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Nodal s-wave superconductivity in antiferromagnetic semimetals
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We investigate the impact of s-wave spin-singlet pairing on antiferromagnetic semimetals with Dirac points or
nodal loops at the Fermi level. The electron pairing is generally shown to convert the semimetal into a tunable
nodal superconductor. The changeover from fully gapped to gapless phases is dictated by symmetry properties
of the antiferromagnetic-superconducting state that set the occurrence of a large variety of electronic topological
transitions. We provide a general criterion for predicting a series of transitions between nodal and fully gapped
superconducting phases. Different types of antiferromagnetic patterns are then employed to explicitly demonstrate
the microscopic mechanisms that control the character of the quasiparticle spectrum. These findings unveil an
unconventional type of nodal superconductivity emerging from the interplay of Dirac fermions and conventional
forms of ordering.
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I. INTRODUCTION

After the great impact of topological insulators [1,2],
there has been a significant expansion towards metals and
semimetals (SMs) [3] as well as quantum materials combining
topological and conventional forms of order. Topological
SMs [4] are materials where conduction and valence bands
cross in some points or lines in the Brillouin zone and the
crossings are protected by certain symmetry of the system
and by the presence of ensuing topological invariants. Among
them, Dirac SMs are of particular interest, with massless
Dirac fermions emerging as low-energy fundamental exci-
tations. Due to their intrinsic instability, to guarantee the
robustness, symmetry protection is necessary [5–7], as, for
instance, it occurs in graphene. The search for new variants
of SMs recently highlighted the interplay of Dirac fermions
physics and magnetism. Indeed, while most of the currently
known SMs are nonmagnetic, antiferromagnetic (AFM) SMs
can be obtained where both time and inversion are broken
while their combination is kept [8–10] or due to chiral [9]
and time symmetry [9,11] combined with nonsymmorphic
transformations.

Apart from the large variety of fundamental aspects re-
lated to Dirac systems, the combination with other types of
conventional orders (e.g., magnetism or superconductivity)
represents an ideal test bed for achieving new phases of matter
and materials for future emergent technologies [12,13]. For
instance, hallmarks of deviations from a conventional behavior
arise when s-wave superconductivity is placed in proximity of a
Dirac system, as for the helical superconductor generated at the
two-dimensional (2D) boundary of a 3D topological insulator,
with vortices hosting Majorana fermions (MFs) [14] and
supersymmetric behavior [15,16]. The tantalizing perspective
of topological quantum computing based on MFs motivated
the proposal of artificial topological superconductors [17–24]
and the observation of MF signatures in hybrid superconduct-
ing devices [25–34]. Although nonmagnetic Dirac SMs are

natural candidates for topological superconductivity [35–38],
the role of magnetism in this framework is still largely unex-
plored. Such observations together with the traditional strong
proximity between superconductivity and antiferromagnetism
[39–42] in cuprates, iron pnictides, and heavy fermions pose
fundamental questions concerning the impact of pairing on
AFM SMs. Along this direction, the very recent observation
of an anomalous coexistence state of antiferromagnetism and
superconductivity in monolayer FeTe grown on a topological
insulator [43] reinforces the idea that unexpected quantum ef-
fects occur in materials platforms that combine Dirac physics,
electron pairing, and magnetism.

In this paper, we unveil the nature of the low-energy
excitations of an AFM semimetal in the presence of spin-
singlet s-wave pairing (SWP). Contrary to the common view of
isotropic pairing leading to fully gapped superconductors, we
find that a SWP generally converts the AFM-SM into a tunable
nodal superconductor (NSC). A series of electronic topolog-
ical transitions (i.e., Lifshitz type) [44] are predicted on the
basis of symmetry principles related to the antiferromagnetic-
superconducting state. For this purpose, we provide a general
criterion that establishes the relation between the excitations
spectrum of the AFM-SM and that of the NSC. Then, different
types of AFM SMs are explicitly investigated to demonstrate
how to directly shape the electronic structure of the NSC.

