renormalization group (FRG) theory
calculations proposed f -wave and (d + id)-wave instabilities
[13], and variational Monte Carlo [14,15] and auxiliary-field
quantum Monte Carlo studies [16] both support (d + id)-
wave pairing, while a variational cluster approximation and
a cellular dynamical mean-field theory study [17] suggest
a p + ip pairing symmetry. In general, this problem is far
from having a conclusion. An even more peculiar condition is
obtained upon doping the electronic system onto the Van Hove
singularity (VHS), where the noninteracting extended Fermi
surface exhibits perfect nesting. As a consequence, the pairing
mechanism may be different from the one at more generic
doping levels [18,19], and furthermore, the electronic system
might even host other types of orders, such as a Pomeranchuk

instability [20] or a chiral spin density wave (SDW) order [21].
Different scenarios have indeed been proposed: A renormaliza-
tion group study finds d + id pairing at the VHS filling in the
weak-coupling limit [22]. Using an FRG approach, Wang et al.
obtained a chiral SDW in the intermediate-interaction region at
the VHS filling, while d + id pairing was obtained away from
the VHS [23]. Another FRG study reports possible d + id or
SDW instabilities in the intermediate-interaction region at the
VHS and (d + id)- or f -wave pairing away from the VHS
[24]. More recently, a dynamic cluster approximation study
suggested that the (d + id)-wave pairing state dominates in
the weak-coupling regime, while for stronger interactions, a
(p + ip)-wave state strongly competes with the (d + id)-wave
state [25]. However, in this study, SDW instabilities have not
been considered. This state of affairs motivated us to examine
this problem using finite-temperature determinantal quantum
Monte Carlo (FT-DQMC), an essentially unbiased numerical
algorithm. The rest of this paper is organized as follows: In
Sec. II, we introduce the model that we consider and outline
the FT-DQMC approach. Then we analyze in Sec. III various
pairing channels of superconducting instabilities, while in
Sec. IV, we consider the chiral SDW instability and contrast its
behavior with other magnetic ordering channels. Finally, we
summarize our results in Sec. V.

II. MODEL AND METHOD

In this paper, we examine the effective pairing susceptibility
for various different pairing channels and identify the dominant
pairing channel for doping levels onto and away from the
VHS. Moreover, we also consider the chiral SDW instability
that was proposed by Li [21] and examine to what extent this
chiral SDW instability affects the behavior at the VHS filling
and upon doping away from the VHS point. For this analysis,
we consider the Hubbard model on the honeycomb lattice to
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FIG. 1. Rhombic honeycomb lattice geometry for L = 6, with
Ns = 72 sites. Dashed lines enclose the two-site unit cells, and the
bipartite sublattice structure is indicated by site-centered letters A

and B.

describe the doped graphene system. This model is given in
terms of the Hamiltonian

H = −t
∑
〈i, j〉 σ

(c†iσ cjσ + c
†
jσ ciσ ) + U

∑
i

ni↑ni↓

−μ
∑

i

(ni↑ + ni↓), (1)

where t is the fermion hopping amplitude between nearest-
neighbor sites on the honeycomb lattice (here, i and j denote
lattice vectors), U denotes an on-site repulsion, and μ is the
chemical potential that allows us to tune the electron density,
denoted ρ in the following. We work in units of t = 1 in the
following.

The numerical algorithm used in this paper is the FT-DQMC
method [26,27]. We consider finite rhombic clusters of the
bipartite honeycomb lattice with periodic boundary conditions
and with Ns = L × L × 2 lattice sites, mainly for L = 6 and
L = 12 in order to ensure that both the K (Dirac) and M

points of the hexagonal Brillouin zone are included in the
discrete lattice momentum space. Close to the VHS filling, we
also consider other even linear system sizes such as L = 10
and L = 14 (for even L, the M points are included in the
discrete lattice momentum space). The finite lattice geometry
for L = 6 in real space is shown in Fig. 1. The simulations
were performed at finite temperatures, and we then analyzed
the observed tendencies upon lowering the temperature. In the
following, we are mainly interested in the doping level of the
VHS, where the electron density is ρ = 0.75 or ρ = 1.25. Due
to particle-hole symmetry, we considered the case of ρ = 0.75
explicitly.

