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Recently the interest in thermal counterflow of superfluid 4He, the most extensively studied form of quantum
turbulence, has been renewed. Particularly, an intense theoretical debate has arisen about what form, if any,
of the so-called Vinen equation accurately captures the dynamics of vortex line density, L. We address this
problem experimentally, in a 21 cm long channel of square 7 × 7 mm2 cross section. Based on large statistics
of second-sound data measured in nonequilibrium square-wave modulated thermally induced counterflow we
investigate the phase portrait of the general form of the governing dynamical equation and conclude that for
sparse tangles (L � 105 cm−2) all proposed forms of this equation based on the concept of a homogeneous
random tangle of quantized vortices provide equally adequate descriptions of the growth of L, while for dense
tangles (L > 105 cm−2) none of them is satisfactory or able to account for the significant slow-down in tangle
growth rate as the steady state is approached. We claim, however, that agreement with theory is recovered if the
geometrical parameter c2 introduced in numerical studies by K. W. Schwarz [Phys. Rev. B 38, 2398 (1988)] is
allowed to vary with vortex line density which also greatly improves the prediction of the observed early decay
rate.

DOI: 10.1103/PhysRevB.97.064507

I. PREFACE

Thermal counterflow of superfluid 4He represents the first
and most extensively studied form of quantum turbulence
[1–3]. Despite that, a number of open problems and unan-
swered questions remain that ought to be tackled both theoreti-
cally and experimentally, such as the existence and role of large
vortical structures and their visualization [4–7], forms and
interplay of energy spectra [8–12] in the superfluid and normal
components constituting at finite temperature the superfluid
4He and appropriate boundary conditions [13] for their veloc-
ity fields, small-scale universality [14], or possible relations
between classical and quantum convective heat transport [15].

Recently an intense theoretical debate has arisen about
what form, if any, of the so-called Vinen equation accurately
captures the dynamics of vortex line density (VLD) [16–18],
which motivates us to tackle this problem experimentally.
Using a purposefully designed flow channel where counterflow
is repeatedly generated by rectangular heat pulses and probed
by second-sound attenuation we demonstrate that experimental
approach is fruitful. Indeed, we find that for relatively dilute
vortex tangles all proposed forms of the Vinen equation [16,19]
provide adequate descriptions of its growth rate, while for
dense tangles they fail and cannot account for the signifi-
cant slow-down in tangle growth rate as the steady state is
approached. We report data analysis that shows the way to
resolve this problem, by allowing the geometrical coefficient,
introduced in the theory of Schwarz [20], connecting rms
curvature of quantized vortices and VLD, to depend on the
VLD. Surprisingly, the observed decay rate occurring after
switching off the heat is then predicted well by the observed
turbulence growth rate.

The paper is organized as follows: After the introduction,
Sec. II, we in Sec. III describe our experimental arrangement

and in Sec. IV we present our experimental results and discuss
the dynamics of the vortex tangle based on the phase portrait
using a coordinate system motivated by the general form of the
governing dynamical equation, prior to drawing conclusions in
the last section.

II. INTRODUCTION

Normal liquid 4He (He I), when cooled below the Tλ �
2.17 K, undergoes a second-order phase transition; the low-
temperature phase is known as He II. The physical properties of
He II cannot be described by classical physics; it is a quantum
fluid displaying extraordinary physical properties such as
superfluidity and the two-fluid behavior. Phenomenologically,
He II is described by the two-fluid model as consisting
of two components: (i) viscous normal fluid of density ρn,
carrying all the entropy content, and (ii) inviscid superfluid
of density ρs; the total density of He II ρ = ρn + ρs. While
at Tλ He II is entirely normal, in the zero-temperature limit
there is no normal fluid; for many practical purposes He II
can be thought of as entirely superfluid below about 1 K. In
the limit of low velocities, He II supports two independent
velocity fields vn(r,t) and vs(r,t); both components can easily
become turbulent. Due to quantum-mechanical restrictions
the otherwise potential flow of the superfluid component is
violated on line singularities—cores of singly quantized vor-
tices. Superfluid turbulence, i.e., turbulence in the superfluid
component, therefore consists of a tangle of vortices carrying
a single circulation quantum κ ≈ 9.97 × 10−8 m2/s each.

Quantum turbulence [3,21], defined as turbulence in quan-
tum fluids displaying superfluidity, was first considered as a
theoretical possibility by Feynman [22] and experimentally
studied and theoretically described by Vinen [19,23–25] in
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a peculiar thermally induced flow of He II called thermal
counterflow, which can be easily set up by applying a voltage
to a resistor (heater) located at the closed end of a channel of
cross-section area A open to a helium bath at the other end. The
heat flux Q̇ is carried away (mean velocity vn) from the heater
by the normal fluid alone, and, by conservation of mass, i.e.,
vnρn + vsρs = 0, a superfluid current (mean velocity vs) arises
in the opposite direction. In this way a relative (counterflow)
velocity vns = |vn| + |vs|, proportional to the applied heat
flux, is created along the channel. Upon exceeding a critical
value of vns, extrinsic vortex nucleation originating from the
always present remnant vorticity leads to creation of a vortex
tangle—superfluid turbulence in the superfluid component of
He II.

