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Dynamical mean-field theory study of stripe order and d-wave superconductivity in the
two-dimensional Hubbard model
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We use cellular dynamical mean-field theory with extended unit cells to study the ground state of the
two-dimensional repulsive Hubbard model at finite doping. We calculate the energy of states where d-wave
superconductivity coexists with spatially nonuniform magnetic and charge order and find that they are energetically
favored in a large doping region as compared to the uniform solution. We also study the spatial form of the density
and the superconducting and magnetic order parameters at different doping values.
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I. INTRODUCTION

The two-dimensional square lattice Hubbard model has
been a paradigm model of strongly correlated electron systems
for decades. One of the driving forces behind the overwhelming
interest to this model has been the idea that it might be the
simplest model exhibiting the essential physical principles
behind the high-Tc superconductivity of the cuprate materials
[1]. The cuprates are quasi-two-dimensional materials which
experimentally are found to exhibit d-wave superconductivity
and nonuniform magnetic order [2], both of which have
been proposed to exist in the phase diagram of the repulsive
Hubbard model for some parameters. Experimental methods
for realizing the Hubbard Hamiltonian have also been devel-
oped in the ultracold gas community [3–5]. Especially, the
recent development of the fermionic quantum gas microscopes
provides an interesting platform for observing magnetic order
[6–15], although further advances are needed to reach the
possible superconducting phases.

The idea that the two-dimensional repulsive Hubbard model
could exhibit superconductivity had been investigated in the
context of heavy-fermion superconductors [16] slightly before
the discovery of the cuprate materials, and the number of
papers really proliferated after the famous experiment in 1986
[17]. Early exact results from the determinant quantum Monte
Carlo (DQMC) method indicated enhanced s-wave [16] and
d-wave [18,19] pairing susceptibilities [20]. Unfortunately, at
the temperatures and system sizes reachable by DQMC, it
was not possible to directly demonstrate the existence of a
superconducting phase transition, a situation which remains
true in the current state of the art [21,22]. However, approxima-
tive methods, such as the fluctuation-exchange approximation
[23], predicted a d-wave superconducting state with a critical
temperature of the order of 0.01 hopping units, more than
an order of magnitude lower than what is reached in typical
DQMC calculations [22] for the relevant doping regions.

Parallel to the above developments was the invention of
the resonating valence bond theory [24–27], which, in its
simplest version, expresses the ground state using a mean-field-
like variational ansatz with the appropriate pairing symmetry
projected in the subspace with no double occupancy. Being

variational in nature, this theory needs support from other
methods, and it is currently not clear how well it can describe
the Hubbard model on a quantitative level. Thus obtaining
numerical solutions for the Hubbard model is also important
because it allows validation of the various approximate theories
proposed to explain high-Tc superconductivity. A similar role
could be played by the ultracold gas experiments, where simple
model systems can be realized and studied accurately [28].

Soon after the discovery of the superconducting cuprate
compounds, experiments indicated possible incommensurate
magnetic order in the hole-doped region [29]. Motivated by
this, it was found that [30–33], within mean-field theory,
variants of the 2D Hubbard model could also support a so-
called stripe state, where the magnitude of the magnetization
is spatially modulated. It has not always been recognized that
such modulated magnetization is closely related to the famous
FFLO superconducting state of the attractive model, predicted
within mean-field theory already earlier [34]. Indeed, on a
bipartite lattice, the FFLO state can be mapped into a stripe
state via a simple particle-hole transformation [34,35]. In finite
size DQMC calculations, one can observe short range stripe
order and enhanced susceptibilities [36,37], but, largely due to
the fermionic sign problem, a finite size scaling analysis clearly
showing a phase transition to a striped state is still out of reach.

The indications that the electronic correlations play an
important role in the cuprates and the advances in the ultra-
cold gas experiments have motivated the development of a
variety of new numerical methods for lattice models. Results
indicating the existence of the FFLO state in the 2D Hubbard
model at a finite temperature were recently obtained using
an unbiased diagrammatic Monte Carlo approach [38], giving
a maximum critical temperature of the order of 0.1 hopping
units. Various ground-state methods have also been developed.
These include the density matrix embedding theory (DMET)
[39], constrained path auxiliary field Monte Carlo (AFQMC)
[40], the tensor network wave function ansatz based iPEPS
[41], and advances in the density matrix renormalization group
method (DMRG) to handle wider quasi-2D systems [42]. A
study comparing these four methods consistently found striped
states at 1

8 doping [43]. The DMET has also been used to
map the density-interaction phase diagram of the Hubbard
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model showing (co)existence of stripe states and d-wave
superconductivity [44], and AFQMC has been used to study
long wavelength stripes at low doping [45]. The existence of
the stripe state is also being debated for the closely related
t-J -model, where stripes have been studied using iPEPS [46],
variational monte carlo [47], and fixed-node Monte Carlo (FN)
methods [48].

The dynamical mean-field theory (DMFT) with its cluster
extensions is another relatively recent, although already well
established, numerical method [49–51]. It has been used to
gain insight to the Mott transition both in the Hubbard model
[49] and in real materials [50]. Since the initial realization [52]
that the plaquette DMFT (meaning cellular DMFT [51] with
a 2 × 2 cluster) can describe d-wave superconductivity, this
approximation has been employed to study the competition
and coexistence of superconductivity and magnetic order
in the ground state [53,54], the effect of nearest-neighbor
repulsion [55,56], and finite temperature energetics and
critical temperatures of the superconductivity [57,58]. This
approximation in its basic form cannot produce a striped state,
since the 2 × 2 unit cell does not allow modulation of the
magnetization across the lattice.

The plaquette DMFT can be regarded as a lowest order
mean-field approximation for the d-wave superconductor, as
it does not take into account correlations beyond neighboring
sites. However, large-scale cluster DMFT calculations [59–61]
have provided evidence that the superconductivity exhibited by
the plaquette DMFT is not just an artefact of the approximation,
but indeed exists also for larger clusters. The stripe and FFLO
states have also been investigated within real-space DMFT
calculations where correlations do not extend beyond a single
site [62–66], but inhomogeneous solutions are allowed. Such
approximations can not produce d-wave superconductivity,
where the pairing is induced by correlations between different
sites, which also holds for simpler Hartree-Fock mean-field
theory. A cluster DMFT study showing resilience of the FFLO
state against long-range quantum fluctuations in a quasi-1D
setting also exists [67].

In light of the numerical evidence and the physical
understanding from mean-field methods, the existence of the
stripe state in the repulsive Hubbard model at least for some pa-
rameter region seems highly plausible. However, its interplay
with the d-wave superconductivity has not yet been thoroughly
explored. At the fixed doping 1

8 , superconducting states were
found within DMET, iPEPS, and DMRG, but the states
seemed to be metastable [43]. The topic has also been touched
in other DMET [44] and functional renormalization group
calculations [68], as well as in variational calculations of finite
width chains [44,69], but has not been taken into consideration
in the DMFT-based Green’s function methods. In addition, an
analysis of the energetics for the different stripe wavelengths
for a wide region of doping values has been missing. Several
works have also investigated superconductivity coexisting
with inhomogeneities induced by various external potentials
[70–73], but it is not clear if such studies are relevant for
the stripe states with spontaneous translational symmetry
breaking.