II. MODEL AND RESULTS

Chiral symmetries and criterion for nodal excitations. We
consider a system of multiorbital itinerant electrons that are
coupled via an axial spin-symmetric spin-orbital interaction
and through magnetic exchange, JH , with localized collinear
spins in an AFM pattern described by the variable Sz

i = ±1.
Electrons can locally form spin-singlet pairs with amplitude
�i spatially dependent on the position i in the unit cell and
compatible with the periodicity of the AFM pattern. The
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Hamiltonian can be then generally expressed as

H ≡ H↑ + H↓ + H↑↓
� ,

Hσ = −JH

∑
i

σSz
i + Hσ

t , (1)

H↑↓
� =

∑
i

(�id
†
i,↑d

†
i,↓ + �idi,↓di,↑),

with Ht and H↑↓
� being the kinetic and pairing terms, re-

spectively. The kinetic part can include both spin-independent
hoppings and axial symmetric spin-dependent ones [45] (i.e.,
spin-orbital coupling as in Refs. [46,47]) in such a way that,
for a given AFM pattern with opposite spin domains and an
equal number of sites, Hσ has a chiral symmetry, i.e., there
exists a unitary operator anticommuting with Hσ . The chiral
symmetry (CS) is a fundamental property for the classification
of topological states of matter [48–51]. The CS generally
relates positive and negative parts of the energy spectrum and
it can be associated with the presence of effective sublattices in
the phase space. Indeed, one can construct a basis with different
eigenvalues of the chiral operator with the Hamiltonian having
vanishing matrix elements inside the same sublattice sector.

Hence, the structure of the resulting Hamiltonian in the k

space is

H�k =
(

Ĥ e
�k,↑ �̂

�̂ Ĥ h
�k,↓

)
, (2)

where Ĥ h
�k,↓ = −(Ĥ e

−�k,↓)T , while the matrix �̂ has entries �p

(p being the sites label) and a dimension that is set by the
number of sites in the unit cell and on-site orbital degrees.
If χ̂�k is a CS operator for both particle and hole sectors and
commutes with �̂ then, by construction, we have {H�k,S�k} = 0
for S�k = χ̂�kτz, with τz being the Pauli matrix acting in the
particle-hole space. Due to the AFM structure, χ̂�k includes
a translation of a half vector of the Bravais lattice, thus it
has a nonsymmorphic character [52]. Taking into account the
structure of the Hamiltonian, another independent CS operator
S ′

�k can be constructed, introducing a unitary transformation η̂

with the following properties: (i) [η̂,�̂] = 0, (ii) η̂2 = 1̂, and
(iii) η̂Ĥ e

�k,↑η̂ = Ĥ h
�k,↓. Upon these assumptions S ′

�k is given by

S ′
�k = iη̂χ̂�kτy .

In terms of physical transformations, S�k acts to transpose
the magnetic domains for both electrons and holes whereas S ′

�k
interchanges electrons in the Sz

i = ±1 spin domain with holes
in the opposite one, i.e., Sz

i = ∓1 [see Fig. 1(a)]. From the
properties of η̂ and χ̂�k one can observe that they either commute
or anticommute, and consequently, a reversed algebra is due for
S�k and S ′

�k , respectively. More importantly, since we deal with
CS operators, their product � = S�kS ′

�k leads to a symmetry
for the Hamiltonian, i.e., [�,H�k] = 0. Hence, we end up
with a unitary operator � which squares to identity and it
has eigenvalues ±1. Remarkably, in the � eigenbasis the
Hamiltonian can be rewritten in such a way that [53]

Ĥ±
�k ≡ Ĥ h

�k,↓ ± η̂�̂ (3)

and the pairing term becomes an effective potential that
separates in each � symmetric sector. This is one of the

FIG. 1. (a) Sketch of the transformations involved in the chiral
symmetries which link electron or hole and electron-hole sectors in
different magnetic domains. (b) Schematic of Dirac points at zero
energy and k = k0 (red point) in the � symmetric subsector Ĥ+

�k (left

column) and for nonvanishing �̂ (middle column). Different types of
gapless or gapfull spectra are shown. The right column reports the
full spectrum for both � sectors, thus restoring the chiral symmetry.

central results of the paper. In the symmetry projected basis,
electrons with a given spin polarization are coupled to the AFM
background and interact with an effective potential that arises
from the pairing term through the CS derived transformations.
Interestingly, the induced potential can even break the CS
within each � sector which is, however, recovered when both
the spectra of Ĥ+

�k and Ĥ−
�k are merged together.

