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121,123Sb nuclear quadrupole resonance as a microscopic probe in the Te-doped correlated semimetal
FeSb2: Emergence of electronic Griffith phase, magnetism, and metallic behavior
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121,123Sb nuclear quadrupole resonance (NQR) was applied to Fe(Sb1−xTex)2 in the low doping regime (x = 0,
0.01, and 0.05) as a microscopic zero field probe to study the evolution of 3d magnetism and the emergence
of metallic behavior. Whereas the NQR spectra itself reflects the degree of local disorder via the width of
the individual NQR lines, the spin lattice relaxation rate (SLRR) 1/T1(T ) probes the fluctuations at the Sb
site. The fluctuations originate either from conduction electrons or from magnetic moments. In contrast to the
semimetal FeSb2 with a clear signature of the charge and spin gap formation in 1/T1(T )T [∼ exp /(�kBT )], the
1% Te-doped system exhibits almost metallic conductivity and the SLRR nicely confirms that the gap is almost
filled. A weak divergence of the SLRR coefficient 1/T1(T )T ∼ T −n ∼ T −0.2 points towards the presence of
electronic correlations towards low temperatures. This is supported by the electronic specific heat coefficient
γ = (Cel/T ) showing a power-law divergence γ (T ) ∼ T −m ∼ (1/T1T )1/2 ∼ T −n/2 ∼ Cel/T which is expected
in the renormalized Landau Fermi liquid theory for correlated electrons. In contrast to that the 5% Te-doped
sample exhibits a much larger divergence in the SLRR coefficient showing 1/T1(T )T ∼ T −0.72. According to
the specific heat divergence a power law with n = 2m = 0.56 is expected for the SLRR. This dissimilarity
originates from admixed critical magnetic fluctuations in the vicinity of antiferromagnetic long range order
with 1/T1(T )T ∼ T −3/4 behavior. Furthermore Te-doped FeSb2 as a disordered paramagnetic metal might be
a platform for the electronic Griffith phase scenario. NQR evidences a substantial asymmetric broadening of
the 121,123Sb NQR spectrum for the 5% sample. This has a predominant electronic origin in agreement with the
electronic Griffith phase and stems probably from an enhanced Sb-Te bond polarization and electronic density
shift towards the Te atom inside Sb-Te dumbbell.

DOI: 10.1103/PhysRevB.97.075118

I. INTRODUCTION

Magnetic resonance is a very suitable microscopic tool for
correlated matter at the verge of long range magnetic ordering
and aims in particular to expose the real nature of the magnetic
fluctuations [antiferromagnetic (afm) versus ferromagnetic
(fm)] by temperature and field scaling [1]. Local moment
4f and 5f systems driven by RKKY and Kondo interaction
could be tuned towards order through the quantum critical
point (QCP) by either pressure, substitution, or magnetic field
[2–9]. Among 3d magnets tunable quantum criticality could
be found in itinerant systems like NbFe2 [10] and (Ta,V)Fe2

[11,12] but also in systems with more localized Fe moments
like YFe2Al10 [13] and YbFe2Al10 [14]. Here, in contrast
to the itinerant Fe systems, there is strong evidence for the
emergence of weak Kondo interaction among the localized
Fe moments. Signatures of Kondo type of correlations are
also found in some magnetic semimetals. FeSi [15–17], FeSb2

[18,19], and FeGa3 [20–22] attracted great attention because
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of their nonmagnetic ground state and their promising low
temperature thermoelectric performance. Metallic behavior
and Fe-based magnetism could be introduced by controlled
substitutions on the Fe or the framework site. For example,
for Fe(Ga1−xGex)3 Ga-NQR was performed to monitor the
effect of Ge substitution across the phase diagram and to
probe the magnetic fluctuations at zero magnetic field via
the spin lattice relaxation rate (SLRR) through the QCP.
In conclusion, we found an absence of induced disorder,
localized antiferromagnetic Kondo-like correlations at low
doping levels, and critical ferromagnetic fluctuations at the
QCP [22]. In contrast to that the Co substitution on the Fe site
introduces antiferromagnetic correlations in (Fe1−xCox)Ga3

