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Exact exchange potential for slabs: Asymptotic behavior of the Krieger-Li-Iafrate approximation
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The Krieger-Li-Iafrate (KLI) approximation for the exact exchange (EXX) potential of density functional
theory is investigated far outside the surface of slabs. For large z the Slater component of the EXX/KLI potential
falls off as −1/z, where z is the distance to the surface of a slab parallel to the xy plane. The Slater potential
thus reproduces the behavior of the exact EXX potential. Here it is demonstrated that the second component
of the EXX/KLI potential, often called the orbital-shift term, is also proportional to 1/z for large z, at least in
general. This result is obtained by an analytical evaluation of the Brillouin zone integrals involved, relying on the
exponential decay of the states into the vacuum. Several situations need to be distinguished in the Brillouin zone
integration, depending on the band structure of the slab. In all standard situations, including such prominent cases
as graphene and Si(111) slabs, however, a 1/z dependence of the orbital-shift potential is obtained to leading
order. The complete EXX/KLI potential therefore does not reproduce the asymptotic behavior of the exact EXX
potential.
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I. INTRODUCTION

Density functional approaches utilizing the exact exchange
(EXX) often yield clear improvements over conventional
density functionals, such as the local-density approximation
(LDA) or the generalized gradient approximation (GGA), and
are therefore more and more routinely used in electronic
structure calculations [1–24] (for an overview of the EXX
approach see Refs. [25,26]). The self-consistent application of
the EXX suffers from the high computational cost involved
in determining the corresponding EXX potential vx by the
optimized (effective) potential method (OPM) [27]. For this
reason, often, the Krieger-Li-Iafrate (KLI) approximation [28]
for vx is employed, which allows us to perform self-consistent
EXX calculations much more efficiently. The KLI approxi-
mation has been found to be quite accurate in a variety of
situations, including not only electronic structure calculations
for atoms [29,30], molecules [31–34], and solids [22,23,35]
but also time-dependent problems [36] (however, also some
failures have been reported [9,37–39]). Recently, the KLI
approximation was also applied in EXX calculations for slabs
[40,41]. Both in the case of a quasi-two-dimensional electron
gas [41] and for graphene [40] the KLI potential vKLI

x turned
out to be quite close to the exact EXX potential obtained by
the OPM.

The success of the KLI approximation partially stems from
the fact that vKLI

x reproduces the behavior of the exact vx in
the asymptotic region of atoms and other finite systems. For
a large distance r from the nucleus the atomic EXX potential
[27] falls off as vx ∼ −1/r , which reflects the self-interaction
correction provided by the EXX functional. Simultaneously,
the corresponding EXX energy density ex is asymptotically
proportional to −n/(2r), where n is the electron density. As a
result, the Slater potential vSlater = 2ex/n, the first component
of vKLI

x ,

vKLI
x = vSlater + vshift,

behaves exactly as the exact vx. At the same time, the second
component of vKLI

x , the orbital-shift potential vshift , often even
decays exponentially for large r (in particular for closed-
subshell atoms). Analogous relations for the exact vx and ex

have also been derived for slabs, both on the basis of the
jellium model [42–46] and for nonjellium slabs [40,47]. At
a large distance z from the surface of the slab (assumed to
be parallel to the xy plane) the exact vx falls off as −1/z,
while ex ∼ −n/(2z). Again, the Slater potential reproduces
the asymptotic behavior of vx, vSlater ∼ −1/z.

In the present contribution the behavior of vshift far outside
the surface of a slab is analyzed on the basis of an analytical
evaluation of the Brillouin zone (BZ) integrals involved. This
analysis reveals that vshift does not decay rapidly into the
vacuum, even though vshift(z → ∞) = 0 is ensured by suitable
normalization (use of the analytical form of the Bloch states in
the vacuum allows an extrapolation of the potential to z = ∞).
Rather, one finds a 1/z behavior of vshift for large z, at least in
general.