The structure of the symmetry projected Hamiltonian allows
us to deduce important consequences on the evolution of the
low-energy excitations spectra. Since the AFM SM has Dirac
points (DPs) or line nodes (LNs) at the Fermi level, for such �k ∈
points the phase space, at a given spin polarization, is spanned
by two vectors {|E(0)

χ,�k〉} labeled by the eigenvalues of χ̂�k ,
i.e., χ = ±1. Then, to address the energy correction to the
DPs or nodes, one can employ a perturbation approach by
expressing the effective pairing interaction V̂ ≡ η̂�̂ in the
�k-dependent basis of {|E(0)

±,�k〉} as V̂χ ′χ,�k = 〈E(0)
χ ′,�k|η̂�̂|E(0)

χ,�k〉 .

The eigenvalues of the V̂χ ′χ,�k matrix provide corrections to the
zero energy Dirac states and, in turn, set their evolution for
each � sector. A schematic view of this process is presented in
Fig. 1(b). Indeed, except for symmetry protected or accidental
cases where V̂ eigenvalues are identically vanishing, it is
their sign that generally yields the evolution of the DPs at
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FIG. 2. Upper row: schematics of AFM patterns. (a) AFM zigzag with length Lz = 2 (z2), (b) Lz = 3 (z3), (c) AFM Néel state, and (d)
checkerboard with 2 × 2 magnetic domains (c2). The orange (blue) squares indicate sites with spin up (down). The unit cell is marked by thick
blue frame and â1,2 are the basis vectors of the Bravais lattice. Dashed lines indicate the normal mirror or glide mirror lines when considering
the zigzag AFM patterns [(a) and (b)]. The gliding transformation is shown by red dots and arrows, i.e., dot is first reflected via m2 and then
translated by a vector �t parallel to the mirror line m2. For z3 pattern, red and green lines connect dots related to the second- and third-neighbor
hopping amplitudes ±δ for spin up/down domains, respectively. Bottom row: electronic spectra associated with the corresponding AFM patterns
(upper row). For a given spin-polarization Dirac points or nodal loop occur at the Fermi level for �̂ = 0.

the Fermi level. With opposite sign eigenvalues, under the
action of �̂, the DPs acquire a mass, evolving into positive
and negative-energy states, and thus generally a gap opening
occurs [Fig. 1(b)]. Otherwise, for eigenvalues having the same
sign, the spectrum rigidly shifts above or below zero energy,
thus leading to gapless excitations at the Fermi level. In this
case, although a gap opening may occur at the Dirac point,
a zero-energy crossing of the spectra and gapless modes in
the superconducting state are expected [Fig. 1(b)]. In general
we observe that the impact of the pairing on the AFM-SM
can be assessed by evaluating the determinant D�k ≡ det V̂�k
in the whole Brillouin zone. Positive (negative) values for D�k
translate into gapless (gapped) modes at a given infinitesimally
small amplitude of �̂. The sign of D�k thus gives a general
criterion for predicting the occurrence of nodal phases and
induced Lifshitz transitions once the amplitude of �̂ is varied.
Since there are no symmetry constraints for the evolution of
the spectra in the � symmetric sectors, the emerging SC state
can exhibit a large variety of transitions from gapless to gapped
configurations within the Brillouin zone. We point out that this
result holds independently of the symmetry protection behind
the AFM SM.

Nodal superconductivity in multiorbital AFM SMs. In order
to explicitly demonstrate the impact of spin-singlet pairing
in chiral symmetric AFM SMs we employ a model system
which allows us to have Dirac points or nodal loops at the
Fermi level. Such states can be realized in an effective 2D
orbital-directional double-exchange model [9,54] describing
itinerant electrons (e.g., t2g or p bands) in the presence
of an anisotropic spin-orbit coupling, as due to tetragonal

crystal-field splitting, and Hund coupled to localized spin
moments forming AFM patterns [see Figs. 2(a)–2(d). The
kinetic part Hσ