but with sizable induced disorder [21,23]. Along this line we
started to work on Sb NQR in Fe(Sb1−xTex)2 where in contrast
to Fe(Ga1−xGex)3 an electronic Griffith phase is predicted
for the disordered paramagnetic metal at the verge of canted
antiferromagnetism [24,25]. Being a local probe at zero field
NQR could capture both most relevant points: (a) the degree
of disorder and (b) the onset of critical antiferromagnetic
fluctuations at the verge of long range order. Furthermore, NQR
might be of use to disentangle the electronic from the magnetic
Griffith phase [9]. In the correlated electron metal picture the
SLRR is strongly related to the specific heat coefficient γ

via 1/T1T ∼ N2(EF ) ∼ γ 2 ≡ (C/T )2 (Korringa law [1]). For
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weak itinerant metals the Moryia and the Herz Millis theory
captures many different cases and systems [26–28]. Especially
at the verge to long range magnetic order power laws for the
SLRR are predicted (1/T1(T )T ∼ T −3/4 (afm) ∼T −4/3 (fm)
[26–28]). Frequently non-Fermi liquid behavior (NFL) was
found for many systems which frequently originate from local
disorder. Disorder induced NFL behavior is discussed for many
3d and 4f and 5f systems [9]. Here, for itinerant 3d systems
(and to some extent U -based 5f systems), the Griffith phase
was established [9,29–32], whereas for some more localized
4f Kondo systems the Kondo glass scenario was proposed
to capture the effect of disorder on the bulk properties [33].
So far detailed microscopic studies like NMR or μSR in
quantum critical itinerant d electron semimetals on the local
effect of doping and the evolution of an electronic Griffith
phase are missing. Here we report the results of 121,123Sb
NQR spectroscopy and nuclear spin-lattice relaxation (SLR)
1/T1 experiments on the correlated semimetal FeSb2 and the
Te-doped systems Fe(Sb0.99Te0.01)2 and Fe(Sb0.95Te0.05)2.

II. EXPERIMENT

Single crystals of Fe(Sb1−xTex)2 (x = 0.01, 0.05) were
prepared as described in [24]. For NQR measurements
Fe(Sb1−xTex)2 single crystals which exhibit good metallic
conductivity already at x = 0.01 [24] were crushed into fine
powder and mixed with paraffin. NQR experiments were per-
formed using a phase-coherent pulsed Tecmag-Apollo NMR
spectrometer. 121,123Sb NQR spectra were measured using a
frequency step point-by-point spin-echo technique at 4.2 K by
integration of the spin-echo envelope in the time domain and
averaging over a scan accumulation number which depends on
the sample. The 123Sb nuclear spin-lattice relaxation was mea-
sured using the saturation recovery method in the temperature
range of 2.5–200 K. In addition, low temperature specific heat
measurements were carried out on Fe(Sb1−xTex)2 (x = 0.01,
0.05) single crystals using the Quantum Design PPMS in the
temperature range of 0.5–30 K.

III. RESULTS

A. 121,123Sb NQR spectra

Bulk measurements reported previously [24,25] provide
only macroscopic evidence for the emergence of an electronic
Griffith phase accompanied by NFL behavior in Te-doped
FeSb2. To obtain a microscopic insight into underlying physics
of this system we performed 121,123Sb nuclear quadrupole res-
onance (NQR) spectroscopy study on the same Fe(Sb1−xTex)2

(x = 0.01, 0.05) samples. 121,123Sb NQR spectra measured at
4.2 K for both samples are presented in Fig. 1 together with
the spectrum of the undoped FeSb2 at 10 K adopted from [19].
As seen from this figure even a very small (1%) Te doping
causes significant broadening of the Sb NQR lines. Moreover,
121Sb ν1 line (58.5 MHz; |±1/2〉 ↔ |±3/2〉 transition) and
123Sb ν2 line (55.8 MHz; |±1/2〉 ↔ |±3/2〉 transition) already
start to overlap in the Fe(Sb1−xTex)2 (x = 0.01) compound.
Further increase of Te doping (x = 0.05) leads to complete
overlapping of these two NQR lines and formation of two
broad shoulders to the left from 123Sb ν2 NQR line. Similar
asymmetric broadening with formation of a low frequency