In this paper, we present plaquette DMFT calculations
with extended unit cells and study the interplay of d-wave
superconductivity and striped magnetic order. Thus, on the

one hand, we extend the single-site real-space DMFT cal-
culations [62,63,65,66] to include d-wave superconductivity
and, on the other, we extend the uniform plaquette DMFT
approximation [52–55,57,58] to include the striped order. We
find a wide region of coexistence between striped order and
spatially modulated d-wave superconductivity, and analyze
the behavior of the superconducting order parameter in the
striped states. Compared to other recent ground-state studies,
we can reach longer stripe wavelengths [44] and study a wider
doping region [43]. This allows us to more carefully study
the stripe energetics and to determine the ground-state stripe
wavelengths.

II. THE MODEL AND THE METHOD

We study the square lattice Hubbard model, whose grand-
canonical Hamiltonian can be written in the particle-hole
symmetric form:

Hgc = t
∑
〈ij〉σ

c
†
iσ cjσ + μ

∑
i

(ni↑ + ni↓)

+U
∑

i

(
ni↑ − 1

2

)(
ni↓ − 1

2

)

= H +
(

μ − U

2

) ∑
i

(ni↑ + ni↓) −
∑

i

U

4
, (1)

where μ is a chemical potential, U the interaction strength, niσ

the density operator of spin σ at site i, and 〈ij 〉 denotes nearest
neighbor hoppings. Here we also define H as the Hamiltonian
without the chemical potential and constant terms. We measure
energies in terms of the hopping parameter t , and concentrate
here on the intermediate interaction strength U = 6t .

Our goal is to study the interplay of the stripe order and
d-wave superconductivity in the ground state of this model.
For this purpose we use cellular dynamical mean-field theory
[51] (CDMFT) with extended unit cells. Dynamical mean-field
theory treats short-range quantum correlations using a many-
body impurity model, which is solved exactly, and includes the
lattice physics using a self-consistency scheme. The approxi-
mation is defined directly in the limit of an infinite lattice, by
approximating the self-energy of the lattice system using the
self-energy of the impurity model. In the CDMFT formulation,
the lattice is divided into clusters consisting of a number of
adjacent sites, and the approximated self-energy is local within
each cluster. To study the superconducting solutions, we use the
Nambu-formalism, where the Green’s function of the problem
is written in the Nambu-spinor notation:

Gij (τ ) = 〈T ψi(τ )ψj (0)†〉,ψi(τ ) =
[
ci↑(τ )
c
†
j↓(τ )

]
. (2)

As the self-energy of a d-wave superconductor is nonlocal,
the single-site DMFT is not enough. Here we use the smallest
possible cluster size to produce the d-wave state, which is the
2 × 2 cluster known as the plaquette.

In previous CDMFT studies [52,53,58] it has been assumed
that the self-energy of each cluster is equal, producing a
uniform d-wave superconducting state with the same density
and same staggered magnetization throughout the lattice. In
our case, we relax this assumption by considering larger unit
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FIG. 1. (a) Schematic representation of the unit cell for λ = 10 at doping x ≈ 0.11. In this case, the unit cell is of length 20 and includes
Nc = 10 clusters. In the plaquette DMFT approximation, the self-energy is local within each cluster. The arrows show the magnetization for
each site and the thickness of the red and blue lines indicates the magnitude of the order parameters �⊥ (vertical) and �‖ (horizontal) within
each cluster. Red color indicates a positive order parameter, and blue a negative one. The radius of the dots is scaled according to the local
doping (i.e., hole density). (b) Density, the superconducting order parameters and the absolute value of the magnetization for the unit cell in
panel (a). In the stripe state the staggered magnetization is spatially modulated and in this example case changes sign between the third and the
fourth cluster and again between the eighth and the ninth cluster. The sign changes correspond to magnetic domain walls between neighboring
stripes.

cells of size 2 × 2Nc, where Nc is the number of the 2 × 2
clusters within the unit cell. This approach is reminiscent of
the so-called real space DMFT [74], where every site of a
finite lattice produces an inequivalent impurity problem. In
our case, every 2 × 2 cluster in the unit cell corresponds to an
independent (cluster) impurity problem that has to be solved
at each iteration of the self-consistency loop. This allows the
strength of the d-wave pairing and the magnetization to vary
within the unit cell, as depicted in Fig. 1(a). Because the unit
cell is always of even length, we only study stripe states of
even periodicity. For compatibility with existing numerical
literature [43], we define the stripe wavelength λ as half the
wavelength of the staggered magnetization, so that λ = Nc.

To obtain the stripe ordered state, we take a frequency
independent initial guess for the self-energy chosen so that
it produces a staggered magnetization of approximately sinu-
soidal form with wavelength 2Nc. In addition, we break the
particle conservation symmetry by adding a small symmetry
breaking term

∑
ij (δij ci↑cj↓ + h.c.) to the Hamiltonian. Here,

δij is chosen to be of magnitude 0.001 and to have the d-wave
symmetry within each cluster (see Fig. 1). This is needed, as
otherwise the iteration is stuck in the normal state solutions
where the anomalous component of the Green’s function
〈ci↑cj↓〉 is zero. After performing the self-consistency loop
for some number of iterations, we set δ to zero and run the
loop until convergence. We note that the chosen initial guess
effectively fixes the wavelength of the obtained solution. For
example, a unit cell with Nc = 16 is able to accommodate
stripes with both λ = 8 and λ = 16, but the self-consistency
iteration is usually stuck with whatever λ was initially chosen.

To find out the stripe wavelength giving the ground state
of the system at a given doping, we calculate the total energy
of the system from the Matsubara self-energy � and Green’s
function G of the converged results using the formula [50]

〈Hgc〉 =
∑

n

Tr

(
H0G(iωn) + 1

2
�(iωn)G(iωn)

)
, (3)

where � and G are matrices in spinor and site indices, and H0

is the single-particle grand canonical Hamiltonian matrix. In
practice, the trace is evaluated in momentum space. Further-
more, we use a fitting procedure to find the lowest moments
of the 1

ωn
expansion of the trace, and calculate the contribution

from the high-frequency tail analytically, as is commonly done
for the Fourier transform of G itself. Afterwards, we subtract
the chemical potential and constant terms to obtain the energy
E = 〈H 〉.