The analytical BZ integration utilizes the asymptotic form
of the Bloch states. The exponential decay of these states
is controlled by their band energies. In the BZ integration
one therefore has to distinguish several situations, depending
on the properties of the band structure. For most types of
band structures the BZ integrations can be performed with a
technique inspired by the saddle-point approximation. While
the asymptotic behavior of the individual components of vshift

depends on the particular band structure, a 1/z dependence
is found for the asymptotic vshift in most situations. As a
consequence, the total vKLI

x does not decay as −1/z in the
asymptotic region.

This paper is organized as follows: In Sec. II the KLI
approximation for an arbitrary slab is specified in detail,
addressing in particular the behavior of the KLI exchange
potential for large z. The analytical BZ integration over the
asymptotic states of the slab is discussed in Sec. III. The
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integration is performed for a generic expression of the type
relevant for vshift , so that the results can also be useful in other
contexts. Section IV then applies the results of Sec. III to vshift .
A brief discussion of the range of z for which the present
results can be expected to be valid concludes the paper (Sec. V).
Atomic units are used throughout this work.

II. KLI APPROXIMATION TO THE EXACT EXCHANGE
POTENTIAL OF SLABS

A slab is characterized by a total KS potential vs which is
periodic in the xy directions but confines the electrons to the
finite range −L < z < L in the z direction,

vs(r) =
∑

G

eiG·r‖ v(G,z). (1)

Here r‖ = (x,y), and G is a vector of the two-dimensional
(2D) reciprocal lattice in the xy directions. The corresponding
KS states have the form

φkα(r) = eik·r‖
√

A

∑
G

eiG·r‖ ckα(G,z), (2)

where k is the 2D crystal momentum and A is the area of the
2D unit cell. Assuming the slab is spin saturated, the electron
density of the slab is given by

n(r) = 2A

∫
1BZ

d2k

(2π )2

∑
α

�kα|φkα(r)|2, (3)

with �kα denoting the occupation of the state kα. The k
integration extends over the first BZ.

The KLI approximation [28] for the exact exchange po-
tential consists of two contributions, the Slater term and the
orbital-shift term,

vKLI
x (r) = vSlater(r) + vshift(r). (4)

The Slater potential is determined by the EXX energy density
ex(r),

vSlater(r) = 2
ex(r)

n(r)
. (5)

In the case of spin-saturated slabs the EXX energy density can
be expressed as

ex(r) = A

∫
1BZ

d2k

(2π )2

∑
α

�kα ex,kα(r), (6)

ex,kα(r) = −A

∫
1BZ

d2k′

(2π )2

∑
α′

�k′α′

∫
d3r ′

×φ∗
kα(r)φk′α′ (r)φ∗

k′α′ (r ′)φkα(r ′)
|r − r ′| . (7)

The orbital-shift potential for slabs has the form

vshift(r) = 2 A

n(r)

∫
1BZ

d2k

(2π )2

∑
α

�kα�kα|φkα(r)|2, (8)

with

�kα =
∫

A

d2r‖
∫ ∞

−∞
dz

[|φkα(r)|2vKLI
x (r) − ex,kα(r)

]
. (9)

If the normalization of vs is chosen accordingly, the total
KS potential far outside the surface of the slab behaves as

vs(r)
z	L−−→ −u

z
. (10)

Depending on the choice for the exchange-correlation func-
tional, u may vanish (LDA/GGA), u = 1 (if the exact vx

is combined with a short-range correlation potential), or u

assumes some value between 0 and 1. An analysis of the KS
equations with the potential (10) shows that, to leading order,
the Fourier coefficients of the states (2) asymptotically decay
as [47]

ckα(G,z)
z	L−−→ fkα(G) zu/γkα(G) e−γkα(G)z, (11)

with

γkα(G) = [(G + k)2 − 2εkα]1/2. (12)

Here εkα is the KS eigenenergy of the state kα. The derivation
of (11) was based on the assumption that the coupling of
the ckα(G,z) for different G via v(G 
= 0,z) can be ignored
for large z. Inclusion of this coupling leads to contributions
vanishing like v(G,z)ckα(0,z) in all ckα(G,z) with G 
= 0.
However, since v(G 
= 0,z) decays faster than 1/z, these
contributions are irrelevant for the present discussion.

