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Topological nodal-line semimetals are exotic conductors that host symmetry-protected conducting nodal lines in
their bulk electronic spectrum and nontrivial drumhead states on the surface. Based on first-principles calculations
and an effective model analysis, we identify the presence of topological nodal-line semimetal states in the low
crystalline symmetric T T ′X family of compounds (T ,T ′ = transition metal, X= Si or Ge) in the absence of
spin-orbit coupling (SOC). Taking ZrPtGe as an exemplar system, we show that owing to small lattice symmetry
this material harbors a single nodal line on the ky = 0 plane with large energy dispersion and unique drumhead
surface state with a saddlelike energy dispersion. When the SOC is included, the nodal line gaps out and the system
transitions to a strong topological insulator state with Z2 = (1; 000). The topological surface state evolves from
the drumhead surface state via the sharing of its saddlelike energy dispersion within the bulk energy gap. These
features differ remarkably from those of the currently known topological surface states in topological insulators
such as Bi2Se3 with Dirac-cone-like energy dispersions.
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I. INTRODUCTION

Recent discovery of nontrivial band structures in semimet-
als has prompted prodigious research interest in topological
semimetals [1–17]. Unlike topological insulators (TIs), the
protected gapless states of which live only on their sur-
faces, topological semimetals (TSMs) feature unusual crystal-
symmetry-protected states both in the bulk as well on the
surface. In particular, the bulk Fermi surfaces of TSMs enclose
nontrivial band-touching points that bring quantized num-
bers for integrals of the Berry flux over any closed surface
enclosing these points, and provide the relevant topological
invariants. Depending on band degeneracy and the momentum-
space distribution of the band-touching points, three different
types of TSMs, namely, Weyl semimetal (WSM)[5–10], Dirac
semimetal (DSM) [11,12], and nodal-line semimetal (NLSM)
[13–17], have been proposed. WSMs and DSMs exhibit two-
and fourfold band-touching points with low-energy Weyl and
Dirac fermion excitations, respectively, with zero-dimensional
Fermi surfaces in the three-dimensional bulk Brillouin zone
(BZ). In sharp contrast to WSMs and DSMs, NLSMs sup-
port extended band-touching points along a line with one-
dimensional Fermi surfaces in the bulk BZ. WSMs have
been found in noncentrosymmetric TaAs [9,10], MoxW1−xTe2

[18–20], and LaAlGe [21] families, while DSMs have been
realized in Na3Bi [11] and Cd2As3 [12].

Among the TSMs, NLSMs offer many unique properties
that are distinct from WSMs and DSMs [14–17,22–24]. For
example, NLSMs have higher density of states (DOS) at the
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Fermi level than DSMs and WSMs, and therefore provide
an ideal platform to study interaction-induced instabilities.
They also feature topological surface states (TSSs), known as
drumhead surface states (DSSs), which could be interesting for
achieving superconductivity and correlation physics [23–25].
Despite much theoretical effort [26–34], the experimental
evidence for NLSMs has been only reported recently for
ZrSi(S,Te) [35,36], PbTaSe2 [37], and PtSn4 [38]. A focus
of discussion has been the issue of the stability of nodal
lines in the absence of spin-orbit coupling (SOC) effects
[16,17,26–29]. Turning on the SOC either splits the nodal line
into nodal points, depending on crystalline symmetries present
[7,8,26,27], or fully gaps the spectrum due to hybridization
with bands of same symmetry [28,29,34–36]. Regardless,
saddlelike TSSs have not been found in these materials.