t , as in Eq. (1), is then given by

Hσ
t =

∑
i

∑
α,β=a,b

γ̂=â,b̂

tγ,αβ(d†
i,ασ di+γ̂ ,βσ + H.c.) + λ

∑
i

lzi S
z
i , (4)

where the only nonvanishing hopping amplitudes are tâ,bb =
tb̂,aa = −t and γ̂ = â,b̂ are bond directions on a square lattice.
λ is the spin-orbit coupling in the (a,b) orbitals subspace, with
lzi = i(d†

i,a,σ di,b,σ − d
†
i,b,σ di,a,σ ). Localized spins Sz

i can form
zigzag or checkerboard patterns as depicted in Fig. 2. For all the
examined AFM configurations, the model exhibits two chiral
symmetries with η̂ being a diagonal matrix with ±1 entries
[53]. Since η̂ commutes with χ̂ �k [53] when considering zigzag
z2, z3, or checkerboard c2, one can make use of the criterion for
the sign of D�k to predict the evolution of the superconducting
spectra at any given pairing configuration of �̂. On the other
hand, for the Néel AFM state [Fig. 2(c)], η̂ anticommutes with
χ̂ �k . Thus, a finite amplitude of �̂ does not break the chiral
symmetry in each Ĥ±

�k sector and the criterion does not directly
apply. In this case, the SC has point or line nodes in each
� sector [53]. Since the unit cell in the AFM phases have
inequivalent sites, inhomogeneities in the superconducting or-
der parameters are physically relevant for the coexistence state.
For this aim, we investigate the role of both amplitude and sign
change of the spin-singlet pairing within the various types of
AFM SMs. We find that, as expected from the general analysis,
the superconducting state exhibits distinct transitions from
gapped to gapless phases [Figs. 3(a1)–3(a3)] that demonstrate
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FIG. 3. Phase diagrams for gapless (colored) and gapped (white) SC states and induced Lifshitz transitions by varying the pairing amplitude
in the unit cell for z2 (a1), z3 (a2), and c2 (a3) AFM patterns. Parametrization of the unit-cell pairing components �i of �� is made by introducing
the angles θ and φ: (�1,�2,�3,�4) = (1,

√
3 cos θ,

√
3 sin θ cos φ,

√
3 sin θ sin φ) in (a1), �i �=(1,2) = 1, �1 = √

2 sin θ , and �2 = √
2 cos θ in

(a2) and (a3). Representative evolution of the semimetal phase for different configurations of �� in the unit cell [see Figs. 1(a)–1(c)] associated
with �̂I,II,III in the phase diagrams (ai, i = 1,2,3): (b1)–(d1) for z2, (b2)–(d2) for z3, and (b3)–(d3) for c2 AFM patterns. α indicates the angular
position of a given k point at the Fermi level. Site labels and schematic of the unit cell are in the center of the panels (bi), (ci), (di) with
i = 1,2,3; a and b refer to the orbitals and (+,−) indicate the sign of the pairing amplitude. Blue lines or dots in (bi), (ci), and (di) [i = 1,2,3]
denote the nodal superconducting Fermi surface (�̂ �= 0), black/red lines or dots indicate the Fermi point and the nodal loops for the AFM
semimetal (�̂ = 0).

a high degree of tunability of the spectra. For instance, starting
from an AFM SM with Dirac points [Fig. 3(b1)] or nodal line
[Figs. 3(b2) or 3(b3)], a pattern �̂ with uniform sign in the
unit cell can lead to (i) a fully gapped SC [Fig. 3(b1)], (ii)
a SC with double nodal Fermi surfaces [Fig. 3(b2)], (iii) or
a point node SC [Fig. 3(b3)]. The occurrence of an orbital
dependent sign change for the spin-singlet order parameter
at one or few sites within the unit cell opens other channels
of transitions from two-nodal [Fig. 3(c1)] to four-nodal rings
developing around the position of the AFM Dirac points [Fig.
3(d1)]. On the other hand, the evolution of the AFM-SM with
Dirac nodal loop shows how one can achieve gapless phases
with nodal rings that can touch in two points [Fig. 3(b2)] or are
disconnected [Fig. 3(c2)] and, eventually, exhibits transitions
from a two-nodal to one-nodal ring Fermi surface [Fig. 3(d2)].
Such phenomenology generally holds also for the c2 AFM
[Figs. 3(a3)–3(d3)] where the modification of spatial pairing

amplitude leads to a series of Lifshitz transitions from point
nodes to two- and four-nodal loops Fermi surface [Fig. 3(d3)].

