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Weak antilocalization of composite fermions in graphene
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We demonstrate experimentally that composite fermions in monolayer graphene display weak antilocalization.
Our experiments deal with fractional quantum Hall (FQH) states in high-mobility, suspended graphene Corbino
disks in the vicinity of ν = 1/2. We find a strong temperature dependence of conductivity σ away from half
filling, which is consistent with the expected electron-electron interaction-induced gaps in the FQH state. At
half filling, however, the temperature dependence of conductivity σ (T ) becomes quite weak, as anticipated for
a Fermi sea of composite fermions, and we find a logarithmic dependence of σ on T . The sign of this quantum
correction coincides with the weak antilocalization of graphene composite fermions, indigenous to chiral Dirac
particles.
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I. INTRODUCTION

The fractional quantum Hall (FQH) state is a many-body
phenomenon where fractionally charged elementary excita-
tions lead to quantization of the Hall conductance at a fractional
filling factor ν = hn/(eB) at a carrier density n and magnetic
field B [1]. The generation of these incompressible liquid states
requires a large Coulomb interaction energy compared with the
disorder potential, putting strict requirements on temperature,
the quality of the two-dimensional electron gas (2DEG), and
the strength of the magnetic field. Owing to reduced screening
in atomically thin graphene, the electrons in graphene interact
with a larger Coulomb interaction energy than electrons in
semiconductor heterostructures, providing an excellent setting
for studies of FQH states and their description in terms of
composite fermions [2–4].

The composite fermion theory [2] and composite fermion
Chern-Simon (CFCS) theory [5–8] have been very successful
in outlining a unified picture of the fractional quantum Hall
effect. Lopez and Fradkin [5] showed that the problem of
interacting electrons moving in 2D in the presence of an
external magnetic field is equivalent to a fermion system,
described by a Chern-Simon gauge field, where electrons are
bound to an even number of vortex lines. Fluctuations in the
gauge field were soon realized to have a strong influence on the
quantum correction of the composite fermion conductivity [6].
Subsequently, a Fermi-liquid type of theory was proposed for
the half-filled Landau level [7] where various observables in the
low-temperature limit are described in terms of Fermi-liquid
parameters [8], involving most notably the effective mass m∗
for composite fermions, which is expected to have a strong
enhancement near half filling.

Extensive experimental evidence exists in favor of a weakly
interacting Fermi sea of composite fermions effectively in a
zero magnetic field at ν = 1/2. Transport anomalies in the
lowest Landau level of two-dimensional electrons at half filling
were observed by Jiang et al. [9]. Distinct features related
with compressibility in surface-acoustic-wave propagation on
high-quality AlGaAs/GaAs heterostructures were observed by
Willett et al. [10–12]. Furthermore, resonances at fields where

the classical cyclotron orbit becomes commensurate with a
superlattice have been found [13,14]. A strong enhancement of
the composite fermion mass near ν = 1/2 has been observed
in experiments on similar 2DEG heterostructures [15,16]. A
logarithmic temperature dependence of conductivity at half-
integer filling factors has been observed, which has been
interpreted to point towards residual interactions between
composite fermions [17–19].

Graphene, owing to the pseudospin originating from the
two-atom basis, may display reduced backscattering that will
result in weak antilocalization (WAL). This has been observed
for Dirac particles in graphene at small magnetic fields [20],
and similar WAL behavior might carry over to graphene
composite fermions instead of interaction-induced quantum
corrections to conductivity [21]. In our present work, we
demonstrate experimentally the presence of chiral, Dirac-
particle-like composite fermions in monolayer graphene by
measuring quantum corrections to conductivity for a half-
filled quantum Hall state in magnetic fields of B = 5–9 T.
By using a micron-wide suspended Corbino disk with high
mobility, we find evidence of weak antilocalization behavior
at half filling, in spite of the inherent field fluctuations in
the composite fermion system. Our results display typical
logarithmic temperature corrections for two-dimensional weak
localization (WL), but with an opposite sign in comparison to
previous observations in 2DEG experiments [18,19].