In this paper, we identify topological nodal-line fermion
states in the large family of silicides or germanides T T ′X
(T ,T ′ = transition metal, X= Si or Ge) when the SOC is
ignored. Taking ZrPtGe as an explicit example, we show
that a single nodal line lies on the ky = 0 bulk plane and a
saddlelike DSS is nested inside the nodal line projection on
the (010) surface. Inclusion of the SOC gaps the nodal line,
realizing a Z2 nontrivial topological state with Z2 = (1; 000).
The TSS evolves from the DSS with similar saddlelike energy
dispersion. This is very unique since the known TIs such as
Bi2Se3 have Dirac-cone-like surface states [39,40]. It is well
known that saddle points in the band structure give rise to
interesting saddle-point van Hove singularities (VHSs) where
the two-dimensional (2D) density of states diverges [41].
When the VHS lies close to the Fermi level, the instabilities
among lattice, charge, and spin degrees of freedom as well
as superconducting transition temperature, ferromagnetism,
and/or antiferromagnetism are substantially enhanced even in
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FIG. 1. (a) Crystal structure of ZrPtGe with Pnma symmetry. (b) Local coordination of the Zr (top panel) and Pt (bottom panel) atoms in
the unit cell. (c) Bulk Brillouin zone and its projection on the (010) surface. The relevant high-symmetry points are marked with black dots.
The calculated momentum distribution of the nodal line is shown with orange on the ky = 0 plane. (d) Bulk band structure without spin-orbit
coupling (SOC). Band crossings are evident along the � − X, � − Z, and � − U directions near the Fermi level. (e) Bulk band structure
with SOC. A small band gap opens at the band-crossing points. The shaded region highlights the continuous gap below which the topological
invariants are calculated.

the weak-coupling limit [42–47]. Our proposal of NLSM with
saddlelike TSSs in the large family of silicides and germanides
therefore provides an exciting materials platform to explore
these exotic properties in the presence of a nontrivial band
topology.

II. METHOD AND CRYSTAL STRUCTURE

We performed electronic structure calculations with the
projector augmented wave method [48–50] and generalized
gradient approximation (GGA) [51], using VASP [49]. SOC was
included in calculations self-consistently. The surface energy
dispersions were calculated within the tight-binding scheme,
using the WannierTools [52–54].

The T T ′X compounds considered all crystallize in an
orthorhombic Bravais lattice with the nonsymmorphic space
group D16

2h (Pnma, no. 62) [55,56]. The crystal structure of
ZrPtGe is illustrated in Fig. 1(a) as an example. In this structure,
Pt and Ge atoms form a strongly corrugated Pt3Ge3 hexagonal
network and Zr atoms fill the cavities left in the network. Due
to strong puckering between different atomic layers, Pt forms
a distorted tetrahedral configuration with Ge whereas Zr is
coordinated with five Ge atoms as seen in Fig. 1(b). The first
orthorhombic bulk and (010) surface BZs with the relevant
high-symmetry points are shown in Fig. 1(c).

III. ELECTRONIC STRUCTURE

The electronic structure of ZrPtGe without the SOC
[Fig. 1(d)] unveils its semimetallic ground state. The valence
and conduction bands are seen to cross along the high-

symmetry lines � − X, � − Z, and � − U that are tied to the
ky = 0 plane of the bulk BZ. A full BZ exploration shows that
these band crossings persist along a closed path, realizing a
single nodal line on the ky = 0 plane inside the bulk BZ as
shown in Fig. 1(c). When we include the SOC, the nodal line
evaporates with the opening of a gap at the band-crossing points
[Fig. 1(e)]. It should be noted that owing to the coexistence of
inversion (P ) and time reversal symmetry (�) each band still
remains doubly degenerate in the presence of the SOC at each
k point. Furthermore, additional nonsymmorphic crystalline
symmetries in this system lead to fourfold band crossings at the
BZ boundary planes (ki = π ) above and below the Fermi level.
These band crossings are protected against gap opening and
may realize high-symmetry Dirac cones at X, Y , and Z points.
The energy dispersion can be tuned by changing the transition-
metal elements in the system as shown in Appendix E.

In order to characterize the nature and the topological
protection of the nodal line, we systematically examine the
band crossings in Fig. 2. We know that the nodal line resides
on the ky = 0 plane, which is a My : (x,y,z) → (x,−y,z)
mirror invariant plane. Each band on this plane can have a
well-defined My mirror eigenvalue. If a band crossing happens
between two bands of different eigenvalues, it can remain
gapless. Figure 2(a) shows the bands along two principal
directions on the ky = 0 plane and the corresponding mirror
eigenvalues in the absence of the SOC. Note that we have
obtained My eigenvalues from our first-principles Bloch wave
functions and since the Hamiltonian remains spin-rotation
invariant without SOC it has eigenvalues +1 or −1. Clearly,
the lowest conduction band and the highest valence band have
different mirror eigenvalues and thus their crossing points are
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FIG. 2. (a) Orbital compositions and mirror eigenvalues of the bulk bands without SOC. (b) Energy-dependent nodal line configuration on
the ky = 0 plane. (c) Variation of the nontrivial topological invariant along the high-symmetry lines in the bulk Brillouin zone. The topological
invariant is calculated using My mirror eigenvalues of the occupied bands on the mirror symmetric ky = 0 and π planes without SOC. (d)
Products of parity eigenvalues of the occupied bands at eight time-reversal-invariant k points in the bulk BZ and the related Z2 indices without
SOC. (e) The Fermi surface with electron (red) and hole (violet) pockets. (f) Orbital compositions of the bulk bands with SOC. A small band
gap opens at the band crossings.