shoulder is exhibited by all other 121,123Sb NQR transition
lines in the Fe(Sb0.95Te0.05)2 sample (see Fig. 1, upper panel).
The full width at half maximum (FWHM) for 123Sb ν1 line
(44.85 MHz; |±1/2〉 ↔ |±3/2〉 transition) amounts to 0.45,
0.91, and 3.63 MHz for the Te concentration x = 0, 0.01, and
0.05, respectively. In other words, only 5% of heterovalent
doping of Te for Sb results in almost one order of magnitude Sb
NQR line broadening which is rather substantial. For compari-
son, 5% of Co substitution for Fe relative to FeSb2 nonmagnetic
Kondo-like semiconductor FeGa3 causes increasing of 69Ga
(I = 3/2) NQR FWHM from 0.044 to 0.18 MHz [34] which
is factor of 2 less than that in FeSb2. Unfortunately, we were not
able to estimate FWHM values for other 121,123Sb NQR lines
due to line overlapping in the Fe(Sb0.95Te0.05)2 sample. In order
to extract quantitative information from experimental 121,123Sb
NQR spectra we determined the linewidth at 80% level from
maximum line intensity. The obtained values are listed in
Table I demonstrating considerable increase in 121,123Sb NQR
linewidth in FeSb2 with Te doping.

B. 123Sb nuclear spin-lattice relaxation

To probe the effect of small Te doping on the dynamical
properties of the FeSb2 system we performed 123Sb nuclear
spin-lattice relaxation (SLR) measurements at 123Sb ν2 NQR
line (|±3/2〉 ↔ |±5/2〉 transition) as a function of temperature
in the range of 2.5–200 K by means of the saturation recovery
method. We have selected this line to enable comparison with
the SLR data for the undoped FeSb2 semiconductor available
only for 123Sb ν2 NQR line [19]. Since only one NQR transition
line was saturated, the 123Sb (I = 7/2) magnetization recovery
curves for Fe(Sb1−xTex)2 (x = 0.01, 0.05) samples were fitted
by the sum of three stretched exponents [19,35]:

M(τ ) = M0 +
3∑

i=1

Ci{1 − exp[−(2kiWiτ )n]}. (1)

Here M(τ ) is the spin-echo integrated intensity, M0 is the
remaining magnetization after the saturation comb (at τ → 0),
τ is the delay time between the saturation comb and the
spin-echo pulse sequence, 2W0 = 1/T1 is the 123Sb nuclear
spin-lattice relaxation rate, and Ci(η), ki(η) are the weighting
coefficients. The values of Ci(η), ki(η) for FeSb2 (η = 0.43)
were taken from the numerical calculations [35] and were
assumed not affected by Te doping. The stretched exponent
parameter n was introduced in Eq. (1) to account for the
structural disorder caused by Te doping. The examples of
experimental recovery curves and their best fits to Eq. (1)
obtained for Fe(Sb1−xTex)2 (x = 0.01, 0.05) samples at 4.2 K
compared with that for the undoped FeSb2 at 10 K (retrieved
from [19]) are presented in Fig. 2. As seen from this figure,
the approximation of the experimental recovery curves to
Eq. (1) is rather good. While for binary FeSb2 n ≡ 1, in-
creasing of Te doping leads to significant decrease of the
stretched exponent parameter: n = 0.73(1) for x = 0.01 and
n = 0.64(2) for x = 0.05. This effect is a consequence of
spatial distribution of 1/T1 values due to growing structural
and magnetic disorder in FeSb2 crystal lattice caused by Te
substitution. It is worth mentioning two characteristic features
seen from Fig. 2. First, the remaining magnetization M0 after
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FIG. 1. 121,123Sb spectra measured at 4.2 K in Fe(Sb1−xTex)2 compounds with x = 0.01 (lower panel) and 0.05 (upper panel). For comparison,
the same Sb NQR lines for the undoped FeSb2 measured at 10 K and retrieved from [19] are presented (lower panel). The intensities of all
transitions except ν2 line (55.9 MHz; |±3/2〉 ↔ |±5/2〉 transition) for the Fe(Sb0.95Te0.05)2 sample are normalized on their maximum intensity
values. Inset: 123Sb ν3 line (88.0 MHz; |±5/2〉 ↔ |±7/2〉 transition) and 122Sb ν2 line (95.1 MHz; |±5/2〉 ↔ |±7/2〉 transition) without
normalization for the Fe(Sb0.95Te0.05)2 sample. Solid lines are guides for eye.