Interaction and weak localization corrections to conduc-
tivity in graphene are influenced by the pseudospin introduced
by the two-atom basis of the hexagonal lattice. The pseudospin
leads to an additional Berry phase of π in the backscattering
wave interference, resulting in reduced backscattering, or in
other words, antilocalization [22–24]. True time reversal sym-
metry (TRS) of graphene requires intervalley scattering, which
makes its weak localization phenomena intriguing. In fact,
low-field magnetoresistance in graphene may be either positive
or negative, depending on the strength of the intervalley and
dephasing scattering, as well as on the rate for TRS breaking
in a single valley [20,24,25].

In the composite fermion picture, a charge carrier is com-
bined with two flux lines, vortices. The underlying valley
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structure will be reflected on the graphene composite fermions,
and we expect scattering processes with similar relations
among the graphene composite fermions as for graphene Dirac
particles at small fields. Consequently, quantum corrections
to conductivity at ν = 1/2 can be either positive (WAL) or
negative (WL) depending on the rates of intervalley, dephas-
ing, and single-valley TRS breaking scattering for composite
fermions denoted as τ−1

i , τ−1
ϕ , and τ−1

∗ , respectively. Even
though fluctuations due to Chern-Simon fields will enhance
the dephasing rate of composite carriers, we anticipate the
tendency towards weak antilocalization to remain, which
reflects the presence of a Berry phase due to the Dirac nature
of these composite carriers.

Recently, Corbino geometry was used in graphene experi-
ments which focused on studies of magnetoconductance in the
quantum Hall regime [26,27]. These previous measurements
on graphene Corbino disks have failed to show any FQH states,
perhaps due to the strong charge inhomogeneity induced by
the substrate. Our experiments at mK temperatures, however,
display a multitude of FQH states in the lowest Landau level
which are clearly visible in magneto- and transconductance
measurements [28]. In our devices, conductance is governed by
bulk properties instead of the chiral edge states of regular quan-
tum Hall bars. Consequently, a current-annealed, suspended
graphene Corbino disk forms an excellent system to study
carrier dynamics in the free Fermi sea of composite fermions
at half filling.

II. METHODS

The samples considered here are denoted by EV2 (ro =
1900 nm, ri = 750 nm), EV3 (ro = 1600 nm, ri = 400 nm),
and C2 (ro = 1400 nm, ri = 450 nm), where ro and ri denote
the outer and inner radii of the Corbino disks. Our sample fab-
rication is explained in detail in Ref. [28]. First, we exfoliated
graphene on LOR (lift-off resist) using a heat-assisted exfoli-
ation technique to maximize the size of the exfoliated flakes
[29]. The contacts were deposited by employing poly(methyl
methacrylate) (PMMA)-based lithography in a scheme devel-
oped further from the ideas presented in Ref. [30]. A strongly
doped silicon Si++ substrate with 285 nm of thermally grown
SiO2 was used as a global back gate. Annealing of samples
on LOR was typically performed at low temperatures using a
bias voltage of 1.6 ± 0.1 V, which is comparable with our HF
etched, rectangular two-lead samples [31,32].

In our suspended devices (see Fig. 1), the Corbino disk is
supported only by the inner and outer leads made of Au/Cr [28].
The conductivity was calculated from the measured conduc-
tance G using σ = G

2π
ln(ro/ri). The field-effect mobility was

determined using the equation μf = σ−σ0
ne

after subtracting
out the contact resistance from σ and the measured minimum
conductivity σ0 at the Dirac point (Vg = V d

g ∼ −2 V). Our
samples had μf � 1.3–2×105 cm2/V s at low n. The residual
charge density n0 � 1–2×109 cm−2 for the best regions of the
samples was identified by looking for a crossover between
constant and power-law behavior in log G vs log n traces in the
unipolar transport regime. Contact doping [32] is estimated to
correspond to a charge density of nc ∼ 5×1011 cm−2 under the
contact metal. Details concerning the determination of these
basic parameters are given in Ref. [28].

FIG. 1. False-color scanning electron micrograph of a typical
sample. The teal circular ring is the graphene sheet, yellow parts
denote the gold contacts, dark green marks the LOR support, and the
underlying substrate appears as gray.

The zero-B conductance of graphene in Corbino geometry
at V d

g is equal to G = 8e2

h
log ( ro

ri
)−1 according to the conformal

mapping theory [33]. After subtraction of the contact resis-
tance, our measured conductivity is in line with the above
theoretical value, as well as with the predicted chemical
potential dependence [33]. Also, the measured gate voltage
dependence of G(Vg) in the unipolar regime was found to
agree with the theoretical formula, which at the same time
gave an estimate Rc = 410 � for the contact resistance. The
high sample quality is also manifested in the observability of
broken symmetry states (ν = 0,3,4) down to 0.6 T.