To solve the impurity problem, we use the exact diagonaliza-
tion (ED) method [49,75] with 16 bath orbitals (or eight bath
sites). We discretize the Green’s functions using a fictitious
inverse temperature β = 50. The single-particle Hamiltonian
of the cluster problem can be expressed in the form

H = Hc +
∑
ij

(ψ†
i hijφj + φ

†
jhijψi)

+
∑

j

φ
†
j diag(εj↑,εj↓)φj , (4)

where the Nambu spinors ψ represent the cluster sites, and
spinors φ represent the bath sites. We choose Hc to be the
cluster hopping Hamiltonian, which is the lattice Hamiltonian
restricted to within the cluster. The bath parameters hij and
εj are determined using an unrestricted fitting procedure that
finds a minimum of the cost function

C(h,ε) =
∑
ijn

1

|ωn|
∣∣Gij (iωn) − Gc0

ij (iωn)
∣∣2

, (5)

where | · | is the Frobenius norm, G is the CDMFT bath
Green’s function, and Gc0 is the noninteracting cluster Green’s
function of the Hamiltonian in Eq. (4), both in the Nambu form.
The interacting Green’s function of the impurity problem is
solved using a band Lanczos procedure [76,77]. Denoting the
numbers of up and down particles in the impurity problem
by N↑ and N↓, we note that the conserved particle number,∑

i ψ
†
i ψi + ∑

j φ
†
jφj = 12 + N↑ − N↓ is always 12, as the
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total polarization of each cluster is zero. (This quantity is
the number of ↑ particles plus the number of ↓ holes on the
4 + 8 sites of the impurity problem.) This saves a scan over
the particle number sectors when finding the ground state. We
also note that the ED method cannot practically handle larger
clusters than the plaquette while still retaining a reasonable
number of bath orbitals, and thus we cannot study the effect of
the cluster size within this method.

To probe the superconductivity, we define the order param-
eter �b associated with the lattice bonds b = (i,j ) as

�b = 〈c↑ic↓j 〉 + 〈c↓ic↑j 〉. (6)

Here we calculate this order parameter for the different lattice
bonds within the CDMFT clusters. For each cluster, we
have two equivalent bonds in the long direction of the unit
cell, which give the same order parameter labeled by �‖
(see Fig. 1). In addition we have two inequivalent bonds in
the short direction, which we label as �⊥. For the d-wave
superconductor, the order parameters �‖ and �⊥ have opposite
signs, and the local order parameter 〈c↑ic↓i〉 = 0. Furthermore,
we measure the local staggered magnetization which is defined
as

Mi = sgn(i)(ni↑ − ni↓), (7)

where sgn(i) is a sign that is opposite for neighboring sites.
We discuss the results in terms of the doping x defined as

x = 1 − ρ, (8)

where ρ ∈ [0,2] is the total number of particles per site.

III. RESULTS

Here we will first discuss the energetics of the different
stripe wavelengths, and then move to a discussion of the
superconducting order parameters. Figure 2(a) shows the
energy for the different stripe wavelengths as a function of
the doping. The energy is defined as the expectation value of the
Hamiltonian H in Eq. (1), which does not include the chemical
potential terms. For comparison, we have included some results
from density matrix embedding theory (DMET) and fixed-
node diffusion Monte Carlo (FN) from LeBlanc et al. [78].
These results have been extrapolated to the thermodynamic
limit in embedded cluster size (DMET) or system size (FN),
while our calculations are performed for the 2 × 2 cluster.
The DMET error estimates include all sources of error, while
the (very small) FN error bars do not include errors from the
fixed node approximation [78]. In absolute terms, the energies
are in reasonably good agreement with the other methods,
which gives confidence that the energy calculation procedure
is technically correctly implemented and reliable. We note,
however, that the differences between the different methods
are generally larger than the differences in the energies of the
different wavelength striped solutions discussed below.

In Fig. 2(b), we plot the energy relative to the energy of
the uniform state as a function of doping. It can be observed
that the wavelength that gives the lowest energy depends on
the doping and increases towards half-filling, which is expected
from mean-field theory [34]. Zheng et al. [43] studied the same
model using different numerical methods at doping 0.125.
There it was found that the lowest energy stripe state is given

FIG. 2. (a) Energy of the uniform state and the stripe state of
wavelength λ = 12 as a function of the doping. The DMET and
FN results and their error estimates (indicated by the vertical bars)
are from Tables II, IV, and V of LeBlanc et al. [78], and represent
extrapolations to infinite (embedded) system size. (b) Energy for
different stripe wavelengths relative to the smoothed spline interpolant
fitted to the uniform case energy.

by a wavelength of λ ≈ 8 for U = 6 and 8. Our results indicate
the stripe of wavelength λ = 9 to have the lowest energy for the
corresponding doping, although λ = 8 is also close in energy.
It should be noted that the optimal stripe wavelength at a given
doping is not necessarily commensurate with the lattice, so that
the results have to be treated as best integer approximations to
the correct stripe wavelength.

In the single-site inhomogeneous (or real-space) DMFT
study [62], which does not include superconductivity, a
relation λgs = 1/x was demonstrated for the ground-state
wavelength λgs and doping x. Our results again indicate
perhaps slightly longer ground-state wavelengths, such as
λgs = 9 for x = 1/8 and λgs = 10 for x = 1/9. This might
be because the longer wavelength is better compatible with
superconducting order, as discussed below, thus allowing the
system to lower its energy. However, the differences are quite
small, and the relation λgs = 1/x is a good approximation
also with the superconductivity included.

Figure 2 shows that the largest difference in energy between
the uniform state and the striped state is obtained somewhere
close to doping 0.11 with the best stripe wavelength being close
to 10. This is an interesting observation, as the point with the
largest energy difference could be the best point to start search-
ing for definite signatures of the stripe order in e.g. ultra cold
gas experiments. We also note that the state-of-the-art experi-
ments can already achieve system sizes with linear dimension
of the order of 10 lattice sites in a uniform potential [6].

Next, we will discuss the behavior of the superconducting
order parameter as a function of the doping and stripe wave-
length. In Fig. 3, we plot the average staggered magnetization
and d-wave order parameter as a function of the doping. This
reveals a pattern where the extent of the superfluid region grows
when the stripe wavelength is increased, but it still always
remains smaller than for the uniform ansatz. This does not
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FIG. 3. The average staggered magnetization (top) and the aver-
age d-wave order parameter �⊥ (bottom) as a function of the doping.

necessarily mean that the region of superconductivity in the
ground state would be smaller when the nonuniform states are
taken into account, because the ground-state wavelength grows
when approaching half-filling. Indeed, from our data, it seems
that the state with the lowest energy at a given doping always
carries superconductivity, except in regions where even the
uniform state has vanishing superconducting order parameter.

In earlier work [43] for the doping 0.125 it was found
that there is no coexistence of superconductivity and d-wave
order in the ground state (λ = 8) stripe at U = 8. However,
using iPEPS and DMRG, superconductivity was found for
different stripe lengths, such as λ = 5 and 7, which were
also very close in energy. We note that also in our results the
superconducting order parameter for the λ = 8 stripe is small
or zero in the vicinity of doping 0.125, but we find the λ = 9
stripe to have essentially the same or slightly lower energy and
to carry superconductivity. We note that it is difficult to obtain
converged solutions for the λ = 8 stripe in the vicinity of the
magnetic phase transition close to x = 0.15, and the result
depends strongly on tiny changes in the chemical potential.
From partially converged results (not shown in the plots), it
still seems that there is superconductivity for λ = 8 around
this doping value.