On the basis of the exponential decay of the KS states into
the vacuum, it has been demonstrated [40] that the EXX energy
density behaves as

ex(r)
z	L−−→ −n(r)

2z
. (13)

As a consequence, vSlater falls off as −1/z, just like the exact
vx [47],

vSlater(r)
z	L−−→ −1

z
. (14)

Note that this asymptotic behavior is in line with the nor-
malization of the total vs expressed in Eq. (10). An explicit
normalization of vSlater is not necessary.

The discussion of the asymptotic behavior of vshift is more
intricate. Focusing first on the density in the denominator of
(8), insertion of the Fourier expansion (2) into (3) yields

n(r) = 2
∑

G

eiG·r‖
∫

1BZ

d2k

(2π )2

∑
α

�kα

×
∑

G′
c∗

kα(G′,z) ckα(G′ + G,z) . (15)

Asymptotically, the density is dominated by the Fourier co-
efficients ckα with G = 0 since these coefficients decay most
slowly [47],

n(r)
z	L−−→ 2

∫
1BZ

d2k

(2π )2

∑
α

�kα |ckα(0,z)|2 . (16)

However, the expression in the numerator of (8) has exactly
the same structure as n(r), so that one finds

vshift(r)
z	L−−→

∑
α

∫
1BZ

d2k
(2π)2 �kα�kα|ckα(0,z)|2∑

α

∫
1BZ

d2k
(2π)2 �kα|ckα(0,z)|2 . (17)
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In order to extract the behavior of vshift for large z, the BZ inte-
grations in (17) have to be performed, utilizing the asymptotic
form of the Bloch coefficients, Eq. (11). Since the structures
of the BZ integrals in the numerator and the denominator are
identical, the BZ integration will be discussed for a generic
integrand of this type in the next section.

III. BRILLOUIN ZONE INTEGRATION FOR z → ∞
Consider the generic BZ integral with the asymptotic Bloch

coefficients (11),

I =
∫

1BZ

d2k

(2π )2
�kα Ãkα |ckα(0,z)|2

=
∫

1BZ

d2k

(2π )2
�kα Akα z2u/γkα e−2γkαz. (18)

Here γkα abbreviates the exponent (12) at G = 0,

γkα ≡ γkα(G = 0) = [k2 − 2εkα]1/2, (19)

and Akα is assumed to be twice differentiable with respect to
k throughout the complete BZ. For large z the most weakly
decaying contributions to the integral (18) are found in the
vicinity of the lowest value of γkα for all k for which �kα is
nonzero (the latter condition is, of course, relevant for only the
highest occupied bands which may be partially filled). Several
situations need to be distinguished.

A. Unique minimum of γkα in the interior

We first consider the case where (i) there is a unique k
point, in the following denoted by q, for which γkα has a global
minimum (inside the BZ),

∂εkα

∂k
(q) = q, (20)

and (ii) the band α for which (18) is to be calculated is occupied
in a complete neighborhood of q. This situation is met quite
often, as illustrated in Fig. 1 for graphene and two Si(111) slabs
of different thicknesses. As Fig. 1 demonstrates, q is typically
the 
 point. This statement is not only true for a single band
but also applies if the minimum γkα of all occupied bands
is considered, as is done in Fig. 1: while the occupied states
with the highest εkα are often found at nonzero k, the quantity
k2 − 2εkα is nevertheless minimized for k = 0 and lower εkα .