the saturation comb (at τ → 0) is dramatically increasing with
Te doping x: while the initial saturation is almost perfect
in the undoped FeSb2 (M0 ≈ 0.04), M0 becomes ≈ 0.3 for
x = 0.01 and accomplishes ≈0.54 for x = 0.05. This effect
reflects an extreme broadening and even overlapping of Sb
NQR lines in Fe(Sb1−xTex)2 with increasing x (Fig. 1). The
intense spin polarization transferred from nonexcited regions
in the broad spectra effectively hampers the saturation process
despite all our efforts to optimize the saturation comb and
minimize the M0 value. The second interesting feature of the
experimental data shown in Fig. 2 is a significant visible shift
of the recovery curves towards low τ values with increasing

Te doping x which indicates a very fast increase of the 1/T1

values with increasing x. This effect also favors increasing
of the remaining magnetization M0, as observed for the
undoped FeSb2 sample with increasing temperature [19]. The
resulting temperature dependencies of 1/T1T as a function
of temperature for Fe(Sb1−xTex)2 (x = 0,0.01,0.05) samples
are presented in Fig. 3. As clearly seen from this figure, even
low (x = 0.01) Te doping leads to drastic increase of the
Sb SLRR in more than one order of magnitude in the low
temperature range 2–50 K. As has been shown in Refs. [24,25],
even extremely low Te doping of x = 0.001 leads to transition
from semiconducting to metallic behavior so that at x = 0.01

TABLE I. Width of the 121,123Sb NQR transition lines in Fe(Sb1−xTex)2 samples determined at 80% from maximum line intensity.

121Sb 123Sb
I = 5/2 I = 7/2

γ /2π = 10.188 MHz/T γ /2π = 5.517 MHz/T
Q = −0.36 barn Q = −0.49 barn

Fe(Sb1−xTex)2 �ν1 (MHz) �ν2 (MHz) �ν1 (MHz) �ν2 (MHz) �ν3 (MHz)

x = 0 0.11 0.14 0.19 0.07 0.06
x = 0.01 0.34 0.38 0.49 0.13 0.30
x = 0.05 1.39 1.17 1.53 − 1.48
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FIG. 2. 123Sb magnetization recovery curves for the ν2 NQR line
(quadrupole transition |±3/2〉 ↔ |±5/2〉) in the Fe(Sb1−xTex)2 (x =
0.01, 0.05) samples at 4.2 K and FeSb2 at 10 K. The latter curve was
adopted from Ref. [19]. Solid lines are the best fits to Eq. (2) with
n = 1, 0.73(1), 0.64(2) for x = 0, 0.01, 0.05, respectively.

one can expect Korringa-like SLRR governed by conduction
electrons. Indeed, for the FeSb0.99Te0.01 sample 1/T1T (T )
might be considered as almost temperature independent in the
range of 2–70 K (Fig. 3). Above 70 K 1/T1T in FeSb0.99Te0.01

sample increases merging to that for the undoped FeSb2.
For the FeSb0.95Te0.05 sample where 1/T1T is one order of
magnitude higher than for FeSb0.99Te0.01 and a power-law
divergence 1/T1T ∼ T −0.72 (1/T1 ∼ T 0.28) (Fig. 3) was found
towards low temperatures.

C. Specific heat

In addition to the NQR spectroscopy data we performed
low temperature specific heat measurements on the same
Fe(Sb1−xTex)2 (x = 0.01, 0.05) samples (Fig. 4, upper panel).

FIG. 3. 1/T1T as a function of temperature for the 123Sb ν2 NQR
line (|±3/2〉 ↔ |±5/2〉) in Fe(Sb1−xTex)2 compounds (x = 0, 0.01,
and 0.05). Solid straight lines are the best linear fits according to
formula 1/T1T = a ∗ T −2(1+λ) (see text).

FIG. 4. Upper panel: C/T vs T plot in Fe(Sb1−xTex)2 compounds
(x = 0.01 and x = 0.05). Solid lines are the best fits to Eq. (2) (see
text). Lower panel: Low temperature part of the C/T vs T plot for
the Fe(Sb0.95Te0.05)2 sample. Dashed and solid lines are the best fits
to Eqs. (2) and (5), respectively.