Zheng et al. [44] have also performed DMET calculations
to study the U -doping phase diagram. At U = 6, they find
antiferromagnetic order at half-filling, and superconducting
order partially coexisting with inhomogeneous magnetic order
roughly from doping 0.1 to 0.3. Qualitatively, the most notable
difference between their results and ours is that they find an
intermediate metallic point at about doping 0.1, between the
antiferromagnetic and superconducting regions, where both
magnetic order and superconductivity vanish, while we do not
see indications of this. However, we also note that for uniform
plaquette DMFT, superconductivity and magnetic order do
not coexist for large interactions U � 8, instead having a
first-order transition between them [53], which is perhaps more
compatible with the DMET result at U = 6. It thus seems
that a more useful qualitative comparison between the various
methods should be performed with the full U -doping phase

FIG. 4. The staggered magnetization, density and d-wave order
parameters forλ = 12 and different dopingsx. Dopingx = 0.10 gives
the lowest energy relative to the uniform state, while the other cases
represent metastable states (cf. Fig. 2).

diagram at hand, which is an important goal for future work.
We also note that the DMET calculation employed unit cells
allowing a maximum wavelength of λ = 4.

We can also discuss the development of the density and
the order parameters as a function of the doping for the fixed
wavelength λ = 12, see Fig. 4. The case x = 0.10 is the point
where this stripe wavelength gives the lowest energy state
relative to the other wavelengths. When the doping is increased
from 0.10, the magnetization decreases and eventually goes
to zero, at which point the state joins the uniform d-wave
superconducting state, which in turn transitions into the normal
state at about doping 0.19. When going to the opposite
direction, the density first increases along the whole unit cell,
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FIG. 5. Order parameters for λ = 16. The symbols are as in Fig. 4.

until the high-density regions reach half-filling. At this point,
the system is in a metastable state with regions of uniform
magnetization and “domain walls” where the direction of
the staggered magnetization changes. For suitable parameters
close to half-filling it is possible to obtain metastable solutions
where superconductivity is present at these domain walls
(shown in the uppermost panel of Fig. 4).

Returning to the ground-state case x = 0.10, we can see
that the largest value of the magnetization corresponds to the
maximum of the density, which is expected as the magnetiza-
tion of the uniform solution is largest close to half-filling. It is
notable that the maximum of the d-wave order parameter also
occurs at the same sites as the maximal magnetization. This
is in contrast to proposals that the cuprate superconductors
could have a stripe state where the superconductivity occurs
at regions of lower electron density and magnetization. The
situation is reversed in the case of λ = 6 at doping 0.11, where
the maximal d-wave order parameter occurs at the minimum of
the magnetization. While this state is not the ground state in the
present case, it is still conceivable that the ground state exhibits
this behavior in some part of the U -doping phase diagram.
This has been seen, e.g., in studies of the t-J model, using a
variational tensor network ansatz for the ground state [46].

For the largest unit cell with λ = 16 the form of the order
parameters is noticeably different from the case λ = 12. For
the case x = 0.075 (upper panel in Fig. 5), we obtain a
solution with regions of nearly uniform magnetization and
high superconducting order parameters and transition regions
between them. The shape of the magnetic order parameter
resembles the “strong FFLO” order found in a mean-field study
of the three-dimensional attractive model [79] and in the single-
site inhomogeneous DMFT study [62] for low doping values.
Also, in this case, we note that the superconducting order
parameter has maxima within the strongly magnetized regions.
For higher dopings, it is difficult to obtain well-converged
solutions for this largest unit cell, and the obtained shapes of
the magnetic order parameters seem somewhat irregular (see
the lower panel of Fig. 5). This seems natural, however, since
the ground-state wavelength is actually shorter.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we have studied the coexistence of d-wave
superconductivity and striped magnetic and charge order in the

ground state of the two-dimensional Hubbard model. We have
employed a plaquette DMFT approximation with expanded
unit cells which allows the formation of both inhomogeneous
magnetic states and d-wave superconductivity. Our study
thus extends existing single-site real-space DMFT studies of
the stripe state and plaquette DMFT studies of the d-wave
superconductivity by simultaneously allowing both types of
order. The advantage of this real-space treatment over the full
cluster and finite-size size methods employed, e.g., by Zheng
et al. [43,44] is that the computational time for a single iteration
of the self-consistency loop scales only linearly with the unit
cell size, allowing us to study stripe wavelengths up to λ = 16
for multiple values of the doping. The approximation neglects
correlation effects beyond neighboring sites, and thus it can
be regarded as a type of mean-field solution for the d-wave
superconductivity.

Our results are generally consistent with previous studies.
The uniform solution is similar to those in earlier work [53,54],
although we did not study exactly the same parameters. The
plaquette-DMFT energy is in reasonable agreement with recent
numerical results [78], although the differences between meth-
ods are generally larger than, e.g., differences in the energies
of different wavelength stripe states. Some systematic errors
are naturally expected because of the mean-field nature of the
method. At half-filling, where high-accuracy reference data is
available [78], plaquette-DMFT overshoots the ground-state
energy by about 0.01 hopping units. Away from half-filling,
agreement between the different reference methods is not
sufficient to judge the magnitude of the error. The lowest energy
stripe wavelengths are close to those in the single-site DMFT
study [62], and the study [43] comparing multiple methods
at doping x = 1/8, although we tend to get slightly longer
wavelengths such as λ = 9 instead of λ = 8 at x = 1/8.

The main results of our study concern the behavior of the
superfluid order in the striped states. Some doping region
where the superconducting and stripe states coexist is found
for all studied stripe wavelengths. However, we find that
the superconductivity is suppressed relative to the uniform
solution: the striped solutions produce both smaller values of
the order parameter and a smaller range of dopings where the
superconductivity exists at all. When the stripe wavelength is
increased, the region of superconductivity extends to lower
dopings, as shown in Fig. 3. It seems reasonable to assume,
that very long wavelength solutions would give essentially the
same superconducting region as the uniform solution. Whether
the actual ground state is superconducting within the present
approximation must be determined by looking at the stripe
wavelength giving the lowest energy. From the numerical
data it seems that the superconductivity indeed persists in the
ground state despite the suppressing effect of the stripe order.

Studying the spatial structure of the order parameters,
we find that for the optimal stripe wavelengths the maximal
superconducting order parameter tends to occur at the same
position as the maximal magnetization, which is in contrast
to studies of the t-J model [46,80]. This is true also for the
longest wavelength stripes where superconductivity occurs
within regions of strong, essentially uniform magnetization.
As the t-J model is related to the strong coupling limit of the
Hubbard model, it is an interesting qualitative question how
this behavior is affected by the interaction strength.
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FIG. 6. Order parameters for different wavelengths. The two panels in the top row and the left panel in the second row show non-ground-state
cases. The rest of the plots represent lowest-energy states for dopings decreasing down and to the right. The symbols are as in Fig. 4. Note that
the wavelength 10, 12, and 16 cases were plotted in other figures as well, but are reproduced here for comparison.

In this work, we have studied the so-called vertical stripes,
where the direction of the spatial modulation is along the
lattice bonds. This is the type of stripe state that is usually
found to have lowest energy [43,46,81], although the difference
to striped order in the diagonal direction can be very small
[46,62,81]. Similarly, for the d-wave superconductivity we
have used an ansatz of the in-phase type, where �⊥ has the
same sign throughout the whole unit cell. In previous studies
of the Hubbard and t-J models where d-wave order is found,

this type is usually found to be most stable [43,44,46], although
the antiphase type where a sign change occurs can also be close
in energy [46].