Our measurements down to 20 mK were performed on
a BlueFors LD-400 dilution refrigerator. The measurement
lines were equipped with three-stage RC filters containing
R = 150 � and C = 10 nF. Because of the large RC time
constant, ∼1 s at 30 M� sample resistance, most of the
magnetoconductance measurements, illustrated in Fig. 2 for
the sample EV2, were performed at dc using appropriate
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FIG. 2. The magnetoconductance of sample EV2 displayed as
a Landau fan diagram on the B vs gate voltage Vg plane; data
measured at f = 3.333 Hz using ac peak-to-peak excitation current
Ip-p = 0.1 nA at 20 mK. The region of half filling is given by the slope
0.64 T/V starting from the zero-field Dirac point at Vg = −2.3 V.
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FIG. 3. Temperature dependence of the dc conductivity for the
Corbino samples (a) EV3 at B = 5 T measured over the charge
density n = 3.8–8.6×1010 cm−2 (Vg up to 8.3 V), and (b) EV2 at
B = 9 T measured over the charge density n = 6.5–15.2×1010 cm−2

(Vg up to 13.9 V). The main FQH states are marked using black arrows
in both pictures. The inset of (b) displays the magnetoresistance of the
sample EV3 near zero real field B = 0 T at Vg = 10 V. The dashed red
line denotes a guide to the eyes based on classical magnetoresistance
of the form R(B) = R0 + aB2.

waiting times up to 5 s (for G > 2×10−8 S). Since the
symmetry of the Corbino geometry enforces the azimuthal
electric field to zero, our experiment is sensitive only to the
longitudinal conductivity σxx of the sample.

III. MAGNETOCONDUCTANCE AROUND 1/2 FILLING

Our data on the electronic conductivity σxx versus the
gate-swept filling factor ν = hn/(eB) in sample EV3 are dis-
played in Fig. 3(a) for several temperatures in the range
T = 0.01–4.2 K measured at B = 5 T. Similar data from the
sample EV2 in the temperature rangeT = 0.03–6 K at B = 9 T
are displayed in Fig. 3(b). In both cases the half-filling regime
is characterized by the weakest temperature dependence of σxx ,
which is in accordance with the absence of any energy gap in

this regime. Only a linear background variation of σxx(ν)|6K

around ν = 1/2 ≡ hn/eB1/2 is observed at the highest mea-
sured temperatures, which indicates washing out of quantum
corrections to conductance by thermal fluctuations.

The effective field seen by the composite fermions is
given by B = B − B1/2, which amounts to B = 0 at ν = 1/2.
From the data in Fig. 3 we see that the magnetoconductance
around B = 0 is negative at the lowest mK temperatures.
This negative magnetoconductance with respect to B applies
to all our samples at the magnetic fields 5 T < B < 9 T.
Foremost, however, this work deals with the transport behavior
at B = 9 T, at which the composite fermion effects and the
FQH states are the clearest. The main characteristics of the data
around half filling at 9 T can be summarized by dσxx/dT > 0
and dσxx/d|B| < 0. The regime of dσxx/d|B| < 0 covers only
the range ν � 0.49–0.51 which corresponds to effective fields
|B| < 200 mT.

The temperature dependence of σxx can also be employed
to determine the energy gaps Eg/kB around ν = 1/2, for
which we obtain, at 5 T, (B − 2hn/e)×3 K/T − �0 and
(B − 2hn/e)×6 K/T − �0 with �0 ∼ 1–2 K for particles and
holes, respectively. Using the slopes dEg/dν and the relation
Beff = hn/(eν)(1 − 2ν) at a fixed magnetic field, we obtain for
the effective masses 0.4me and 0.8me at fields at Beff > 0 and
at Beff < 0, respectively, where me denotes the electron mass
[34]. In graphene, the cyclotron mass increases with charge
density as n1/2. We find an even faster, approximately linear,
increase in the composite fermion m∗ with n at Beff < 0 while
this is absent at Beff > 0.