However, upon doping beyond half filling, the FT-DQMC
method suffers from a severe sign problem, which worsens
upon lowering the temperature and increasing the interaction
strength [28]. To quantify the sign problem of the FT-DQMC
in the relevant parameter regime, we show in Fig. 2 the depen-
dence of the average sign, denoted 〈sign〉, on the interaction
strength U , the density ρ, and the temperature T for different
lattice sizes. As Monte Carlo errors decrease with the square
root of the number of independent samples, it is necessary
to run a simulation code 100 times longer to compensate,
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FIG. 2. The average FT-DQMC sign, 〈sign〉, for different lattice
sizes as a function of (a) interaction strength U , (b) density ρ, and
(c) temperature T .

for example, for an average sign of 0.1. Figure 2(a) shows
that at the VHS filling of ρ = 0.75, the average sign rapidly
drops to values below 0.1 beyond U = 2t at the considered
temperature of T/t = 1/10. Furthermore, a dip in 〈sign〉 at the
VHS filling of ρ = 0.75 is seen in the density dependence of
〈sign〉 in Fig. 2(b) for U/t = 2. For the considered temperature
of T/t = 1/12, this dip is more pronounced for the smaller
system sizes, while the average sign appears to converge upon
increasing L at this fixed temperature to a still conveniently
large value. However, as seen from Fig. 2(c), the average
sign shows a rapid drop with decreasing temperature also for
U/t = 2, which restricts us from accessing true ground-state
properties on large systems near the VHS filling.

Hence, depending on the doping level and in particular near
the VHS filling, we restricted our investigation to the weak-
to intermediate-interaction regime in order to still access low
temperatures that allow us to identify the onset of divergences
in the pairing or magnetic susceptibilities. Furthermore, in
order to compare the results for the VHS filling with those
at more generic fillings, we also performed further simulations
at ρ = 0.4, i.e., a doping level far below the VHS filling, where
the sign problem is less severe, and we can extend a bit farther
towards the stronger-interaction regime.

III. PAIRING CORRELATIONS

In order to probe for superconducting instabilities, we
examine the system’s susceptibility towards various previously
proposed pairing channels for this model. In particular, we
consider the nearest-neighbor (NN) extended s-wave, (d +
id)-wave, and (p + ip)-wave pairing correlations and consider
also next-nearest-neighbor (NNN) (d + id)-wave, (p + ip)-
wave, and f -wave pairings. In real space, these different
pairing channels are given in terms of appropriate form factors,

fNN,es(δl) = 1, fNN,d+id (δl) = ei(l−1) 2π
3 ,

fNN,p+ip(δl) = ei(l−1) 2π
3 +εs iπ ,

fNNN,d+id (δ′
l) = ei(l−1) 2π

3 , fNNN,p+ip(δ′
l) = ei(l−1) π

3 ,

fNNN,f (δ′
l) = ei 1+(−1)l

2 π , (2)
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FIG. 3. Phases of the considered pairing channels along the
corresponding directions on the honeycomb lattice: (a) NN extended
s wave, (b) NN d + id wave, (c) NN p + ip wave, (d) NNN d + id

wave, (e) NNN p + ip wave, and (f) NNN f -wave.

where the vectors δl ,l = 1,2,3 (δ′
l ,l = 1,2, . . . ,6) denote the

different NN (NNN) lattice directions from a given lattice site
and εs = 0 (1) for sites on the A (B) sublattice. Figure 3 shows
these various form factors explicitly. In the spin sector, the s

and d waves are singlet states, while p and f waves are triplet
states. The corresponding local pairing operators are thus given
as

�α i = 1√
Nα

∑
l

fα(δ(′)
l )

(
ci↑ci+δ

(′)
l ↓ ± ci↓ci+δ

(′)
l ↑

)
, (3)

where the plus (minus) sign is for triplet (singlet) pairing and
Nα are the corresponding normalization factors, with Nα = 3
(Nα = 6) for the NN (NNN) channels.