topologically protected against gap opening. Further analysis
of orbital characters shows that bands around the Fermi level
are dominated by Pt and Zr d states with a clear signature
of band inversion at the � point [Fig. 2(a)]. We explicitly
calculated the topological invariant for the system using the
mirror eigenvalue analysis [28,29]. The computed topological
invariant ν takes nontrivial value only inside the nodal line
[Fig. 2(c)] and thus signals the existence of an odd number of
DSSs inside the nodal line projection over the surface [28,29].

The topological stability can be further assessed by calculat-
ing the topological invariants Z2 = (ν0; ν1ν2ν3) defined in the
presence of P and � symmetries without the SOC [26]. Our
calculations yield a nontrivial Z2 = (1; 000) [see Fig. 2(d)].
This result demonstrates that the nodal line in ZrPtGe is also
protected by P and �. In Fig. 2(b), we present the nodal-line
structure in the E − kx − kz space. The nodal line is seen
to exhibit a substantial energy dispersion around the Fermi
level with the corresponding energies of 0.189, −0.023, and
−0.119 eV along kx , kz, and the plane diagonal to the (kx − kz)
directions. The large energy dispersion of the nodal line results
in a unique Fermi surface that constitutes compensated electron
and hole pockets as shown in Fig. 2(e).

Figure 2(f) illustrates the energy bands with SOC. In
general SOC can drive NLSMs into DSM, WSM, or a fully
gapped insulator. However, in view of the lowered crystalline
symmetries of ZrPtGe, the SOC opens a full gap at the crossing
points, making the conduction and valence band separate at
each k point. Since the nodal line winds around a single time-
reversal invariant point (�) with a nontrivial band topology, the
SOC drives the system into a nontrivial insulating state with
Z2 = (1; 000) (see Appendix B for details).

To further showcase the protected surface states and their
connection to bulk nodal lines, we present these states for the

semi-infinite (010) surface in Fig. 3. The bulk bands projected
onto the (010) surface without the SOC are shown in Fig. 3(a)
where the nodal-line crossings can be clearly seen. The DSSs
nested inside the nodal line are visible in Fig. 3(b), which is
consistent with the calculated nontrivial invariant inside the
nodal line. Unlike the nearly flat DSSs reported in earlier
works [26–29], the states in ZrPtGe are more dispersive, and
interestingly they have opposite band curvatures along the
� − X and � − Z directions, realizing a unique saddlelike
energy dispersion.

Figures 3(c) and 3(d) show (010)-projected bulk bands and
surface bands, respectively, with the SOC. The nodal line is
now gapped and the DSS splits away from the time-reversal in-
variant � point, deforming into a topological Dirac-cone state.
Since the SOC here is much smaller than the dispersion of the
DSS, the upper and lower branches of the TSS display the same
band curvatures or carrier velocities. Furthermore, these states
retain the saddlelike features of the DSS energy dispersion,
which is more clearly visible in the Fermi band contours shown
in Figs. 3(e)–3(g). The constant energy contours (CECs) are
seen to be open and disperse along the kx direction above the
Dirac point or the saddle point. As we lower the Fermi energy,
the electronic states undergo a Lifshitz transition and the CECs
change direction and dispersion to lie along the kz direction.