An important topic for future research is the finite tem-
perature behavior of the striped phases coexisting with the
superconductivity. In this respect, the dynamical mean-field
theory based methods have an advantage over the simpler wave
function based ones, which are formulated for ground-state
calculations. Thus we hope that the present work can function
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as a starting point for finite temperature studies. However, it
must be kept in mind that, especially in two dimensions, long-
range thermal fluctuations (of the phase of the superconducting
order parameter and possibly the wavelength and direction of
the stripes) neglected in CDMFT are expected to be important
for finite-temperature physics. This is especially true when the
different stripe wavelengths and even different types of order
seem to be very close in energy. Thus an effective theory of such
fluctuations is probably required, even though the parameters
of such a theory, such as the superfluid phase stiffness, might
be evaluated using (dynamical) mean-field methods.
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APPENDIX: ORDER PARAMETER PROFILES FOR
DIFFERENT DOPING VALUES

Here we provide some additional comparisons of the spa-
tial form of the order parameters for different wavelengths.
Figure 6 shows the ground state at different dopings as well
as two cases of higher energy states. For λ = 6, we obtain a
solution where the highest superconducting order parameter
appears at the point of lowest magnetization.

[1] P. A. Lee, N. Nagaosa, and X.-G. Wen, Doping a Mott insulator:
Physics of high-temperature superconductivity, Rev. Mod. Phys.
78, 17 (2006).

[2] M. Vojta, Lattice symmetry breaking in cuprate superconduc-
tors: Stripes, nematics, and superconductivity, Adv. Phys. 58,
699 (2009).

[3] I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with
ultracold gases, Rev. Mod. Phys. 80, 885 (2008).

[4] S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of ultracold
atomic Fermi gases, Rev. Mod. Phys. 80, 1215 (2008).

[5] Quantum Gas Experiments, edited by P. Törmä and K. Sengstock
(Imperial College Press, 2014).

[6] A. Mazurenko, C. S. Chiu, G. Ji, M. F. Parsons, M. Kanász-Nagy,
R. Schmidt, F. Grusdt, E. Demler, D. Greif, and M. Greiner,
A cold-atom Fermi–Hubbard antiferromagnet, Nature (London)
545, 462 (2017).

[7] J. H. Drewes, L. A. Miller, E. Cocchi, C. F. Chan, N. Wurz,
M. Gall, D. Pertot, F. Brennecke, and M. Köhl, Antiferro-
magnetic Correlations in Two-Dimensional Fermionic Mott-
Insulating and Metallic Phases, Phys. Rev. Lett. 118, 170401
(2017).

[8] T. A. Hilker, G. Salomon, F. Grusdt, A. Omran, M. Boll, E.
Demler, I. Bloch, and C. Gross, Revealing hidden antiferromag-
netic correlations in doped Hubbard chains via string correlators,
Science 357, 484 (2017).

[9] M. F. Parsons, A. Mazurenko, C. S. Chiu, G. Ji, D. Greif, and
M. Greiner, Site-resolved measurement of the spin-correlation
function in the Fermi-Hubbard model, Science 353, 1253 (2016).

[10] L. W. Cheuk, M. A. Nichols, K. R. Lawrence, M. Okan, H.
Zhang, and M. W. Zwierlein, Observation of 2d Fermionic Mott
Insulators of 40K with Single-Site Resolution, Phys. Rev. Lett.
116, 235301 (2016).

[11] L. W. Cheuk, M. A. Nichols, K. R. Lawrence, M. Okan, H.
Zhang, E. Khatami, N. Trivedi, T. Paiva, M. Rigol, and M. W.
Zwierlein, Observation of spatial charge and spin correlations in
the 2d Fermi-Hubbard model, Science 353, 1260 (2016).

[12] M. Boll, T. A. Hilker, G. Salomon, A. Omran, J. Nespolo,
L. Pollet, I. Bloch, and C. Gross, Spin- and density-resolved
microscopy of antiferromagnetic correlations in Fermi-Hubbard
chains, Science 353, 1257 (2016).

[13] A. Omran, M. Boll, T. A. Hilker, K. Kleinlein, G. Salomon, I.
Bloch, and C. Gross, Microscopic Observation of Pauli Blocking
in Degenerate Fermionic Lattice Gases, Phys. Rev. Lett. 115,
263001 (2015).

[14] G. J. A. Edge, R. Anderson, D. Jervis, D. C. McKay, R. Day,
S. Trotzky, and J. H. Thywissen, Imaging and addressing of
individual fermionic atoms in an optical lattice, Phys. Rev. A
92, 063406 (2015).

[15] E. Haller, J. Hudson, A. Kelly, D. A. Cotta, B. Peaudecerf,
G. D. Bruce, and S. Kuhr, Single-atom imaging of
fermions in a quantum-gas microscope, Nat. Phys. 11, 738
(2015).

[16] J. E. Hirsch, Attractive Interaction and Pairing in Fermion
Systems with Strong On-Site Repulsion, Phys. Rev. Lett. 54,
1317 (1985).

[17] J. G. Bednorz and K. A. Müller, Possible high Tc superconduc-
tivity in the Ba-La-Cu-O system, Z. Phys. B: Condens. Matter
64, 189 (1986).

[18] J. E. Hirsch and H. Q. Lin, Pairing in the two-dimensional
Hubbard model: A Monte Carlo study, Phys. Rev. B 37, 5070
(1988).

[19] S. R. White, D. J. Scalapino, R. L. Sugar, N. E. Bickers, and
R. T. Scalettar, Attractive and repulsive pairing interaction
vertices for the two-dimensional Hubbard model, Phys. Rev. B
39, 839 (1989).

[20] E. Dagotto, Correlated electrons in high-temperature supercon-
ductors, Rev. Mod. Phys. 66, 763 (1994).

[21] T. Ying, R. Mondaini, X. D. Sun, T. Paiva, R. M. Fye, and R. T.
Scalettar, Determinant quantum Monte Carlo study of d-wave
pairing in the plaquette Hubbard Hamiltonian, Phys. Rev. B 90,
075121 (2014).

[22] E. Khatami, R. T. Scalettar, and R. R. P. Singh, Finite-
temperature superconducting correlations of the Hubbard model,
Phys. Rev. B 91, 241107 (2015).

[23] N. E. Bickers, D. J. Scalapino, and S. R. White, Conserving Ap-
proximations for Strongly Correlated Electron Systems: Bethe-
Salpeter Equation and Dynamics for the Two-Dimensional
Hubbard Model, Phys. Rev. Lett. 62, 961 (1989).

[24] P. W. Anderson, The Resonating Valence Bond State in La2CuO4

and Superconductivity, Science 235, 1196 (1987).