The data are in a rather good agreement with findings of Hu
et al. [25] on crystals from the same batch. Here power law
divergences in γ (T ) = C/T and χ (T ) are discussed in the
framework of the disorder induced Griffith phase (GF) at the
verge of magnetism [15]. According to [29], the low temper-
ature divergence of specific heat in GF systems is described
by power function C(T )/T = a ∗ T −1+λC with λC < 1. Then
likewise [25], the total low temperature behavior of specific
heat in these compounds can be successfully fitted to the
equation

C(T )/T = α ∗ T −1+λC + b ∗ T 2 + c ∗ T 4. (2)

The second and third terms in Eq. (2) describes harmonic and
anharmonic contributions to specific heat, respectively [36].
The obtained values of λC for both samples [λC = 0.88 (x =
0.01) and 0.72 (x = 0.05) see Table II] are in good agreement
with that reported in Ref. [25].

IV. DISCUSSION

The origin of the observed low frequency shoulder at
121,123Sb NQR lines can be understood as follows. With
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TABLE II. Values of the parameter λ obtained from specific heat
(λC/T )expt and nuclear spin-lattice relaxation (λT 1)expt experiments in
comparison with that from Ref. [2], marked by (*).

x (λC)∗ (λC)expt (λT1 )expt

0.01 0.91(7) 0.88(4) 0.90(6)
0.05 0.72(3) 0.72(4) 0.64(4)

increasing of Te content x from 0.01 to 0.05 the number of
heterodumbbells Sb-Te also increases. These dumbbells are
characterized by polarization of the Sb-Te bond due to higher
electronegativity of the Te atom. Therefore electronic density
inside the Sb-Te dumbbell is shifted towards the Te atom.
As a consequence, a partial negative charge on Sb atom is
reduced causing decrease of EFG followed by decreasing of
Sb quadrupole frequency. At low Te concentration (x = 0.01)
this effect in not yet visible but 5% Te seems to be enough for
detection since the number of heterodumbbells Sb-Te increases
substantially and the left shoulder on Sb NQR appears. In this
simplified approach only the first coordination sphere of Sb
is considered which might be visualized as a Sb-Sb dumbbell
with short interatomic distance (∼2.8 Å) surrounded by six
Fe atoms likewise strongly distorted octahedron (Fig. 5). In a
5% Te substituted FeSb2 sample one can expect appearance
of heterodumbbell Sb-Te in the second coordination sphere
of homodumbbell Sb-Sb which slightly reduces the charge on
Sb. In conjunction with strong NQR line broadening caused by
lattice disorder this explains why instead of a separate peak to
the left of the main Sb NQR line we observe just a left shoulder.

As seen from Table I, for all samples the broadening of the ν1

line for the 123Sb isotope is higher than that for the 121Sb isotope
in satisfactory accordance to the ratio of their quadrupole
moments 123Q/121Q = 1.36. This result provides an evidence
of electronic quadrupole origin rather than magnetic origin
of the 121,123Sb NQR line broadening in Fe(Sb1−xTex)2 (x =
0.05) sample. This supports the claim of an electronic Griffith
phase (EGP) in Te-doped FeSb2 and is in a strong contrast to
the magnetic Griffith phase (MGP). Indeed, in case of isolated
magnetically ordered clusters characteristic for the magnetic
Griffiths phase Sb nuclei inside these clusters should sense

FIG. 5. Schematic illustration of the first two coordination
spheres of Sb-Sb dumbbell in the FeSb2 crystal structure. Sb atoms are
indicated as green spheres, Fe are dark blue spheres. Fe6 octahedron
surrounding the center of the Sb-Sb dumbbell (black point in the
center of an octahedron) is indicated by green-blue.