We want to emphasize that TSSs with saddlelike energy
dispersion are unique to the ZrPtGe family. They are symmetry
allowed (see below) and their characteristic saddlelike disper-
sion is controlled by their bulk nodal-line structure. Therefore,
we should expect these states to be robust over a range of
different surface potentials, although details of their energy
positions can be shifted via changes in surface potentials (see
Appendix C for details). In particular, we have found that
when we repeat our computations using the more advanced
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FIG. 3. (a) Projected bulk bands onto the (010) surface without SOC. The nodal line (NL) crossings are shown with arrows. (b) Band structure
of the (010) surface without SOC. The nontrivial drumhead surface states (DSSs) are marked with arrows. (c, d) Same as (a) and (b) but with
the SOC included. The nontrivial surface states evolve from the DSSs with different band curvatures along different high-symmetry directions.
The Dirac point (DP) is identified with the arrow. Isoenergy-band contours at (e) E = 0.030 eV, (f) E = 0.000 eV, and (g) E = −0.030 meV
with SOC.

Heyd-Scuseria-Ernzerof (HSE) exchange-correlation func-
tional to obtain the bulk and surface spectrum, the dispersive
nature of the bulk nodal line as well as the saddlelike TSSs
remain preserved (see Appendix A).

IV. LOW-ENERGY EFFECTIVE MODEL

In order to better understand the saddlelike TSSs, we
now present a low-energy effective model Hamiltonian using
the theory of invariants in a manner similar to the case of
Bi2Te3 [40]. On the (010) surface, in addition to �, the
only other preserved symmetry is the glide-mirror symmetry
Mz = {Mz| 1

2 0 1
2 }, which sends (kx,kz) → (kx,−kz). Based

on our first-principles results and a symmetry analysis, a
single-band k · p model Hamiltonian for the DSSs in the
absence of the SOC takes the form

H0(kx,kz) = 1

2m∗
(
k2
x − ηk2

z

)

= − 1

2m∗

[
η + 1

4
(k2

+ + k2
−) + η − 1

2
k+k−

]
,

(1)

where k± = kz ± ikx . Here coefficient η describes the form
of the E − K dispersion and depends on the rotational
symmetries and materials properties of the system. While
η < 0 gives a parabolic energy dispersion, η > 0 ensures a
saddlelike energy dispersion (see Appendix D for details). The
n-fold rotational symmetry Cn for n > 2 normal to the surface
in a system forbids η > 0 since it requires η = −1, i.e., a
saddlelike energy dispersion for the surface state, whereas
for n � 2 this is allowed. We have verified this point from
symmetry constraints of Cn on the Hamiltonian H0(kx,kz)

with η > 0. Since Cn sends k± → k±e±i 2π
n and (k2

+ + k2
−) →

(k2
+ei 4π

n + k2
−e−i 4π

n ), this Hamiltonian remains invariant only
for Cn with n � 2. Notably, this is only a necessary condition
for realizing a saddlelike energy dispersion as material
properties are also involved in achieving such a dispersion. As
ZrPtGe exhibits a substantial nodal-line dispersion in the bulk
and its (010) surface lacks Cny with n > 2, it hosts a symmetry
allowed saddlelike state as found in our results [see Fig. 3].
The energy dispersion associated with the model Hamiltonian
(1) is presented in Figs. 4(a)–4(c), which show a saddlelike
energy dispersion for the DSS with a single saddle point at the
� point. The DOS is logarithmically diverging at the � point,
confirming that it has a saddle-point VHS.

In the presence of SOC, the DSS splits into two branches,
developing into the spin-polarized surface states of a strong
Z2 TI. A two-band k · p Hamiltonian is therefore necessary
for describing these states. Considering Mz = −e−i(kx−kz)/2iσz

and � = iσyK , where σi=x,y,z denote Pauli spin matrices,
and K is the complex conjugate operator, the effective model
Hamiltonian with SOC can be written as

HSOC(kx,kz) = 1

2m∗
(
k2
x −ηk2

z

)+vk(kzσx − kxσz) − v′
kkzσy,

(2)

where vx = vk = v0(1 + αk2) and vz =
√

v2
k + v′

k
2 = vz0(1 +

αk2) are the Dirac velocities along the x and z axis, re-
spectively, with a second-order correction. The corresponding
energy dispersion E±(k) is

E±(k) = 1

2m∗
(
k2
x − ηk2

z

) ±
√

v2
xk

2
x + v2

z k
2
z . (3)
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FIG. 4. (a) Energy dispersion of the Hamiltonian H0(kx,kz) with η = +1, and (b) the associated isoenergy-band contours without SOC. A
single saddle point S0 of the DSS lies at the � point. See main text for the meaning of energy-band contours ω∗

+ and ω∗
−. (c) Calculated density

of states (DOS) for the surface states using the model Hamiltonian [Eq. (1)]. (d),(e) Same as (a) and (b) but with the SOC included. Four saddle
points away from � (S1, S2, S3, and S4) emerge due to band splittings in the presence of the SOC. (f) DOS for the surface states with SOC
[Eq. (2)].