III. CONCLUDING REMARKS
AND MATERIALS OUTLOOK

We demonstrate that a completely different type of NSC
can arise by combining an AFM SM and spin-singlet SWP.
We provide a general criterion for the occurrence of gapless or
gapped modes that predicts the possibility to get an arbitrarily
shaped nodal SC coexisting with antiferromagnetism. For a
realistic multiorbital system, we explicitly employ the criterion
and show that, by a modification of the local spin-singlet pair-
ing in the unit cell, a series of Lifshitz transitions are driven with
a changeover from gapped to different types of nodal SCs with
point nodes or a variable number of nodal rings. Concerning the
materials cases, in the half-Heusler family superconductivity
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can coexist with antiferromagnetism [55–57] and SM phases
have been predicted [58]. Moreover, heterostructures made of
an AFM SM interfaced with conventional spin-singlet SC is
well suited for observing such a form of nodal superconduc-
tivity. Although CS in our model holds at a given electron
filling in the AFM SM, for materials purposes CS can generally
be preserved in the low-energy sector where superconducting
correlations are relevant for setting the coexistence state. Apart
from direct signatures of NSC by angle-resolved spectroscopy
and scanning tunneling microscopy [1,2,59], the sensibility to
spatial variation of the superconducting order parameter can
lead to unique thermodynamical features with a cascade of
Lifshitz transitions that get thermally activated.
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APPENDIX

In this Appendix we provide details for the derivation of the
criterion for nodal superconductors. For the z2 spin pattern we
explicitly report the matrix structure of η̂ and χ̂ that build up
the chiral symmetry operators. Then, a representative case of
the evolution of the superconducting state for the Néel AFM
state is also reported.

1. Details on zigzag 2 system

For a zigzag 2 spin pattern the electron Hamiltonians for the fixed spin channel σ have a form of 8 × 8 matrices given by

Ĥ e
�k,↑ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σJH −te−ik2 0 −t iσλ 0 0 0

−teik2 σJH −te−ik1 0 0 iσλ 0 0

0 −teik1 −σJH −te−ik2 0 0 −iσλ 0

−t 0 −teik2 −σJH 0 0 0 −iσλ

−iσλ 0 0 0 σJH −t 0 −e−ik2

0 −iσλ 0 0 −t σJH −te−i(k1−k2) 0

0 0 iσλ 0 0 −tei(k1−k2) −σJH −t

0 0 0 iσλ −eik2 0 −t −σJH

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A1)

The internal chirality (not related to superconductivity) χ̂�k has a form of

χ̂�k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −e−i(k1/2) 0 0 0 0 0

0 0 0 e−i(k1/2) 0 0 0 0

−ei(k1/2) 0 0 0 0 0 0 0

0 ei(k1/2) 0 0 0 0 0 0

0 0 0 0 0 0 −e−i(k1/2) 0

0 0 0 0 0 0 0 e−i(k1/2)

0 0 0 0 −ei(k1/2) 0 0 0

0 0 0 0 0 ei(k1/2) 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A2)

and η̂ operator connecting the Hamiltonians for electron and hole sectors as η̂Ĥ e
�k,↑η̂ = Ĥ h

�k,↓ is

η̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A3)
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2. Criterion for occurrence of nodal superconductivity

We start by demonstrating how to get the effective pairing
potential in the � symmetric representation. The eigenbasis of
� can be expressed by an orthogonal matrix V� ,

V� = 1√
2

(
−η̂ η̂

1̂ 1̂

)
, VT

��V� =
(

−1̂ 0

0 1̂

)
. (A4)

By means of V� one can rewrite H�k in a block-diagonal form.
Indeed, since η̂2 = 1̂ and η̂Ĥ e

�k,↑η̂ = Ĥ h
�k,↓, one obtains

H̄�k = VT
�HV� =

(
Ĥ h

�k,↓ − η̂�̂ 0

0 Ĥ h
�k,↓ + η̂�̂

)
. (A5)

Thus, the pairing term effectively separates in the � symmetric
sectors. When η̂ commutes with χ̂�k , the action of �̂ is to break
the chiral symmetry within each sector, Ĥ±

�k ≡ Ĥ h
�k,↓ ± η̂�̂ of

H̄�k . The overall chiral symmetry of H̄�k is recovered by taking
the two � symmetric blocks together. This means that the
spectrum of Ĥ+

�k is linked to that of Ĥ−
�k by a sign reversal.