transferred hyperfine magnetic fields of a few 100 to 1000
Oe induced from electron spins localized on Fe. For this case
the pure NQR scenario converts into the Zeeman perturbed
NQR on 121,123Sb with an sizable splitting and broadening
of initial NQR transition lines. This depends on value and
orientation of the internal magnetic field with respect to the
main EFG axes and asymmetry parameter η, and is propor-
tional to the gyromagnetic ratio γ (see, for instance, [37]).
Since 121γ /123γ = 1.85 the broadening of the 121Sb NQR
lines should be almost twice as for 123Sb isotope. This is
definitely not seen in our experimental 121,123Sb NQR spectra
in Fe(Sb0.95Te0.05)2 sample. To support the statement above
we assume magnetic broadening being solely responsible for
the NQR broadening. As a consequence for the 5% sample
this yields dissimilar hyperfine fields at the two Sb isotopes
(1360 Oe for 121Sb and 2770 Oe for 123Sb, |±1/2〉 ↔ |±3/2〉
transition) which is inconsistent. Furthermore, the values of
these calculated hyperfine fields are much too high for the small
Fe moment found in the 5% sample [25]. In the case of rather
large hyperfine magnetic fields (∼1 T) induced on Sb nuclei
within ordered spin clusters of Griffiths phase one can even
observe a “wipe-out” effect of disappearing of Sb NQR lines
originated from cluster volume due to their extreme Zeeman
broadening. This effect should substantially reduce the total
Sb NQR intensity which was not observed in our experiment.

For a metal in the frame of the Landau Fermi liquid (LFl)
the SLRR could be related to the specific heat via the density
of states at the Fermi level which yields 1/T1T ∼ N2(EF ) ∼
γ 2 ≡ (C/T )2 ∼ T 2(−1+λ). Contrasting to that, if the metal is
a weak itinerant magnet, the SLRR is more related to the
low energy and q-averaged complex dynamic susceptibility
χ (q.ω) which yields 1/T1T ∼ ∑

q χ (qω). Here it matters if
the correlations are fm (at q = 0) or afm (at q 	= 0). For fm
correlations the SLRR is frequently found to be proportional
to the bulk susceptibility 1/T1T ∼ χ ∼ T −1+λ for the MGP.

For the 1% sample the specific heat coefficient power
law (m ≡ 1 − λ = 0.12) suggests a SLRR power law with
n = 2m = 0.24 which is in rather good agreement with the
experimental result (n = 0.2). For the 5% sample the specific
heat coefficient power law (m = 0.28) suggests a SLRR power
law with n = 2m = 0.56 which is much smaller than what is
found by experiment (n = 0.72). This might point towards
the fact that upon doping we have a crossover from more
localized correlated metal to and afm correlated itinerant metal
at the verge of order. Here Moryia predicted a power law with
n = 3/4 which is rather close to the experimental finding.
It should also be mentioned that the possibility exists that a
distribution of relaxation rates at a given Sb site originates this
deviation in the scaling.

Nonetheless, the specific heat coefficient enhancement fac-
tor at 2 K (γ5%/γ1%) is about 5 which suggests in the LFl theory
an enhancement of the SLRR (R = 1/T1T ) (R5%/R1%) ≈ 25
which is indeed experimentally confirmed by our spin lattice
relaxation measurements.

Let us take a closer look to predictions for the SLRR in
an Griffith phase. According to theoretical prediction for the
magnetic Griffith phase the nuclear spin-lattice relaxation rate
should follow the equation [29]

1/T1T (ω,T ) ∝ ω−2+λtanh(ω/T ). (3)
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Since in our NQR experiment h̄ω � kBT even at lowest
temperatures tanh(ω/T ) ≈ ω/T and Eq. (3) is simplified to
the form

1/T1T (ω,T ) ∝ ω−1+λ/T ∝ T −1. (4)

The MGP power law with n = 1 (assuming ω = const in
the first place) is far from the experimental values [n = 0.2
(for x = 0.01) and n = 0.72 (for x = 0.05)].

From the other hand, α ≡ 1 − n = 1/3 is a characteristic
exponent value within the Tsvelik and Reizer model based on
scaling analysis of collective bosonic modes of the fluctuations
with the spectrum ω ∼ q3 near QCP providing 1/T1T ∼
T −2/3 ∼ T −0.66 (1/T1 ∼ T 1/3) behavior at low temperatures
[38].