The preceding energy dispersion demonstrates a type of
symmetry-allowed TSS which is distinct from surface states
studied so far [1,2]. This TSS evolves from a saddlelike DSS
with a single Dirac point at � and two pairs of saddle points at
generic k points. The two saddle points are located at (kx,kz) =
(±m∗vx,0) with energyω∗

− = −m∗v2
x

2 on the lower branch while
the other two points lie at (kx,kz) = (0, ± m∗vz/η) with energy

ω∗
+ = m∗v2

z

2η
on the higher branch of the TSS [see Figs. 4(d)–

4(f)]. This can be further seen in the DOS [Fig. 4(f)] where the
two saddle-point VHSs are evident at ω∗

− and ω∗
+. Such VHSs

which appear because of the saddle points at generic k points
are classified as type-II VHSs [46].

V. DISCUSSION

The exotic TSSs with VHSs that we have delineated in this
paper would provide a platform for exploring the interplay
between topological states and strong correlation physics and
the related interaction-driven instabilities. For example [46],
a type-II VHS system can favor the odd-parity pairing and
lead to unconventional superconductivity via weak repulsive
interactions. Also, the generic competing orders such as the
“valley” charge imbalance, density wave orders (through
enhanced nesting via a uniaxial pressure, for example), and su-
perconductivity could possibly be driven by electron-electron
interactions [23–25,42–47]. It should be emphasized, however,
that the actual ground state realized by a specific material
will be influenced by details of the location of the chemical
potential, nesting properties, and the nature of the various
interactions involved and their relative strengths.

The transition-metal silicides and germanides have been
explored in connection with a search for new high-temperature

superconductors in the intermetallics. In particular, a number
of the materials we have proposed here have been synthesized
as single crystals [55–58]. Since our predicted exotic states lie
close to the Fermi level, these states could of course be probed
directly via angle-resolved photoemission spectroscopy
experiments. Moreover, the proposed materials feature unique
bulk Fermi surfaces, which may, for example, lead to balanced
electron-hole resonance conditions, and thus induce unusual
transport characteristics such as a large positive unsaturated
magnetoresistance [20].

In summary, our first-principles computations predict that
the orthorhombic T T ′X family of silicides and germanides
harbors a single topologically protected nodal line on the
ky = 0 plane in the absence of the SOC. We have demonstrated
the existence of DSSs nested inside the nodal line on the
(010) surface of ZrPtGe as an exemplar system, which hosts a
unique symmetry-allowed saddlelike energy-momentum dis-
persion relation. Inclusion of the SOC gaps the nodal line
and eventually drives the material into the TI phase. The
nontrivial TSSs evolve from the DSS and retain their saddlelike
energy dispersion and support two pairs of saddle-point VHSs.
Our results establish that the T T ′X materials family provides
an ideal platform for exploring unique physics, including
symmetry-breaking quantum states, related with the NLSMs
and the saddlelike topological surface states.
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FIG. 5. Band structure of ZrPtGe without SOC. (a) The GGA
band structure showing the nodal-line semimetal state. (b) The HSE
band structure. The nodal-line crossings along the high-symmetry
lines are highlighted with broken-red circles and remain intact
after the band-gap correction. Band structure of the (010) surface
obtained using (c) GGA and (d) HSE functional. The nontrivial
drumhead surface states (DSSs) and their saddlelike energy dispersion
maintained with the HSE functional.
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APPENDIX A: BAND-GAP CORRECTION

It is well known that the GGA usually underestimates
band gaps and results in an overestimation of the band
inversion strength. In order to check the robustness of our
band inversion and the nodal-line semimetal state in ZrPtGe,
we also carried out computations using the more advanced
HSE exchange-correlation functional [59], which yields
improved band gaps in closer agreement with experiments.
Figure 5(a) shows the band structure of ZrPtGe obtained
using the GGA, which is the band structure presented also in
the main text. The nodal-line band crossings are highlighted
with broken red circles. Figure 5(b) gives the band structure
based on the HSE functional, where although the band gaps
at high-symmetry points are slightly enlarged, the overall
features of the GGA band structure are seen to be retained.
These results demonstrate that the topological properties
and nodal-line semimetal state of ZrPtGe are quite robust to
changes in the exchange-correlation functional.