For large z the exponential function e−2γkαz varies much
more rapidly with k than all other components of the integrand
in (18). It has its peak at k = q, and the same is true for z2u/γkα .
As long as Akα is differentiable in a neighborhood of q, one
can thus utilize a Taylor expansion of γkα ,

γkα = γqα + 1
2 (k − q)
qα(k − q) + · · · , (21)


qα = ∂2γkα

∂k∂k
(q), (22)

to extract the leading term of the integral (18) for large z [48].
The contributions from the regions of the BZ for which (21)
is not valid are exponentially suppressed compared to those
from the vicinity of q, irrespective of whether the left- or the
right-hand side of (21) is used in e−2γkαz.

(b)
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FIG. 1. Exponent k2 − 2εkα for the highest occupied band at k
throughout the first Brillouin zone (indicated by black lines) for (a)
graphene, (b) a 6-layer Si(111) slab, and (c) an 18-layer Si(111) slab.
The band energies have been obtained by EXX calculations, utilizing
the KLI approximation. The discontinuities in the case of the Si(111)
slabs result from different bands being the highest occupied one for
different k.

Moreover, the second-order Taylor expansion can also be
employed for z2u/γkα . A straightforward Taylor expansion of
the complete function z2u/γkα ,

z2u/γkα = z2u/γqα

[
1 − u

γ 2
qα

ln(z)(k − q)
qα(k − q)

]
,
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however, does not satisfy the rigorous requirement

0 < z2u/γkα

for all k. For that reason the expansion (21) is more conve-
niently applied in the exponent of z2u/γkα , which amounts to a
partial resummation of the Taylor expansion of the complete
function. This resummation of terms proportional to [ln(z)/z]n

is legitimate and appropriate as long as (i) one has

z2u/γkα ≈ z2u/γqα z−(k−q)
qα(k−q)u/γ 2
qα

in the relevant part of the integration region and (ii) the
resummation does not lead to any convergence problems with
the k integral in (18).

In order to implement the expansion (21) one thus rewrites
(18) as

I =
∫

1BZ

d2k

(2π )2
�kα Akα e−2γkαz+2u ln(z)/γkα

and subsequently applies the expansion in the exponent,

I
z	L−−→ z2u/γqα e−2γqαz

∫
1BZ

d2k

(2π )2
�kα Akα

×e−(k−q)
qα(k−q)[z+u ln(z)/γ 2
qα]. (23)

The limited variation of Akα over the small region around q
for which the exponential function is non-negligible for large z

allows us to approximate Akα by its Taylor expansion around q,

Akα = Aqα + Bqα · (k − q) + 1
2 (k − q)Cqα(k − q) + · · · ,

(24)

Bqα = ∂Akα

∂k
(q), (25)

Cqα = ∂2Akα

∂k∂k
(q). (26)

In fact, as long as (i) Aqα is nonzero, (ii) z is sufficiently large,
and (iii) one is interested only in the asymptotically leading
term, Akα can simply be approximated by its value at k = q,

I
z	L−−→ Aqα z2u/γqα e−2γqαz

∫
1BZ

d2k

(2π )2
�kα

×e−(k−q)
qα (k−q)[z+u ln(z)/γ 2
qα ]. (27)

Similarly, since a complete neighborhood of q is assumed to be
occupied and this neighborhood completely dominates (27) for
large z, the occupation factor can be replaced by 1. Due to the
rapid exponential decay for large z one can finally extend the
k integration to the complete k space without loss of accuracy,

I
z	L−−→ Aqα z2u/γqα e−2γqαz

∫
d2k

(2π )2
e−k
qα k[z+u ln(z)/γ 2

qα]

= z2u/γqα e−2γqαz[
z + u ln(z)/γ 2

qα

] Ā, (28)

Ā = 1

4π
Aqα [det(
qα)]−1/2 (29)

(note that the 2 × 2 matrix 
qα is positive definite by construc-
tion).