Within the QMC simulations, we can directly access the
temperature dependence of the pairing susceptibilities for the
various channels,

Pα = 1

Ns

∑
i, j

∫ β

0
dτ 〈�†

α i(τ )�α j(0)〉, (4)

where �
†
α i(τ ) = eτH�

†
α i(0)e−τH . These pairing susceptibili-

ties are, however, strongly affected by the enhanced response
of the free system at U = 0. This behavior is illustrated
in Fig. 4, which shows the different susceptibilities Pα as
functions of T on the L = 6 lattice for both ρ = 0.4 and
ρ = 0.75 in the noninteracting limit U = 0. While there are
no superconducting ground states in the noninteracting case,
the apparent divergence of Pα upon lowering T provides a
background to the susceptibility measurements in the interact-
ing case, in particular in the low-coupling regime that we can
access in the FT-DQMC simulations. We thus need to examine
the various pairing channels based on the effective pairing
interaction vertex [29]. In order to extract the corresponding
effective pairing susceptibilities, we compute in FT-DQMC
also the bare pairing contributions P̃α , for which two-particle
terms 〈c†i ↓(τ ) cj ↓(0) c

†
k ↑(τ ) cl ↑(0)〉 that appear in evaluating

Pα in Eq. (4) are replaced by the decoupled contributions
〈c†i ↓(τ ) cj ↓(0)〉〈c†k ↑(τ ) cl ↑(0)〉. The effective pairing suscep-
tibilities are then given as P eff

α = Pα − P̃α , where a positive
(negative) value of P eff

α signals an enhanced (suppressed)
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FIG. 4. Temperature dependence of the various pairing suscepti-
bilities Pα for the noninteracting system (U = 0), as obtained on an
L = 6 system for (a) ρ = 0.4 and (b) ρ = 0.75.

tendency towards pairing in the corresponding channel. By
definition, for the noninteracting case, P eff

α vanishes.
We now examine the interacting system and begin with the

case of an electron density ρ = 0.4, i.e., well below the VHS
filling. First, we consider the results obtained for the L = 6 lat-
tice with 72 sites. At this density the sign problem is sufficiently
moderate, and we can obtain P eff

α up to U/t = 4, as shown
in Figs. 5(a) to 5(d) for U/t = 1 to U/t = 4, respectively.
These results for the L = 6 lattice show that, consistently, both
the NN and NNN (d + id)-wave pairing susceptibilities are
enhanced upon lowering T for all the considered interaction
strengths. (We also measured the extended s-wave channel
susceptibility, but it is rather strongly suppressed in all the
interacting cases that we considered, and we thus do not include
it in Fig. 5 or any of the figures below.)

To assess the stability of this result with respect to finite-size
effects, we also performed simulations on the L = 12 system
with 288 sites, i.e., four times larger than the L = 6 lattice.
Since in Fig. 5 we find the prevailing pairing channel does not
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FIG. 5. Temperature dependence of the effective pairing suscep-
tibilities P eff

α at density ρ = 0.4 on the L = 6 lattice for (a) U/t = 1,
(b) U/t = 2, (c) U/t = 3, and (d) U/t = 4.
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FIG. 6. Temperature dependence of the effective pairing suscep-
tibilities P eff

α at density ρ = 0.4 on the L = 12 lattice for U/t = 2.

depend on the interaction strengths at ρ = 0.4, we concentrate
in Fig. 6 on the case of U/t = 2 for the L = 12 lattice. For
ρ = 0.4, the results on the L = 12 lattice are in accord with
the findings on the L = 6 lattice, and we conclude that (d +
id)-wave pairing forms the dominant pairing channel in this
doping regime. This is in good agreement with various previous
findings, as mentioned in the Introduction.

We next perform a similar investigation for the VHS filling,
ρ = 0.75. Due to the sign problem, we are in this case limited
to weaker interactions and consider explicitly here the cases
of U/t = 1 and U/t = 2. In contrast to the case of ρ = 0.4,
we observe strong finite-size effects at the VHS filling, even
with respect to the leading low-temperature effective pairing
susceptibility: As shown in Fig. 7(a), for a weak coupling of
U/t = 1 on the L = 6 lattice, upon lowering the tempera-
ture, the effective pairing susceptibility in the NNN f -wave
channel gets strongly enhanced, while all other channels get
suppressed, which suggests f -wave pairing dominates at the
VHS in the weak-coupling region. If the interaction strength is
increased to U/t = 2 in Fig. 7(b), the dominant pairing on the
L = 6 system still appears in the f -wave channel; however,
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FIG. 7. Temperature dependence of the effective pairing sus-
ceptibilities at the VHS filling (ρ = 0.75) on the L = 6 lattice for
(a) U/t = 1 and (b) U/t = 2.
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FIG. 8. Temperature dependence of the effective pairing suscepti-
bilities at the VHS filling (ρ = 0.75) on the L = 10,12, and 14 lattices
for (a) U/t = 1 and (b) U/t = 2.