In Figs. 5(c) and 5(d), we present the topological surface
states of ZrPtGe on the (010) surface obtained with the GGA
and HSE functional, respectively. The nontrivial DSSs with
unique saddlelike energy dispersion shown in Fig. 5(c) are the
same as those presented in the main text. Similar to the bulk
nodal-line structure, the DSSs obtained with HSE continue to
display saddlelike energy dispersion [see Fig. 5(d)].

FIG. 6. Z2 topological invariants for ZrPtGe. Evolution of Wannier charge centers (WCCs) for (a) kx = 0, (b) kx = π , (c) ky = 0, (d)
ky = π , (e) kz = 0, and (f) kz = π time-reversal invariant momentum planes. WCC evolution lines cross an arbitrary reference line (red broken
line) an odd number of times on the ki = 0 plane, resulting in Z2 = 1.
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FIG. 7. Single surface termination along the (010) direction in
ZrPtGe, which is marked with the dashed blue line. Black rectangle
encloses the bulk unit cell in the yz plane.

APPENDIX B: NONTRIVIAL BAND TOPOLOGY

Here we present calculations of nontrivial topological in-
variants of ZrPtGe in the presence of SOC. As discussed in the
main text, ZrPtGe is a nontrivial semimetal with Z2 = (1; 000)
without the SOC. While the semimetal state is maintained

when the SOC is included with the presence of electron and
hole pockets at the Fermi level, the SOC separates valence and
conduction bands at all crossings points and opens a continuous
band gap between valence and conduction states (see Figs. 1
and 2). The Z2 = (ν0; ν1ν2ν3) topological invariants can still
be determined as in a fully gapped insulator. Figure 6 shows
the evolution of Wannier charge centers (WCCs) in the six
time-reversal invariant momentum planes in the bulk BZ of
ZrPtGe. The WCCs have nontrivial connectivity in ki = 0
planes with Z2 index 1, while they are connected trivially
in ki = π planes with Z2 = 0, leading to Z2 = (1; 000) or a
strong topological insulator phase in ZrPtGe.

APPENDIX C: ROBUSTNESS OF SADDLELIKE
TOPOLOGICAL SURFACE STATES

ZrPtGe has a layered crystal structure along the (010)
direction with two repeated atomic layers (see Fig. 7). Each
atomic layer contains all three constituent atoms (Zr, Pt, and
Ge). These two atomic layers are related via {C2y |0 1

2 0}. Unlike
TlBiSe2 [60], if we consider only a flat surface, there is only
one surface termination, which is highlighted by the broken
blue line in Fig. 7. This is the surface termination we use in
our calculations.

We have examined the robustness of topological surface
states and their saddlelike dispersion in ZrPtGe within the
framework of our tight-binding Hamiltonians by including an
additional surface potential energy (SPE) as an on-site energy
parameter, which is added to all the atoms in the surface layer.
Figures 8 and 9 present the results obtained by changing the

FIG. 8. Surface states of ZrPtGe (without SOC) obtained with different values of the surface potential-energy (SPE) parameter:
(a) −0.1 eV, (b) −0.2 eV, (c) −0.3 eV, (d) +0.1 eV, (e) +0.2 eV, and (f) +0.3 eV.
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FIG. 9. Same as the caption of Fig. 8, except that this figure refers to results in which the SOC is included.