075112-8

https://doi.org/10.1103/RevModPhys.78.17
https://doi.org/10.1103/RevModPhys.78.17
https://doi.org/10.1103/RevModPhys.78.17
https://doi.org/10.1103/RevModPhys.78.17
https://doi.org/10.1080/00018730903122242
https://doi.org/10.1080/00018730903122242
https://doi.org/10.1080/00018730903122242
https://doi.org/10.1080/00018730903122242
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.1215
https://doi.org/10.1103/RevModPhys.80.1215
https://doi.org/10.1103/RevModPhys.80.1215
https://doi.org/10.1103/RevModPhys.80.1215
https://doi.org/10.1038/nature22362
https://doi.org/10.1038/nature22362
https://doi.org/10.1038/nature22362
https://doi.org/10.1038/nature22362
https://doi.org/10.1103/PhysRevLett.118.170401
https://doi.org/10.1103/PhysRevLett.118.170401
https://doi.org/10.1103/PhysRevLett.118.170401
https://doi.org/10.1103/PhysRevLett.118.170401
https://doi.org/10.1126/science.aam8990
https://doi.org/10.1126/science.aam8990
https://doi.org/10.1126/science.aam8990
https://doi.org/10.1126/science.aam8990
https://doi.org/10.1126/science.aag1430
https://doi.org/10.1126/science.aag1430
https://doi.org/10.1126/science.aag1430
https://doi.org/10.1126/science.aag1430
https://doi.org/10.1103/PhysRevLett.116.235301
https://doi.org/10.1103/PhysRevLett.116.235301
https://doi.org/10.1103/PhysRevLett.116.235301
https://doi.org/10.1103/PhysRevLett.116.235301
https://doi.org/10.1126/science.aag3349
https://doi.org/10.1126/science.aag3349
https://doi.org/10.1126/science.aag3349
https://doi.org/10.1126/science.aag3349
https://doi.org/10.1126/science.aag1635
https://doi.org/10.1126/science.aag1635
https://doi.org/10.1126/science.aag1635
https://doi.org/10.1126/science.aag1635
https://doi.org/10.1103/PhysRevLett.115.263001
https://doi.org/10.1103/PhysRevLett.115.263001
https://doi.org/10.1103/PhysRevLett.115.263001
https://doi.org/10.1103/PhysRevLett.115.263001
https://doi.org/10.1103/PhysRevA.92.063406
https://doi.org/10.1103/PhysRevA.92.063406
https://doi.org/10.1103/PhysRevA.92.063406
https://doi.org/10.1103/PhysRevA.92.063406
https://doi.org/10.1038/nphys3403
https://doi.org/10.1038/nphys3403
https://doi.org/10.1038/nphys3403
https://doi.org/10.1038/nphys3403
https://doi.org/10.1103/PhysRevLett.54.1317
https://doi.org/10.1103/PhysRevLett.54.1317
https://doi.org/10.1103/PhysRevLett.54.1317
https://doi.org/10.1103/PhysRevLett.54.1317
https://doi.org/10.1007/BF01303701
https://doi.org/10.1007/BF01303701
https://doi.org/10.1007/BF01303701
https://doi.org/10.1007/BF01303701
https://doi.org/10.1103/PhysRevB.37.5070
https://doi.org/10.1103/PhysRevB.37.5070
https://doi.org/10.1103/PhysRevB.37.5070
https://doi.org/10.1103/PhysRevB.37.5070
https://doi.org/10.1103/PhysRevB.39.839
https://doi.org/10.1103/PhysRevB.39.839
https://doi.org/10.1103/PhysRevB.39.839
https://doi.org/10.1103/PhysRevB.39.839
https://doi.org/10.1103/RevModPhys.66.763
https://doi.org/10.1103/RevModPhys.66.763
https://doi.org/10.1103/RevModPhys.66.763
https://doi.org/10.1103/RevModPhys.66.763
https://doi.org/10.1103/PhysRevB.90.075121
https://doi.org/10.1103/PhysRevB.90.075121
https://doi.org/10.1103/PhysRevB.90.075121
https://doi.org/10.1103/PhysRevB.90.075121
https://doi.org/10.1103/PhysRevB.91.241107
https://doi.org/10.1103/PhysRevB.91.241107
https://doi.org/10.1103/PhysRevB.91.241107
https://doi.org/10.1103/PhysRevB.91.241107
https://doi.org/10.1103/PhysRevLett.62.961
https://doi.org/10.1103/PhysRevLett.62.961
https://doi.org/10.1103/PhysRevLett.62.961
https://doi.org/10.1103/PhysRevLett.62.961
https://doi.org/10.1126/science.235.4793.1196
https://doi.org/10.1126/science.235.4793.1196
https://doi.org/10.1126/science.235.4793.1196
https://doi.org/10.1126/science.235.4793.1196


DYNAMICAL MEAN-FIELD THEORY STUDY OF STRIPE … PHYSICAL REVIEW B 97, 075112 (2018)

[25] C. Gros, Superconductivity in correlated wave functions, Phys.
Rev. B 38, 931 (1988).

[26] A. Paramekanti, M. Randeria, and N. Trivedi, High-Tc super-
conductors: A variational theory of the superconducting state,
Phys. Rev. B 70, 054504 (2004).

[27] P. W. Anderson, P. A. Lee, M. Randeria, T. M. Rice, N.
Trivedi, and F. C. Zhang, The physics behind high-temperature
superconducting cuprates: The ‘plain vanilla’ version of RVB,
J. Phys.: Condens. Matter 16, R755 (2004).

[28] I. Bloch, J. Dalibard, and S. Nascimbène, Quantum sim-
ulations with ultracold quantum gases, Nat. Phys. 8, 267
(2012).

[29] R. J. Birgeneau, Y. Endoh, K. Kakurai, Y. Hidaka, T. Mu-
rakami, M. A. Kastner, T. R. Thurston, G. Shirane, and K. Ya-
mada, Static and dynamic spin fluctuations in superconducting
La2−xSrxCuO4, Phys. Rev. B 39, 2868 (1989).

[30] J. Zaanen and O. Gunnarsson, Charged magnetic domain lines
and the magnetism of high-Tc oxides, Phys. Rev. B 40, 7391
(1989).

[31] D. Poilblanc and T. M. Rice, Charged solitons in the Hartree-
Fock approximation to the large-U Hubbard model, Phys. Rev.
B 39, 9749 (1989).

[32] K. Machida, Magnetism in La2CuO4 based compounds, Physica
C 158, 192 (1989).

[33] M. Kato, K. Machida, H. Nakanishi, and M. Fujita, Soliton
Lattice Modulation of Incommensurate Spin Density Wave
in Two Dimensional Hubbard Model -A Mean Field Study-,
J. Phys. Soc. Jpn. 59, 1047 (1990).

[34] J. J. Kinnunen, J. E. Baarsma, J.-P. Martikainen, and P.
Törmä, The Fulde-Ferrel-Larkin-Ovchinnikov state for ultracold
fermions in lattice and harmonic potentials, arXiv:1706.07076.

[35] A. F. Ho, M. A. Cazalilla, and T. Giamarchi, Quantum simulation
of the Hubbard model: The attractive route, Phys. Rev. A 79,
033620 (2009).

[36] E. W. Huang, C. B. Mendl, H.-C. Jiang, B. Moritz, and T. P.
Devereaux, Stripe order from the perspective of the Hubbard
model, arXiv:1709.02398.

[37] M. J. Wolak, B. Grémaud, R. T. Scalettar, and G. G. Batrouni,
Pairing in a two-dimensional Fermi gas with population imbal-
ance, Phys. Rev. A 86, 023630 (2012).

[38] J. Gukelberger, S. Lienert, E. Kozik, L. Pollet, and M. Troyer,
Fulde-Ferrell-Larkin-Ovchinnikov pairing as leading instability
on the square lattice, Phys. Rev. B 94, 075157 (2016).