the error bars are larger due to a more severe sign problem.
Considering the larger system sizes L = 10,12, and 14 at the
VHS filling, shown in Fig. 8, we instead find, consistently
among these larger system sizes, that the dominant pairing
channel switches from the f wave observed on the L = 6
system to the NN and NNN (d + id)-wave pairings when the
lattice size is increased. The reason for this behavior may be the
fact that for these larger lattice sizes, we resolve a narrower grid
of momenta within the Brillouin zone, thus better resolving the
effective interactions near the momenta corresponding to the
VHS in the density of states (DOS), which is most important
at the VHS filling.

Another reason for this size dependence may be that due
to the enhanced DOS at the VHS filling, other electronic
instabilities compete with superconductivity. Indeed, based on
a recent mean-field theory [21] and FRG calculations [23], a
particular interesting chiral SDW state was argued to form the
leading magnetic instability of the Hubbard model at the VHS
filling. In the following section, we examine this scenario based
on FT-DQMC simulations.

IV. MAGNETIC CORRELATIONS

The chiral SDW state considered in Refs. [21,23] is charac-
terized by the three independent nesting vectors Qi , i = 1,2,3,
of the free system’s Fermi surface at the VHS filling, which
(folded back to the first Brillouin zone) correspond to the three
independentM points at the centers of the Brillouin zone edges.
In terms of the reciprocal lattice vectors b1 and b2, these are
Q1 = 1

2 b1, Q2 = 1
2 b2, and Q3 = 1

2 (b1 + b2). For lattice sites
on the A and B sublattices within a unit cell centered at position
R, the mean-field expectation values of the local spin operator
in the chiral SDW state are proportional (up to a global rotation
in spin space) to the local direction vectors

〈SR,A〉cSDW = 1√
3

( ẑeiQ3·R + x̂eiQ1·R + ŷeiQ2·R),

〈SR,B〉cSDW = 1√
3

( ẑeiQ3·R − x̂eiQ1·R − ŷeiQ2·R), (5)

where x̂, ŷ, and ẑ are the three mutually orthogonal unit
vectors in spin space [21]. This state exhibits four different
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FIG. 9. Temperature dependence of the structure factor ScSDW

at ρ = 0.75 and ρ = 0.4 for (a) U/t = 1 on the L = 6 lattice and
(b) U/t = 2 for lattice sizes L = 6,10,12,14.

spin directions, x̂ + ŷ + ẑ, −x̂ − ŷ + ẑ, x̂ − ŷ − ẑ, and −x̂ +
ŷ − ẑ; the magnetic unit cell thus contains eight lattice sites,
and we require L to be even in order to accommodate this
spin structure within the finite rhombic clusters. In order to
probe for this chiral SDW within the FT-DQMC simulations,
we monitor a corresponding structure factor,

ScSDW = 1

Ns

〈(∑
R

MR

)†(∑
R

MR

)〉
, (6)

in terms of the projections MR = MR,A + MR,B, with
MR,A(B) = SR,A(B) · 〈SR,A(B)〉cSDW of the local spin operators
on the chiral SDW texture. Here, SR,A(B) denotes the local
spin operator on the A (B) sublattice site within the unit cell
at position R; for a lattice site at position i this is given as
Si = 1

2

∑
α,β c

†
i,ασ α,βci,β in terms of fermionic operators and

the vector σ of the Pauli matrices. In the following, we also
consider for comparison the corresponding antiferromagnetic
structure factor SAF for the antiferromagnetic Néel state, which
is defined similarly to ScSDW, but with (up to a global spin rota-
tion) 〈SR,A〉AF = ẑ and 〈SR,B〉AF = −ẑ. The antiferromagnetic
Néel state is well known to emerge in the half-filled system for
sufficiently strong interactions. However, here, we first focus
on the behavior of the chiral SDW structure factor ScSDW,
considering the two specific electronic densities ρ = 0.75 and
ρ = 0.4 like above.