SPE from −0.3 to +0.3 eV for our GGA-based tight-binding
Hamiltonian. Although the surface states shift towards the bulk
valence or conduction bands depending on the sign of the SPE

parameter, we see that the saddlelike dispersion of the surface
states remains unchanged. These saddlelike surface states can
be removed if they hybridize with the bulk bands, which occurs

FIG. 10. Transitions in surface states as a function of the parameter η. (a)–(b) Energy dispersions and (e)–(h) the associated isoenergy-band
contours for the Hamiltonian Hsoc(kx,kz); η values are given in the top row. VHSs (S1, S2, S3, and S4, shown by red dots) emerge in pairs on the
kx or kz axis for η �= −v2

z /v
2
x (see text for details).
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FIG. 11. Bulk band structures of the T T ′X family (without SOC). (a) ZrPtSi, (b) ZrPdGe, (c) ZrPdSi, (d) ZrNiGe, (e) ZrNiSi, (f) HfPtGe,
(g) HfPtSi, (h) HfPdSi (i) HfNiGe, (j) HfNiSi, (k) TiPtGe, (l) TiPtSi, (m) TiPdSi, (n) TiNiGe, and (o) TiNiSi.

for large values of the SPE (∼ ±0.4 eV), much like the Dirac
surface states in Bi2Se3. Similar results are obtained when
we consider effects of the value of the SPE parameter on
our HSE-based tight-binding Hamiltonian. These results show
clearly that the TSSs with saddlelike dispersion in ZrPtGe are
robust against variations in the surface potential.

APPENDIX D: MODEL HAMILTONIAN FOR THE (010)
SURFACE STATES

The effective k · p model Hamiltonian for the saddlelike
TSSs in the presence of the SOC and the corresponding energy
dispersion given in Eqs. (2) and (3) are

HSOC(kx,kz) = 1

2m∗
(
k2
x−ηk2

z

) + vk(kzσx−kxσz) − v′
kkzσy,

(D1)

E±(k) = 1

2m∗
(
k2
x − ηk2

z

) ±
√

v2
xk

2
x + v2

z k
2
z . (D2)

Here, vx = vk = v0(1 + αk2) and vz =
√

v2
k + v′

k
2 = vz0(1 +

αk2) are the Dirac velocities along the x and z axis, re-
spectively, including a second-order correction. The first and
second terms in Eq. (D1) describe the kinetic energy and
the Rashba SOC, respectively. The third term arises from

the lowered symmetry group of the (010) surface. Its origin
can be understood by recalling how the SOC comes about.
When an electron with momentum k moves in an electric
field E, it experiences a magnetic field Beff ∼ E × k/mc2

in its rest frame. This gives rise to a momentum-dependent
Zeeman interaction or the SOC, ĤSO ∼ μB(E × k) · σ/mc2.
In a crystal, the electric field is given by the gradient of the
crystal potential E = −∇V [63].

For a 2D system with C2v symmetry, Vasko [61] and
Bychkov and Rashba [62] showed that the interfacial electric
field perpendicular to the surface, E = Ezẑ, gives rise to
the SOC of the form ĤR = αR

h̄
(ẑ × k) · σ = αR

h̄
(kxσy − kyσx),

where αR is called the Rashba parameter. In ZrPtGe, the bulk
system respects a twofold screw rotation symmetry, {C2y |0 1

2 0},
which yields two symmetry related surface terminations on
the (010) surface. However, for either surface termination,
the symmetry is lowered to Cs with only one glide mirror
plane {Mz| 1

2 0 1
2 }. This allows an interfacial electric field E =

(Ex,Ey,0) and results in the survival of the third term in
Eq. (D1) on the surface. It should be noted that for the other
surface termination, the sign of the third term in Eq. (D1) is
reversed.

We now discuss the classification of saddle points and
possible Lifshitz transitions resulting from variations in η

based on our model Hamiltonian. As noted above as well as
in the main text, the first-principles (010) surface of ZrPtGe
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FIG. 12. Same as the caption to Fig. 11, except that this figure refers to band structure with SOC.

supports the presence of unique surface states with a saddlelike
dispersion, which is described by η > 0 in our model Hamil-
tonian. Without SOC, η > 0 guarantees a saddle-point VHS at
�. Moreover, when the SOC is included, η > 0 induces two
pairs of type-II VHSs on the kx and kz axis. Note that VHSs
in ZrPtGe can only appear on the kx or kz axis due to the
constraints of Cs and time-reversal symmetries.