The SLR results obtained for the Fe(Sb1−xTex)2 (x = 0.01,
0.05) samples do not provide an unambiguous microscopic
evidence in favor of either of these two models describing
complicated NFL properties in the vicinity of the QCP. To
gain an extra argument favoring one of these models we
revisited the low temperature specific data analysis. Although
approximation of specific heat experimental data by Eq. (2)
is almost perfect above 5 K, the low temperature part of the
theoretical curve for the x = 0.05 sample shows systematic
deviation from experimental C(T )/T points which evidently
diverges faster with decreasing T than power function T −1+λ

(see Fig. 4, lower panel). One should also take into account that
more general description of NFL behavior predicts logarithmic
rather than power divergence of specific heat at T → 0 [3]. It
is worth to note that the Tsvelik and Reizer model also predicts
for the specific heat low temperature logarithmic divergence
[38]. However, the ln T function diverges even slower than
T −1+λ. This contradiction can be settled by implementing a
dissipative quantum droplet model [39] which describes the
critical behavior of NFL metallic magnetic systems at low T <

T ∗ below which the quantum critical regime is dominated by
dissipation providing stronger divergence of specific heat than
the power law: C(T )/T ∝ T/ ln2 (1/T ). Combining general
logarithmic NFL divergence with even stronger divergence
term of C(T )/T ∝ T/ ln2 (1/T ) from a dissipative quantum
droplet model one arrives at

C(T )/T = a ∗ /T ln2 (1/T ) − b ∗ ln T + c ∗ T 2 + d ∗ T 4.

(5)
Using Eq. (5) instead of Eq. (2) we obtained much better

agreement with experimental low temperature C(T )/T data as
demonstrated in Fig. 4, lower panel.

V. SUMMARY

We performed a comprehensive study of correlated inter-
metallic system Fe(Sb1−xTex)2 (x = 0.01, 0.05) in the vicinity
of an antiferromagnetic quantum critical point by means of
NQR spectroscopy on 121,123Sb nuclei. It was found that even
a slight tellurium doping of x = 0.05 introduces strong lattice

disorder in the binary Kondo-insulator compound FeSb2 result-
ing in substantial asymmetric broadening Sb NQR spectrum
and formation of the low frequency shoulder at the left side of
each of 121,123Sb NQR transition lines due to polarization of the
Sb-Te bond and shifting of electronic density inside the Sb-Te
dumbbell towards the Te atom. Furthermore, the observed
transformation of the Sb NQR spectrum in Fe(Sb1−xTex)2

samples are related to local changes of the electric field gradient
due to the doping effect. There is nearly no evidence for
magnetic broadening of the NQR lines due to the emerging Fe
magnetism upon doping. We take the predominant electronic
NQR broadening effect as the microscopic evidence for the
electronic Griffith phase formation which is in strong contrast
to the magnetic broadening expected for the magnetic Griffith
phase scenario.

The spin lattice relaxation results clearly show that the
charge gap of the pure correlated semimetal FeSb2 is filled
upon Te doping. In a first approximation based on the Landau
Fermi liquid theory for correlated metals the low temperature
divergence of the SLRR 1/T1T (T ) could be scaled to the one
of the specific heat coefficient γ (T ). A very good agreement
was found for the 1% sample, whereas the 5% sample which
is closer to the antiferromagnetic ordered phase shows a
significant violation of the scaling. The power-law coefficient
of the SLRR n = 0.72 is rather close to the one expected
for antiferromagnetic criticality which is nafm = 3/4 = 0.75.
Nonetheless, the enhancement factor of 5 (determined at 2 K)
between the x = 0.01 and x = 0.05 samples in the specific
heat yields an enhancement of 25 in the 1/T1T value which
was experimentally verified. This clearly shows that, even
with emerging magnetism, the Landau Fermi liquid approach
is valid towards low temperatures. For both samples the
specific heat divergence is in good agreement with Ref. [25]
which suggests an electronic Griffith phase, the microscopic
SLRR shows deviations for the 5% sample. Probably this is
because of the q-averaging nature of the SLRR and the vicinity
to antiferromagnetic order. Antiferromagnetic criticality in
Fe-based systems is a rare occurrence and therefore doped
Fe-based semimetals in general might provide a platform for
further studies. Furthermore, other local probes (like μSR)
should be addressed to study Griffith phase systems on a
microscopic length scale.
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