[39] G. Knizia and G. K.-L. Chan, Density Matrix Embedding: A
Simple Alternative to Dynamical Mean-Field Theory, Phys. Rev.
Lett. 109, 186404 (2012).

[40] S. Zhang, J. Carlson, and J. E. Gubernatis, Constrained Path
Quantum Monte Carlo Method for Fermion Ground States,
Phys. Rev. Lett. 74, 3652 (1995).

[41] J. Jordan, R. Orús, G. Vidal, F. Verstraete, and J. I. Cirac,
Classical Simulation of Infinite-Size Quantum Lattice Systems
in Two Spatial Dimensions, Phys. Rev. Lett. 101, 250602
(2008).

[42] E. M. Stoudenmire and S. R. White, Studying two-dimensional
systems with the density matrix renormalization group,
Annu. Rev. Condens. Matter Phys. 3, 111 (2012).

[43] B.-X. Zheng, C.-M. Chung, P. Corboz, G. Ehlers, M.-P. Qin,
R. M. Noack, H. Shi, S. R. White, S. Zhang, and G. K.-L. Chan,
Stripe order in the underdoped region of the two-dimensional
Hubbard model, Science 358, 1155 (2017).

[44] B.-X. Zheng and G. K.-L. Chan, Ground-state phase diagram of
the square lattice Hubbard model from density matrix embed-
ding theory, Phys. Rev. B 93, 035126 (2016).

[45] C.-C. Chang and S. Zhang, Spin and Charge Order in the
Doped Hubbard Model: Long-Wavelength Collective Modes,
Phys. Rev. Lett. 104, 116402 (2010).

[46] P. Corboz, T. M. Rice, and M. Troyer, Competing States in the
t-J Model: Uniform d-Wave State versus Stripe State, Phys.
Rev. Lett. 113, 046402 (2014).

[47] A. Himeda, T. Kato, and M. Ogata, Stripe States with Spatially
Oscillating d-Wave Superconductivity in the Two-Dimensional
t − t

′ − J Model, Phys. Rev. Lett. 88, 117001 (2002).
[48] W.-J. Hu, F. Becca, and S. Sorella, Absence of static stripes in

the two-dimensional t − J model determined using an accurate
and systematic quantum Monte Carlo approach, Phys. Rev. B
85, 081110 (2012).

[49] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg,
Dynamical mean-field theory of strongly correlated fermion
systems and the limit of infinite dimensions, Rev. Mod. Phys.
68, 13 (1996).

[50] G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O.
Parcollet, and C. A. Marianetti, Electronic structure calculations
with dynamical mean-field theory, Rev. Mod. Phys. 78, 865
(2006).

[51] T. Maier, M. Jarrell, T. Pruschke, and M. H. Hettler, Quantum
cluster theories, Rev. Mod. Phys. 77, 1027 (2005).

[52] A. I. Lichtenstein and M. I. Katsnelson, Antiferromagnetism
and d-wave superconductivity in cuprates: A cluster dynamical
mean-field theory, Phys. Rev. B 62, R9283 (2000).

[53] M. Capone and G. Kotliar, Competition between d-wave su-
perconductivity and antiferromagnetism in the two-dimensional
Hubbard model, Phys. Rev. B 74, 054513 (2006).

[54] S. S. Kancharla, B. Kyung, D. Sénéchal, M. Civelli, M. Capone,
G. Kotliar, and A.-M. S. Tremblay, Anomalous superconductiv-
ity and its competition with antiferromagnetism in doped Mott
insulators, Phys. Rev. B 77, 184516 (2008).

[55] D. Sénéchal, A. G. R. Day, V. Bouliane, and A.-M. S. Tremblay,
Resilience of d-wave superconductivity to nearest-neighbor
repulsion, Phys. Rev. B 87, 075123 (2013).

[56] M. Jiang, U. R. Hahner, T. C. Schulthess, and T. A. Maier, d-wave
superconductivity in the presence of a near neighbor Coulomb
repulsion, arXiv:1707.06093.

[57] M. Kitatani, N. Tsuji, and H. Aoki, FLEX+DMFT approach
to the d-wave superconducting phase diagram of the two-
dimensional Hubbard model, Phys. Rev. B 92, 085104 (2015).

[58] L. Fratino, P. Sémon, G. Sordi, and A.-M. S. Tremblay, An
organizing principle for two-dimensional strongly correlated
superconductivity, Scientific Reports 6, 22715 (2016).

[59] T. A. Maier, M. Jarrell, T. C. Schulthess, P. R. C. Kent, and J. B.
White, Systematic Study of d-Wave Superconductivity in the 2d
Repulsive Hubbard Model, Phys. Rev. Lett. 95, 237001 (2005).

[60] E. Gull, O. Parcollet, and A. J. Millis, Superconductivity and the
Pseudogap in the Two-Dimensional Hubbard Model, Phys. Rev.
Lett. 110, 216405 (2013).

[61] P. Staar, T. Maier, and T. C. Schulthess, Two-particle correlations
in a dynamic cluster approximation with continuous momentum
dependence: Superconductivity in the two-dimensional Hubbard
model, Phys. Rev. B 89, 195133 (2014).

[62] R. Peters and N. Kawakami, Spin density waves in the Hubbard
model: A DMFT approach, Phys. Rev. B 89, 155134 (2014).