The situation is slightly different if Aqα = 0. Since

Bqα ·
∫

d2k

(2π )2
k e−k
qα k[z+u ln(z)/γ 2

qα ] = 0, (30)

the first-order term in the expansion (24) does not contribute.
Consequently, the second-order term gives the first nonvanish-
ing contribution,

I
z	L−−→ 1

2
z2u/γqα e−2γqαz

∫
d2k

(2π )2
kCqαk e−k
qα k[z+u ln(z)/γ 2

qα]

= z2u/γqα e−2γqαz

[
z + u ln(z)/γ 2

qα

]2 C̄, (31)

C̄ = 1

16π
tr
(
Cqα
−1

qα

)
[det(
qα)]−1/2. (32)

The expansion (24) has to be extended to fourth order if
not only Aqα but also Cqα vanishes. The evaluation of the BZ
integral can, however, still follow the same line as used for the
derivation of (31). It is obvious that the result is proportional
to [z + u ln(z)/γ 2

qα]−3 in this case.

B. Finite number of minima of γkα in the interior

Next, we extend the above discussion to the case when there
is a finite number of points qi for which γkα has minima with
the same value,

∂εkα

∂k
(qi) = qi , i = 1, . . . m, (33)

γqiα
= γqj α

≡ γqα, i,j = 1, . . . m, (34)

while the band α is still assumed to be occupied in complete
neighborhoods of these qi . In this situation the BZ can be split
into m disjoint, simply connected cells Vi , with Vi containing
qi as an interior point,

I =
m∑

i=1

Ii, (35)

Ii =
∫

Vi

d2k

(2π )2
�kα Akα z2u/γkα e−2γkαz. (36)

Since all qi are distinct, a precise definition of the cell bound-
aries is not necessary at this point (with the understanding that
qi is somewhere close to the “center” of Vi). Each individual
Ii can be handled in the same fashion as the integral over
the complete BZ in the case of a unique minimum since only
the immediate neighborhood of qi is relevant for large z. The
results of Sec. III A can therefore be directly employed for all
Ii . Noting that, due to (34), the z dependences emerging from
all Ii are identical, one finds the same asymptotic behavior as
in (28), with the coefficient (29) replaced by

Ā = 1

4π

m∑
i=1

Aqiα
[det(
qiα

)]−1/2, (37)

and similarly for (31).
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q1

q2

q3

q4

FIG. 2. Integration region (shaded area) for partially filled band
with degenerate minima of γkα at the boundary of the integration
region.

C. Finite number of minima of γkα

in the interior for several bands

When comparing the asymptotic behavior of different
bands, it is clear from Eqs. (18), (28), and (31) that the band
with the minimum γqα ultimately dominates for large z. If
the minimum γqα results from only a single band, quantities
involving sums over bands can be evaluated from Eqs. (28)
and (31) (or their extensions to several qi) for this particular
band. If the same minimum value γqα is found for more than
one band, one can use the argument of Sec. III B to combine
sums over these bands into one expression. Once again, the
asymptotics of all bands is dominated by the same value γqα ,
so that one obtains the z dependences of Eqs. (28) and (31) (or
mixtures of both) with the coefficients Ā and C̄ now involving
sums over several bands and k points.

D. Lowest value of γkα at the boundary

We finally consider the case when the lowest value of γkα

in the integration region is found right at the boundary of this
region. This situation can result either from q being located
at the boundary of the BZ or from the band passing through
the Fermi surface. A sketch of the latter situation (with four
degenerate minima) is given in Fig. 2. A more realistic picture
is provided in Fig. 3, which shows γ 2

kα for a seven-layer Al(100)
slab. Figure 3(a) demonstrates that the lowest γkα values for
different k values originate from different bands: in this plot
the boundaries between the associated regions of k space (at
which γkα is discontinuous) are indicated as white contours.
At the boundaries particular bands cross the Fermi level; that
is, the boundaries correspond to the 2D Fermi surface. For all
points kb on a boundary one thus has

εkbα = εF. (38)

Assuming kb(s) to be a parameter representation of a contour,
the tangent to the boundary satisfies the relation

dkb

ds
(s) · ∂εkα

∂k
[kb(s)] = 0. (39)