In Fig. 9, we show the FT-DQMC results for ScSDW as
functions of T for the two densities, ρ = 0.75 and ρ = 0.4,
at both U/t = 1 and U/t = 2 on the L = 6 lattice. For
U/t = 2 we also performed simulations on the L = 12 lattice
(as well as on the L = 10 and 14 systems for ρ = 0.75) in
order to examine the finite-size effect in ScSDW. We find that
upon lowering the temperature, ScSDW increases at ρ = 0.75,
whereas it does not significantly increase and is even weakly
suppressed at ρ = 0.4. We furthermore observe a mild increase
in ScSDW with system size L at the VHS filling ρ = 0.75.
Since the corresponding magnetic instabilities can occur only
at T/t = 0 [due to the SU(2) symmetry of the Hamiltonian
H ], these results suggest that the chiral SDW order, while
possibly relevant at ρ = 0.75, is not favored at ρ = 0.4. A
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FIG. 10. Temperature dependence of χcSDW for ρ = 0.4 and ρ =
0.75 at U/t = 0 on the L = 6 lattice.

similar picture also emerges from analyzing the corresponding
chiral SDW susceptibility

χcSDW = 1

Ns

∫ β

0
dτ

〈(∑
R

MR(τ )

)†(∑
R

MR(0)

)〉
, (7)

where M
†
R(τ ) = eτHM

†
R(0)e−τH . Here, we need to again

account for the enhanced response of the free system at
U = 0. This is shown in Fig. 10: For both densities, χcSDW
at U = 0 exhibits an apparent divergence upon lowering the
temperature. Like in the case of the pairing susceptibilities,
we thus examine the corresponding effective chiral SDW
susceptibility, which is obtained as χ eff

cSDW = χcSDW − χ̃cSDW,
where χ̃cSDW denotes the bare chiral SDW susceptibility. This
procedure is similar to the antiferromagnetic case considered
in Ref. [29].

As shown in Fig. 11 for U/t = 1 and U/t = 2, the effective
susceptibility χ eff

cSDW at ρ = 0.75 strongly increases in the
low-T region for all system sizes, while χ eff

cSDW at ρ = 0.4 does
not show a similarly strong enhancement and for U/t = 2 it
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FIG. 11. Temperature dependence of χ eff
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0.75 for (a) U/t = 1 on a L = 6 lattice and (b) U/t = 2 on L =
6,10,12, and 14 lattices.
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FIG. 12. Structure factors ScSDW and SAF as functions of ρ for
several values of U/t for T/t = 1/12 on the L = 6 lattice. For U/t =
2, data for the L = 12 lattice are also shown.

is even weakly suppressed at low T for the larger system size.
Unfortunately, the sign problem does not allow us to perform
low-temperature simulations on larger system sizes in order to
perform a thorough finite-size scaling analysis of, e.g., ScSDW

at low temperatures, which would be required in order to assess
if a chiral SDW ground state exists in the thermodynamic
limit. Note that this case is different from the case of pairing
instabilities, which may, in principle, set in on a finite (but
still small) low-temperature scale. Nevertheless, our findings
provide an indication that at the VHS filling the system may
exhibit an instability to the chiral SDW order, whereas away
from the VHS filling, this instability is eventually suppressed.

To investigate further how the chiral SDW order behaves
at and beyond the VHS filling, we next fix an accessible
low temperature T/t = 1/12 and monitor how ScSDW and
χ eff

cSDW vary with the electronic density ρ. For this purpose,
Fig. 12 shows ScSDW as a function of ρ for different values
of U/t . These results indicate that upon increasing U/t , a
peak in ScSDW gradually builds up near the VHS filling, such
that the chiral SDW is indeed most pronounced at the VHS
filling. This observation agrees with the fact that the three
characteristic momentum vectors Qi , i = 1,2,3, of the chiral
SDW state form the nesting vectors of the Fermi surface of the
noninteracting system at the VHS filling. For comparison, we
also show in Fig. 12 the antiferromagnetic structure factor SAF,
which, in contrast to ScSDW, displays a monotonic increase with
increasing electron density. At half filling, ρ = 1, the Hubbard
model on the honeycomb lattice is well known to harbor a
quantum phase transition to an insulating antiferromagnetic
phase for U/t > 3.76 [30]. While in Fig. 12, we remain below
this critical value of U , the antiferromagnetic correlations
already display a clear tendency to grow with increasing
U . Furthermore, at U/t = 2, the antiferromagnetic structure
factor exceeds the chiral SDW structure factor at (and close
to) half filling, while upon doping further below half filling,
towards the VHS filling, the chiral SDW correlations become
more dominant.