In Fig. 10, we demonstrate a general classification of
the saddle-point VHSs as a function of η for a 2D system
with Cn for n � 2, taking linear SOC terms into account.
η = −v2

z /v
2
x gives a typical Rashba-like parabolic energy

dispersion without a saddle-point VHS. However, for η >

−v2
z /v

2
x , one pair of saddle-point VHSs appears on the x

axis at (kx,kz) = (±m∗vx,0) with energy ω∗
1 = −m∗v2

x

2 . For
η < −v2

z /v
2
x or η > 0, one pair of VHSs emerges on the z

axis at (kx,kz) = (0, ± m∗vz/η) with energy ω∗
2 = m∗v2

z

2η
. In

other words, if η � 0 (excepting η = −v2
z /v

2
x), one pair of

saddle-point VHSs can still be induced by the SOC. Note,
however, that this is a consequence of the SOC, so that no
saddle-point VHSs can appear in the absence of the SOC for
η � 0. Finally, for η > 0, two pairs of saddle-point VHSs
emerge with one pair lying on the x axis and the other on
the z axis, as is the case in ZrPtGe.

For a 2D system (xz plane) with n-fold rotation symmetry
about the y axis, Cny , for n � 2, the allowed linear SOC terms
are iλvλ(k+σ− + (−1)λk−σ+), where λ = 0 or 1. Here, Cny

sends σ± → e±i 2π
n σ± and k± → e±i 2π

n k±, where k± = kz ±
ikx and σ± = σz ± iσx . The presence of additional crystalline
symmetries drives the SOC term into taking the form of the

TABLE I. Lattice constants a, b, and c used in our calculations
and the Z2 invariants for all 16 members of the T T ′X family of
compounds. The lattice parameters are taken from experimental
studies [55,56].

a b c

Compound (Å) (Å) (Å) Z2

ZrPtGe 6.658 3.975 7.665 (1;000)
ZrPdGe 6.677 3.954 7.702 (1;000)
ZrNiGe 6.553 3.883 7.360 (1;000)
ZrPtSi 6.597 3.902 7.539 (1;000)
ZrPdSi 6.590 3.890 7.570 (1;000)
ZrNiSi 6.470 3.815 7.263 (1;000)
TiPtGe 6.371 3.857 7.537 (1;000)
TiNiGe 6.244 3.747 7.147 (1;000)
TiPtSi 6.336 3.802 7.337 (1;000)
TiPdSi 6.324 3.779 7.394 (1;000)
TiNiSi 6.139 3.661 7.006 (1;000)
HfPtGe 6.603 3.950 7.617 (1;000)
HfNiGe 6.500 3.810 7.290 (1;000)
HfPtSi 6.550 3.881 7.505 (1;000)
HfPdSi 6.570 3.874 7.675 (1;000)
HfNiSi 6.390 3.890 7.200 (1;000)
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Rashba SOC, v1(kzσx − kxσz) for λ = 1 (Cnv symmetry, for
example) and v0(kzσz + kxσx) for λ = 0 (e.g., Dn symmetry),
and both v0 and v1 terms are allowed (e.g., Cn symmetry).
Note that according to Eq. (D2) in all cases v2

z = v2
x (= v2

1 , or
v2

0 , or v2
0 + v2

1), resulting in the critical point −v2
z /v

2
x = −1.

For n > 2, however, η is not allowed to take any other value
than −1. This clearly shows that a system with Cny(n > 2)
can only support Rashba-like parabolic energy dispersion for
the surface state when only linear SOC terms are considered.

APPENDIX E: BAND STRUCTURE OF THE T T ′ X FAMILY

Figures 11 and 12 present the bulk band structures of all
members of the T T ′X family without and with SOC. The 16

members in this family are listed in Table I along with the lattice
constants [55,56] used in our calculations and their topological
invariants (with SOC). All these compounds host single nodal
lines (without SOC) with substantial dispersions similar to
ZrPtGe. Inclusion of SOC gaps the nodal line in all cases and
yields the topological insulator state with Z2 = (1; 000). A
reference to the band structures, however, shows that the area
occupied by the nodal loop on the ky = 0 plane of the bulk BZ
depends on the transition-metal element involved. This is also
the case with the details of band crossings at the high-symmetry
points above and below the Fermi level (see Figs. 11 and 12).
These results show that the T T ′X family offers an interesting
materials platform where the electronic structure can be tuned
through the choice of the transition-metal element.
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