For a comparison of the magnetoconductivity in Fig. 3 at
small B with phenomena observed at small B, we note that
there may be either positive or negative magnetoresistance in
graphene around B = 0 T [24]. The sign of the magnetore-
sistance has been demonstrated to depend fundamentally on
the parameters τϕ/τi and τϕ/τ∗; when both of these values
are �1, weak antilocalization is preferred and dσ/dT < 0
[20]. In Ref. [20], small ratios were achieved at elevated
temperatures T � 4.2 K. In our suspended sample, we were
able to observe WAL even at 20 mK, and the range of
weak antilocalization magnetoconductance was found to be
within δB = 10–20 mT [see the inset of Fig. 3(b)]. At high
B, the magnetoconductance measurements as a function of
|B| are complicated by the gauge field variation ∼100 mT
originating from charge variation via the composite fermion
flux attachment.

IV. DISCUSSION

Figure 4 displays the temperature dependence of con-
ductivity σxx for samples EV2 and EV3 at ν = 1/2. The
data indicate σxx = λe2

h
log T + const with an increase in σxx

with temperature where λ = 0.005. For our third sample C2,
we found similar behavior with λ = 0.008. Altogether, the
observed quantum correction is quite large and it amounts to
∼20% of σxx over the measured range.

To relate the measured conductivity to the properties of
composite fermions, we follow the treatment given in Ref. [2]
for 2DEG composite fermions (for alternate views, see also
Refs. [35–37]). Then, the connection between electronic con-
ductivity σxx in units e2/h and the (scaled) composite fermion
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FIG. 4. Temperature dependence of conductivity σxx for samples
EV2 (green squares) and EV3 (orange circles) at half filling ν = 1/2
prepared at B = 9 T and B = 5 T, respectively; the right axis denotes
the resistivity of the composite fermions ρCF

xx obtained from σxx using
the transformation given by Eq. (1) at the limit ρCF

xx � 1. The lines
correspond to the logarithmic quantum correction in ρCF

xx calculated
using λρ = 0.02 (see text).

resistivity ρCF
xx is given by

σxx = ρCF
yy

4 + ρCF
xx ρCF

yy

, (1)

where the factor of four appears from the off-diagonal elements
of the Chern-Simon resistivity matrix. Equation (1) has been
employed to extract ρCF

xx = ρCF
yy of the composite fermions.

It is expected [2] that ρCF
xx � 1. Consequently, we obtain a

simple conversion rule: ρCF
xx = 4σxx . The resulting resistivity

ρCF
xx for composite fermions is indicated on the right axis

in Fig. 4. Since the logarithmic dependence for composite
fermions turned into resistivity, the sign of the quantum
correction is now reversed, and we are dealing with antilocal-
ization of composite fermions: The prefactor of the logarith-
mic correction term for resistivity ρCF

xx = λρ
h
e2 log T + const

becomes λρ = +0.02. This means a different sign when com-
pared with previous observations on 2D electron gas systems
with composite fermions at ν = 1/2 [17–19]. One possible
explanation for this different behavior is that Chern-Simon
field fluctuations suppress very strongly the weak localization
contributions in regular 2D electron gas, leaving only interac-
tion corrections to conductivity, whereas weak antilocalization
effects due to pseudospin still survive in graphene.

In the presence of impurity scattering, the composite
fermion motion will be cut off by a finite transport mean free
path �. For q � 2/�, the random phase approximation result
is σxx = 2

kF �
e2

(2p)2h
, where 2p indicates the number of vortices

connected to each electron [3]. By fitting this formula to our
data on sample EV3 using p = 1, we obtain kF � � 12 (8.8),
which yields � ∼ 250 nm (150 nm) for the mean free path
of composite fermions at B = 5 T (B = 9 T). This indicates
clearly diffusive motion as � � L. However, the impurity
concentration in our sample does not coincide with this mean
free path, and we conclude that this scattering length is set by

the Chern-Simon field fluctuations. At 5–9 T fields, we find
approximately � ∝ 1/B.