On the other hand, for η̂ anticommuting with χ̂�k both sectors
of H̄�k are chiral symmetric and their spectra are unrelated.

Concerning the derivation of the criterion for establishing
the character of the excitations spectra in the superconducting
state, we observe that the considered AFM semimetal states
exhibit isolated Dirac points or Dirac nodal lines. Then, for
any given k at the Fermi level we have double-degenerate
configurations expressed as {|E(0)

χ,�k〉}, with χ = ±1 labeling
the eigenvalues of the chiral symmetry operator χ̂�k . In the
eigenbasis of χ̂�k the Hamiltonian at zero pairing amplitude
has a block off-diagonal form

Ĥ±
�k (�̂ = 0) =

(
0 u�k
u
†
�k 0

)
. (A6)

Hence, the states {|E(0)
χ,�k〉} are vectors of the null space for

Ĥ±
�k (� = 0) and within such basis representation they take a

block form given by

∣∣E(0)
+,�k

〉 =
(

0∣∣u(0)
R,�k

〉
)

,
∣∣E(0)

−,�k
〉 =

(∣∣u(0)
L,�k

〉
0

)
, (A7)

where |u(0)
R/L,�k〉 are right/left zero states of u�k , i.e., u�k|u(0)

R,�k〉 =
〈u(0)

L,�k|u�k = 0. In the presence of �̂, starting from the AFM SM

the lowest-order correction can be obtained by evaluating V̂ ≡
η̂�̂ in the �k-dependent basis of {|E(0)

±,�k〉}. The matrix elements

FIG. 4. Representative nodal superconductivity evolving from a
Néel AFM semimetal (see Fig. 1 in the main text) with Dirac points
indicated by red dots at zero (a) uniform case and (b) nonuniform
configuration for the pairing amplitude in the unit cell. Site labels
and schematic of the unit cell are in the center of the panels (blue
and orange are for spin up and down). a and b refer to the orbitals and
(+,−) indicate the sign of the pairing amplitude. Different � sectors
yield inequivalent point nodes or nodal rings in the superconducting
state. In case (a) both chiral symmetry operators commute with each
other and with �, so each � sector is chiral symmetric at any �̂.
In case (b) both chiral symmetries are broken by �̂ and only their
product, i.e., the � symmetry is preserved.

of the effective pairing potential are given by

V̂χ ′χ,�k = 〈
E

(0)
χ ′,�k

∣∣η̂�̂
∣∣E(0)

χ,�k
〉
. (A8)

As discussed in the main text, the evolution of the exci-
tations spectrum at a given k point can be tied to the sign
of the determinant of V̂�k . The determinant can be expressed
in a simple form by employing the states in Eqs. (A7) and
considering that V̂ is block diagonal in the eigenbasis of χ̂�k ,
because [V̂ ,χ̂�k] = 0. Hence, we have that

det V̂�k = 〈
u

(0)
L,�k

∣∣�̂+(η̂�̂)�̂+
∣∣u(0)

L,�k
〉〈
u

(0)
R,�k

∣∣�̂−(η̂�̂)�̂−
∣∣u(0)

R,�k
〉
,

where �̂± = 1
2 (1 − χ̂�k) is a projector on χ = ±1 eigensub-

space of χ̂�k .

3. Néel spin pattern

In Fig. 4 we report the excitations spectra of the coexistence
state of Néel AFM state and s-wave pairing. The Dirac AFM
semimetal with point nodes is converted into a nodal supercon-
ductor with point nodes in each � symmetric block [Fig. 4(a)]
for a uniform pairing amplitude or into a multiple nodal ring
superconductor in the presence of orbitally inequivalent pairing
amplitudes in the unit cell [Fig. 4(b)].
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