We also observe a similar enhancement in the chiral SDW
response near the VHS filling for the effective susceptibility

0.4 0.6 0.8 1
ρ

0

0.1

0.2

0.3

χ αef
f

0.4 0.6 0.8 1
ρ

0

0.1

0.2

0.3

cSDW, L=6
cSDW, L=12
AF, L=6
AF, L=12

(a) U/t=1 (b)  U/t=2

T/t=1/12

FIG. 13. Effective susceptibilities χ eff
cSDW and χ eff

AF as functions of
ρ at T/t = 1/12 for (a) U/t = 1 on the L = 6 lattice and (b) U/t = 2
on both L = 6 and L = 12 lattices.

χ eff
cSDW (see Fig. 13), strengthening the above interpretation of

the structure factor data. Note that in Fig. 13, the L = 6 data
exhibit two kinks around ρ ≈ 0.5 and ρ ≈ 0.95. These appear
to be due to finite-size effects (compare to the data for the
L = 12 lattice, where both kinks are absent). Such peculiar
finite-size effects can, in fact, also be observed in a plot of the
electronic density as a function of the chemical potential μ

in Fig. 14: on the L = 6 lattice, the density as a function of
μ shows two plateaus near ρ = 0.5 and ρ = 0.95, whereas on
the larger lattice, those plateaus have disappeared. We consider
these finite-size plateaus to be the reason for the two kinks
seen in Fig. 13 for the L = 6 lattice. For the L = 12 lattice
the density plateaus are absent, and χ eff

cSDW decreases steadily
upon doping away from the VHS filling, again suggesting
that the chiral SDW instability is important when the filling
is at (and maybe close to) the VHS value. For comparison, the
effective antiferromagnetic susceptibility χ eff

AF is also shown in
Fig. 13 (where χ eff

AF is defined in a way similar to the effective
susceptibility for the chiral SDW case). While in the L = 6

-2.5 -2 -1.5 -1 -0.5 0
μ

0.4

0.6

0.8

1

ρ

L=6
L=12

U/t=2

T/t=1/12

FIG. 14. Electronic density ρ as a function of the chemical
potential μ on the L = 6 and L = 12 lattices for U/t = 2 and
T/t = 1/12.
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system this quantity shows finite-size anomalies similar to
the effective chiral SDW susceptibility χ eff

cSDW, in the L = 12
system it instead shows a monotonic decease when doping
away from half filling, as anticipated from the behavior of the
antiferromagnetic structure factor.

V. SUMMARY

To conclude, we used finite-temperature determinantal
quantum Monte Carlo simulations to examine the electronic
pairing channels and magnetic instabilities of doped graphene
within the Hubbard model description. Due to the sign prob-
lem, we restricted the study to the weak-coupling regime at the
VHS filling, while at lower fillings beyond the VHS, we also
accessed the weak- to intermediate-coupling regime. In both
cases, we found NN and NNN (d + id)-wave pairing to be the
dominant pairing channels in the larger system sizes. However,
at the VHS filling, we observed strong finite-size effects in the
dominant pairing symmetry. This may be taken as an indication
that at this filling, due to the logarithmically diverging density
of states and a nested Fermi surface, other electronic instabili-
ties may also be relevant. In fact, we observed from measuring
appropriate structure factors and magnetic susceptibilities that
a previously proposed chiral spin density wave state shows a

robust enhancement near the VHS filling but weakens quickly
upon doping away from the VHS point. This is in accord
with the result in Ref. [31], which suggests on the mean-field
level that, upon doping away from a DOS peak, instabilities
within the particle-particle channel (superconducting orders)
survive decisively longer than those in the particle-hole channel
(magnetic or charge orders). We note that a previous study of
the Hubbard model on the triangular lattice reported a related
result in terms of ferromagnetism and f -wave pairing [32]. For
the future, it will be interesting to extend also dynamical cluster
approximation studies to consider the competition among
the superconducting and magnetic instabilities of the doped
honeycomb lattice Hubbard model.
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