The combined effect of the diffusive motion of composite
fermions and the gauge field interaction has been studied
by Khveshchenko [38,39] and by Mirlin and Wölfle
[40]. In addition to the weak localization/antilocalization
contributions, the magnetoresistance may be influenced by
the localization of charge carriers due to the magnetic field
fluctuations that lead to cyclotron radii which allow closed
loops for orbiting particles to be formed. Reference [41]
considers magnetic field fluctuations of magnitude of B0

and correlation length d with a scaled correlation function
specified as 〈B(r)B(0)〉 = B2

0F (r/d). Depending on whether
d/R0 = α ≶ 1, i.e., the ratio of the correlation radius to the
cyclotron radius R0 in the field B0, their analysis deals with
weak or strong random magnetic field (RMF) fluctuations,
respectively. We estimate the correlation radius d ∼ 100 nm as
it is related to the size of charge puddles which in high-quality
graphene may be on the order of 100 nm [42]. In the text below
we will argue that B0 � 100 mT is supported by our results.
Consequently, α ∼ 2 and we are in the intermediate-α regime,
but closer to strong RMF fluctuations. Based on an analysis of
snake states and localized trajectories [43] at α � 1, Ref. [41]
obtains for conductance ∼kF d/α1/2. Thus, σxx should enhance
approximately as n1/2 as B is increased at ν = 1/2, provided
that the correlation radius d remains unchanged. Our data for
samples EV2 and EV3 at fixed ν = 1/2 follow a sum of a
constant+linear increase in σxx with increasing n above ∼3
and ∼4 T, respectively, which is in agreement with a linearized
form of the theoretical n1/2 dependence.

At ν �= 1/2, there will be a nonzero average field B seen
by the composite fermions. If B is so large that the cyclotron
radius is clearly smaller than d, the majority of the trajectories
become localized. The localization of composite fermions
leads to a reduction in the number of the charge carriers, which
diminishes conduction across the Corbino sample. This will
lower the conductivity σxx of the sample as seen in Fig. 4
around ν = 1/2. The amount of localized trajectories for α ∼ 1
increases quickly when the field B seen by the composite
fermions becomes ∼B0. Thus, a decrease in conductivity is
obtained at effective fields B > B0 [41]. By looking at the
decay range of σxx around ν = 1/2 at 9 T in Fig. 3(b), we obtain
an estimate of B0 � 100 mT. This is quite close to the RMF
variation magnitude given by n0

2h
e

∼ 75–150 mT. Therefore,
we conclude that the negative, classical magnetoconductance
around ν = 1/2 dominates over the weak antilocalization
corrections seen in σxx(T ) at ν = 1/2.

Our suspended graphene samples always contain built-in
nonuniform strain, which can result in visible frozen ripples
at room temperature. This strain is modified by the applied
gate voltage, which can induce additional rippling around the
perimeter if the graphene sheet is able to slide against the
metallic contact. A variation in strain in suspended graphene
will lead to locally varying pseudomagnetic fields that will
lead to dephasing and TRS-breaking scattering within one cone
(i.e., shorten τϕ and τ∗). According to Ref. [25], nonuniform
strain is the main contributor to both elastic scattering time
τ and τ∗, and τ � τ∗ within a factor of 2–3. This scenario
explains the observation of WAL also in our sample at B � 0.

Using similar arguments as above, Chern-Simon fluctu-
ations governing ρCF

xx will strongly enhance scattering rates
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τ−1, τ−1
ϕ , and τ−1

∗ at ν = 1/2 at high fields. Typically, it is
argued that weak localization effects cannot be observed in
the presence of Chern-Simon field fluctuations that have an
infrared divergence in the density of states of low-frequency
excitations at small wave vectors q [8]. In our sample, however,
there is a rather high infrared cutoff due to a small geometrical
size and low carrier density. By taking a cutoff qmin � 1/(ro −
ri) and kF = √

πn, we obtain for the ratio qmin/kF � 0.01
at n � 1011 cm−2. Consequently, the Chern-Simon fields do
not kill the weak localization effects of graphene composite
fermions, but rather just reduce the dephasing time (and the
ratios τϕ/τ∗ and τϕ/τi) which favors weak antilocalization
behavior among graphene Dirac particles [20].

V. CONCLUSIONS

In conclusion, we have investigated fractional quantum
Hall states in a suspended graphene Corbino disk around

half filling. We find a weak logarithmic temperature depen-
dence of conductivity, the sign of which indicates a weak
antilocalization behavior of graphene composite fermions.
These observations with nearly zero effective field acting
on composite fermions can be understood by drawing a
parallel with the weak antilocalization theories of graphene
Dirac particles at small magnetic fields and using classical
arguments to analyze the role of gauge field fluctuations in
magnetoconductance.
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