Figure 3(b) shows the most important region with the
minimum values of γkα on an enlarged scale. One clearly
recognizes that the lowest value is obtained right at a boundary
between two bands, while the exponent is rather flat in the

(b)
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(a)

FIG. 3. Exponent k2 − 2εkα for the highest occupied band at k for
a seven-layer Al(100) slab: (a) projection on the kx-ky plane in one
quarter of the first Brillouin zone and (b) 3D representation of the most
relevant region on an enlarged scale. Arrows point at the k values for
which k2 − 2εkα assumes its lowest value (the minima are somewhat
masked by the finite resolution of the plot). (b) explicitly demonstrates
the discontinuity of k2 − 2εkα . The band energies have been obtained
with an EXX calculation, utilizing the KLI approximation.

neighborhood of the 
 point. If the point on the boundary
at which γkα assumes its minimum value is denoted by
q = kb(sq), the gradient of γkα at q has to be orthogonal to
the tangent along the contour at this point [49],

dkb

ds
(sq) · Dqα = 0, (40)

Dqα = ∂γkα

∂k
(q). (41)

Restricting the discussion to a single point q, one can
basically follow the arguments in Sec. III A. However, since
the lowest value of γkα within the integration region, at least
in general, no longer coincides with a minimum of γkα in the
complete BZ, the first-order term of the expansion (21) does
not vanish at q,

γkα = γqα + Dqα · (k − q) + 1
2 (k − q)
qα(k − q) + · · · .

(42)
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Θkα = 0 Θkα = 1

z2 > z1

q

FIG. 4. Complete integration region (gray shaded area) of a
partially filled band with a global minimum of γkα at q versus the
relevant integration region for large z: the blue shaded region relevant
for z2 gives the same percentage contribution to the total integral as
the red shaded region relevant for z1 < z2.

In addition, 
qα no longer need to be positive definite. The
only remaining requirement is that there is a minimum in the
direction along the boundary,

dkb

ds
(sq)
qα

dkb

ds
(sq) > 0. (43)

Focusing on the situation Dqα 
= 0 first (the case Dqα = 0 is
dealt with below), Eq. (27) has to be modified to

I
z	L−−→ Aqα z2u/γqα e−2γqαz

∫
1BZ

d2k

(2π )2
�kα

×e−[2Dqα ·(k−q)+(k−q)
qα (k−q)]z, (44)

where corrections of the order ln(z)/z have been neglected in
order to simplify the discussion.

One next has to account for the fact that part of the BZ
(or, more generally, the cell around q) does not belong to the
integration region, as the occupation function vanishes there.
With increasing z the relevant integration area around q shrinks
further and further, so that the boundary between �kα = 1 and
�kα = 0 inside this area ultimately becomes the straight line
defined by

q + dkb

ds
(sq) s, s ∈ R (45)

(since the curvature of the boundary is independent of z and
fixed). An illustration of this scaling effect is given in Fig. 4.
When extending the relevant integration region to the complete
2D k space, one ends up with an integration over half of
the kx-ky plane, with q being located on the straight line
between the two halves. As in the unrestricted situation, one
can subsequently shift the origin of the k integration to the
point q,

I
z	L−−→ Aqα z2u/γqα e−2γqαz

∫
H

d2k

(2π )2
e−[2Dqα ·k+k
qα k]z. (46)

Here H implements the restriction of the integration to that
half of the 2D k space for which

Dqα · k > 0. (47)

The straight line separating the integration region from the
exterior region now goes through the shifted origin.