075112-9

https://doi.org/10.1103/PhysRevB.38.931
https://doi.org/10.1103/PhysRevB.38.931
https://doi.org/10.1103/PhysRevB.38.931
https://doi.org/10.1103/PhysRevB.38.931
https://doi.org/10.1103/PhysRevB.70.054504
https://doi.org/10.1103/PhysRevB.70.054504
https://doi.org/10.1103/PhysRevB.70.054504
https://doi.org/10.1103/PhysRevB.70.054504
https://doi.org/10.1088/0953-8984/16/24/R02
https://doi.org/10.1088/0953-8984/16/24/R02
https://doi.org/10.1088/0953-8984/16/24/R02
https://doi.org/10.1088/0953-8984/16/24/R02
https://doi.org/10.1038/nphys2259
https://doi.org/10.1038/nphys2259
https://doi.org/10.1038/nphys2259
https://doi.org/10.1038/nphys2259
https://doi.org/10.1103/PhysRevB.39.2868
https://doi.org/10.1103/PhysRevB.39.2868
https://doi.org/10.1103/PhysRevB.39.2868
https://doi.org/10.1103/PhysRevB.39.2868
https://doi.org/10.1103/PhysRevB.40.7391
https://doi.org/10.1103/PhysRevB.40.7391
https://doi.org/10.1103/PhysRevB.40.7391
https://doi.org/10.1103/PhysRevB.40.7391
https://doi.org/10.1103/PhysRevB.39.9749
https://doi.org/10.1103/PhysRevB.39.9749
https://doi.org/10.1103/PhysRevB.39.9749
https://doi.org/10.1103/PhysRevB.39.9749
https://doi.org/10.1016/0921-4534(89)90316-X
https://doi.org/10.1016/0921-4534(89)90316-X
https://doi.org/10.1016/0921-4534(89)90316-X
https://doi.org/10.1016/0921-4534(89)90316-X
https://doi.org/10.1143/JPSJ.59.1047
https://doi.org/10.1143/JPSJ.59.1047
https://doi.org/10.1143/JPSJ.59.1047
https://doi.org/10.1143/JPSJ.59.1047
http://arxiv.org/abs/arXiv:1706.07076
https://doi.org/10.1103/PhysRevA.79.033620
https://doi.org/10.1103/PhysRevA.79.033620
https://doi.org/10.1103/PhysRevA.79.033620
https://doi.org/10.1103/PhysRevA.79.033620
http://arxiv.org/abs/arXiv:1709.02398
https://doi.org/10.1103/PhysRevA.86.023630
https://doi.org/10.1103/PhysRevA.86.023630
https://doi.org/10.1103/PhysRevA.86.023630
https://doi.org/10.1103/PhysRevA.86.023630
https://doi.org/10.1103/PhysRevB.94.075157
https://doi.org/10.1103/PhysRevB.94.075157
https://doi.org/10.1103/PhysRevB.94.075157
https://doi.org/10.1103/PhysRevB.94.075157
https://doi.org/10.1103/PhysRevLett.109.186404
https://doi.org/10.1103/PhysRevLett.109.186404
https://doi.org/10.1103/PhysRevLett.109.186404
https://doi.org/10.1103/PhysRevLett.109.186404
https://doi.org/10.1103/PhysRevLett.74.3652
https://doi.org/10.1103/PhysRevLett.74.3652
https://doi.org/10.1103/PhysRevLett.74.3652
https://doi.org/10.1103/PhysRevLett.74.3652
https://doi.org/10.1103/PhysRevLett.101.250602
https://doi.org/10.1103/PhysRevLett.101.250602
https://doi.org/10.1103/PhysRevLett.101.250602
https://doi.org/10.1103/PhysRevLett.101.250602
https://doi.org/10.1146/annurev-conmatphys-020911-125018
https://doi.org/10.1146/annurev-conmatphys-020911-125018
https://doi.org/10.1146/annurev-conmatphys-020911-125018
https://doi.org/10.1146/annurev-conmatphys-020911-125018
https://doi.org/10.1126/science.aam7127
https://doi.org/10.1126/science.aam7127
https://doi.org/10.1126/science.aam7127
https://doi.org/10.1126/science.aam7127
https://doi.org/10.1103/PhysRevB.93.035126
https://doi.org/10.1103/PhysRevB.93.035126
https://doi.org/10.1103/PhysRevB.93.035126
https://doi.org/10.1103/PhysRevB.93.035126
https://doi.org/10.1103/PhysRevLett.104.116402
https://doi.org/10.1103/PhysRevLett.104.116402
https://doi.org/10.1103/PhysRevLett.104.116402
https://doi.org/10.1103/PhysRevLett.104.116402
https://doi.org/10.1103/PhysRevLett.113.046402
https://doi.org/10.1103/PhysRevLett.113.046402
https://doi.org/10.1103/PhysRevLett.113.046402
https://doi.org/10.1103/PhysRevLett.113.046402
https://doi.org/10.1103/PhysRevLett.88.117001
https://doi.org/10.1103/PhysRevLett.88.117001
https://doi.org/10.1103/PhysRevLett.88.117001
https://doi.org/10.1103/PhysRevLett.88.117001
https://doi.org/10.1103/PhysRevB.85.081110
https://doi.org/10.1103/PhysRevB.85.081110
https://doi.org/10.1103/PhysRevB.85.081110
https://doi.org/10.1103/PhysRevB.85.081110
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.78.865
https://doi.org/10.1103/RevModPhys.78.865
https://doi.org/10.1103/RevModPhys.78.865
https://doi.org/10.1103/RevModPhys.78.865
https://doi.org/10.1103/RevModPhys.77.1027
https://doi.org/10.1103/RevModPhys.77.1027
https://doi.org/10.1103/RevModPhys.77.1027
https://doi.org/10.1103/RevModPhys.77.1027
https://doi.org/10.1103/PhysRevB.62.R9283
https://doi.org/10.1103/PhysRevB.62.R9283
https://doi.org/10.1103/PhysRevB.62.R9283
https://doi.org/10.1103/PhysRevB.62.R9283
https://doi.org/10.1103/PhysRevB.74.054513
https://doi.org/10.1103/PhysRevB.74.054513
https://doi.org/10.1103/PhysRevB.74.054513
https://doi.org/10.1103/PhysRevB.74.054513
https://doi.org/10.1103/PhysRevB.77.184516
https://doi.org/10.1103/PhysRevB.77.184516
https://doi.org/10.1103/PhysRevB.77.184516
https://doi.org/10.1103/PhysRevB.77.184516
https://doi.org/10.1103/PhysRevB.87.075123
https://doi.org/10.1103/PhysRevB.87.075123
https://doi.org/10.1103/PhysRevB.87.075123
https://doi.org/10.1103/PhysRevB.87.075123
http://arxiv.org/abs/arXiv:1707.06093
https://doi.org/10.1103/PhysRevB.92.085104
https://doi.org/10.1103/PhysRevB.92.085104
https://doi.org/10.1103/PhysRevB.92.085104
https://doi.org/10.1103/PhysRevB.92.085104
https://doi.org/10.1038/srep22715
https://doi.org/10.1038/srep22715
https://doi.org/10.1038/srep22715
https://doi.org/10.1038/srep22715
https://doi.org/10.1103/PhysRevLett.95.237001
https://doi.org/10.1103/PhysRevLett.95.237001
https://doi.org/10.1103/PhysRevLett.95.237001
https://doi.org/10.1103/PhysRevLett.95.237001
https://doi.org/10.1103/PhysRevLett.110.216405
https://doi.org/10.1103/PhysRevLett.110.216405
https://doi.org/10.1103/PhysRevLett.110.216405
https://doi.org/10.1103/PhysRevLett.110.216405
https://doi.org/10.1103/PhysRevB.89.195133
https://doi.org/10.1103/PhysRevB.89.195133
https://doi.org/10.1103/PhysRevB.89.195133
https://doi.org/10.1103/PhysRevB.89.195133
https://doi.org/10.1103/PhysRevB.89.155134
https://doi.org/10.1103/PhysRevB.89.155134
https://doi.org/10.1103/PhysRevB.89.155134
https://doi.org/10.1103/PhysRevB.89.155134


TUOMAS I. VANHALA AND PÄIVI TÖRMÄ PHYSICAL REVIEW B 97, 075112 (2018)

[63] M. O. J. Heikkinen, D.-H. Kim, and P. Törmä, Finite-temperature
stability and dimensional crossover of exotic superfluidity in
lattices, Phys. Rev. B 87, 224513 (2013).

[64] D.-H. Kim and P. Törmä, Fulde-Ferrell-Larkin-Ovchinnikov
state in the dimensional crossover between one- and three-
dimensional lattices, Phys. Rev. B 85, 180508(R) (2012).

[65] M. Raczkowski and F. F. Assaad, Melting of stripe phases and
its signature in the single-particle spectral function, Phys. Rev.
B 82, 233101 (2010).

[66] M. Fleck, A. I. Lichtenstein, E. Pavarini, and A. M. Oleś,
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