The behavior of the exponent in (46) is dominated by the
first-order term in the direction of Dqα (at least close to the
minimum at q) and by the second-order term in the orthogonal
direction parallel to the boundary line. One thus chooses the
orientation of the coordinate system for the k integration such
that the coordinate k1 is parallel to Dqα and the coordinate k2

is parallel to the boundary line,

I
z	L−−→ Aqα z2u/γqα e−2γqαz

∫ ∞

0

dk1

2π

∫ ∞

−∞

dk2

2π

×e−[2|Dqα |k1+n⊥
qαn⊥k2
2 ]z, (48)

where n⊥ denotes a unit vector in the direction of the boundary
line. The asymptotically leading term is thus given by

I
z	L−−→ Aqα z2u/γqα e−2γqαz

8π3/2|Dqα| [n⊥
qαn⊥]1/2 z3/2
. (49)

Comparing this equation to the result (28), one observes an
additional factor of

√
z in the denominator.

If Aqα = 0, the asymptotically leading contribution
emerges from the first-order term of the Taylor expansion (24),

I
z	L−−→ z2u/γqα e−2γqαz

∫
H

d2k

(2π )2
Bqα · k

×e−[2Dqα ·k+k
qα k]z

[since Eq. (30) relies on the k integration extending over the
complete 2D k space]. Proceeding as before, one finds

I
z	L−−→ Bqα · Dqα z2u/γqα e−2γqαz

16π3/2|Dqα|3 [n⊥
qαn⊥]1/2 z5/2
. (50)

It is obvious from the discussion in Secs. III B and III C
that the results (49) and (50) can be extended to the case with
several points qi .

The (less likely) case that Dqα = 0 although q is a point on
a boundary of the integration region remains to be discussed.
In this situation 
qα is again positive definite. Starting from
(27) and proceeding as for the derivation of (46), one obtains

I
z	L−−→ Aqα z2u/γqα e−2γqαz

×
∫

H

d2k

(2π )2
e−k
qα k[z+u ln(z)/γ 2

qα]. (51)

As in Eq. (46), H is that half of 2D k space which emerges from
the condition �kα > 1; that is, H is defined by the straight line
(45). One can now scale both components of k by the (large)
positive factor [z + u ln(z)/γ 2

qα]1/2,

k′ = [
z + u ln(z)/γ 2

qα

]1/2
k, (52)

to arrive at

I
z	L−−→ Aqα z2u/γqα e−2γqαz[

z + u ln(z)/γ 2
qα

]
∫

H

d2k′

(2π )2
e−k′
qα k′

. (53)

This equation uses the fact that the integration region of the
scaled variable k′ is exactly the same as that for k since H is
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bounded by a straight line through the origin and the scaling is
homogeneous. One thus obtains exactly the same asymptotic
z dependence as in (28), with Ā now given by

Ā = Aqα

∫
H

d2k′

(2π )2
e−k′
qα k′

. (54)

A z dependence different from Eq. (31) is, however, found
in the case Aqα = 0. As in the case of Eq. (50), the leading
contribution emerges from the first-order term of the Taylor
expansion (24),

I
z	L−−→ z2u/γqα e−2γqαz

[
z + u ln(z)/γ 2

qα

]3/2 B̄, (55)

B̄ =
∫

H

d2k′

(2π )2
Bqα · k′ e−k′
qα k′

. (56)

IV. ASYMPTOTIC BEHAVIOR
OF THE ORBITAL-SHIFT POTENTIAL

To leading order, the asymptotic behavior of both the nu-
merator and the denominator on the right-hand side of Eq. (17)
is controlled by the vicinity of the k point(s) for which the
exponentγkα(G = 0) of Eq. (11) assumes its minimum value in
the integration region. Depending on the shape of γkα(G = 0),
one arrives at Eqs. (28) and (31) or their counterparts for more
complicated situations. If, for the relevant band(s) α, both �kα

and fkα(G = 0) are nonzero at the k point(s) with the minimum
exponent, the numerator and the denominator in Eq. (17)
exhibit the same z dependence, so that vshift asymptotically
approaches a nonzero constant.

However, proper normalization of the total KS potential,
i.e., Eq. (10), requires

vshift(r)
z→∞−−−→ 0, (57)

since all other components of vs and vSlater also vanish in this
limit. Restricting the discussion first to the simplest case in
which the lowest value of γkα(G = 0) is found for only a single
band α at a single k point q, the normalization (57) can be
implemented by choosing

�qα = 0. (58)

The expression on the right-hand side of (17) can then be
evaluated further by the use of Eqs. (28) and (31),

vshift(r)
z	L−−→ C̄

Ā
[
z + u ln(z)/γ 2

qα

] , (59)

with Ā and C̄ defined by Eqs. (29) and (32), respectively. As
a result one observes a 1/z decay of vshift .

A 1/z dependence is also obtained in most other situations,
in particular, if one has several degenerate states with the same
γqα or different k points which yield the same exponent (due
to some symmetry). Also for metals, for which the minimum
value of γkα is typically found at k points corresponding to the
Fermi surface, the ratio of (49) and (50) leads to a 1/z decay.
Even if fkα(G = 0) vanishes, the same behavior is obtained:
in this case the numerator in (17) is determined by (31) (or its
counterparts), and the denominator in (17) is controlled by the
fourth-order term of the Taylor expansion (24), so that the ratio

is again proportional to [z + u ln(z)/γ 2
qα]−1. The normalization

(57) can thus be ensured by choosing �kα to vanish for the
state(s) which dominate the density (16) for z → ∞.

When the result (59) is combined with the asymptotic
behavior of the Slater potential, Eq. (14), the total vKLI

x ,

vKLI
x (r)

z	L−−→ −1 − us

z
, (60)

is found to deviate from the −1/z dependence of the exact
vx [50]. It remains to be seen how large us is in practice. Its
value depends on the Fourier amplitudes of the asymptotically
leading states, their band energies, and their EXX energy
densities, as well as the gradients of these quantities (via Ā and
C̄ or the corresponding coefficients for the more complicated
situations). One could thus expect quite different values for
different classes of slabs.

V. CONCLUDING REMARKS

Somewhat surprisingly, the behavior of the KLI approxi-
mation to the exact exchange potential far outside the surface
of a slab is not completely determined by its Slater component.
While the Slater potential shows the expected −1/z decay [40],
the second component of the KLI potential, the orbital-shift
term, in general also falls off no faster than 1/z. This conclusion
is based on an analytical evaluation of the BZ integrals involved
for several classes of band structures. Only weak assumptions
about the differentiability of the band energies and Bloch
amplitudes are required to perform the BZ integrations. These
assumptions are well justified for many slabs, in particular for
such prominent cases as graphene and Si(111) slabs.

The analytical BZ integration relies on a second-order
Taylor expansion of the k-dependent exponent controlling the
exponential decay of the states γkα about its minimum at some
point q,

e−2γkαz ≈ e−2γqαz e−(k−q)
qα(k−q)z

(in the simplest situation, to which the discussion is restricted
at this point). This expansion is based on the fact that for
sufficiently large z only the immediate vicinity of the point q
contributes sizably to the BZ integrals. The z values required
for this to be the case depend on the shape of γkα . If γkα has a
very pronounced minimum, the factor e−2γkαz falls off rapidly
with increasing |k − q|. On the other hand, in the case of a
shallow minimum it needs extremely large z values to reduce
the relevant integration region enough that the approximation
is legitimate. The scale of the variation of γkα in the vicinity
of q defines the scale of the z values which can be dealt with:
if one requires

e−2γkαz < s e−2γqαz, s � 1,

one finds

z >
ln(s)

2(γqα − γkα)
.

A rough estimate of the lower bound for z can thus be obtained
from k points for which |k − q| is a fraction of the extension of
the BZ. For example, in the case of graphene (compare Fig. 1)
one has γkα − γqα ≈ 0.04 bohr−1 for |k − q| ≈ π/(4a). A
suppression s of one order of magnitude then leads to z >

27 bohrs. For the six-layer Si(111) slab the much shallower
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minimum already requires z > 123 bohrs for the same s and
|k − q|. It seems worthwhile to emphasize that the competition
between several bands with similarγkα might introduce an even
larger lower bound on z.
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