Vinen introduced for the description of counterflow tur-
bulence a phenomenological model based on the concept of
a random vortex tangle characterized by the approximately
homogeneous VLD, L. Apart from the size of the vortex core
ξ ∼= 10−10 m, there is only one characteristic length scale: the
quantum length scale δ ∼= L−1/2, the mean distance between
quantized vortices in the tangle. He argued that L (which is a
measurable quantity with the dimensions of length per volume)
obeys the equation of general form

dL

dt
= F (L; vns) =

(
∂L

∂t

)
prod

−
(

∂L

∂t

)
dec

; (1)

i.e., the dynamics of VLD is understood as the interplay
between two processes one of which acts to create the VLD
and the other to destroy it. With the particular form of the
production and decay terms this equation has been known as
Vinen’s equation

dL

dt
= αVvnsL

3/2 − βVL2, (2)

where αV and βV are parameters, αV being proportional to
the mutual friction parameter α tabulated in Ref. [26]. In
his original study [19] Vinen admitted that other forms of
Eq. (2) cannot be excluded and an alternative production term,
quadratic in vns, has been suggested that accounted for the
experimental observation with sufficient accuracy. For detailed
theoretical discussion of possible forms of Eq. (1) we direct
the reader to the review of Nemirovskii and Fiszdon [27].

Recently the interest in Eq. (1) describing the dynamics of
L in counterflow turbulence has been renewed and resulted
in an intense theoretical debate between the L’vov’s group
[16,17] and Nemirovskii [18]. Theoretical analysis and nu-
merical experiments based on nonhomogeneous counterflow
led Khomenko et al. [16] to suggested yet another form of
Eq. (1) and claimed that, while satisfying the quadratic L ∝ v2

ns
relation, it better describes the numerical data for a counterflow
possessing a particular artificial flow profile.

In general, the various proposed forms of the Vinen equation
can be written as

dL

dt
= Cnv

n
nsL

2−n/2 − DnL
2, (3)

where n = 1,2 for the original or alternative Vinen equation
and n = 3 for the equation of Khomenko et al. [16], and Cn,Dn

are adjustable parameters suitable for the given model. For
steady state, the equation of the form of Eq. (3) predicts that

L ∝ v2
ns regardless of the exponent n. This relation has been

experimentally verified many times not only for counterflow
turbulence (see reviews [27,28] and references to original
papers therein), but more recently also for steady state of
pure superflow in relatively wide channels with ends blocked
by superleaks allowing the net through-flow of the superfluid
component only [29].

The first theory which attempted to connect microscopic
equations of motion of a quantized vortex with the dynamics of
VLD is that of Schwarz [20,30]. It is based on the mesoscopic
picture of superfluid turbulence developed by him—the vortex
filament model [20,30,31], describing the quantized vortices as
infinitesimally thin lines with no internal structure. This model
led to successful pioneering numerical simulations (which
were later significantly advanced by several groups [32–34])
of quantum turbulence and is still in common use today
[35]. In the so-called local induction approximation (LIA)—an
approximation where the long-range interaction between the
vortices is ignored—the model leads to an analytical prediction
of the dynamical equation [20]

dL

dt
= αIlvnsL

3/2 − βαc2
2L

2, (4)

where

β = κ

4π
ln

(
1

c1L1/2ξ

)
, (5)

with ξ the vortex core size, Il one of the anisotropy indices
introduced by Schwarz [20], and c1, c2 the geometrical co-
efficients connecting the mean S̄ or rms S̃ curvature of the
vortices in the tangle with the VLD: S̄ = c1L

1/2, S̃ = c2L
1/2.

It should be noted that recent analysis [17,36] of a general
inhomogeneous counterflow in the framework of the vortex
filament model suggests that the situation might be more
complicated, with closures being necessary for new separate
fields of anisotropy or the curvature. In particular, even though
Eq. (4), as written, suggests that n = 1, the closure necessary
for, say, Il might change this. For completeness we note
that, formally, Eq. (3) with n = 1 coincides with Eq. (4) for
C1 = αIl and D1 = βαc2

2.
Several experimental works in the past have studied the

dynamics of VLD in (particularly free) decay of thermal
counterflow. These studies are complicated by the appearance
of nonmonotonic behavior (commonly called a “bump”). This
feature is presently outside the scope of this article, but is
thought to be connected with the redistribution of energy across
scales in the coupled system of normal fluid turbulence and
the vortex tangle and the formation of classical energy cascade
observed in late decay [9,10].

We believe that from the point of view of the intrinsic tangle
dynamics a more suitable approach is to study transitions be-
tween two turbulent states, especially the growth part. Growth
of VLD in a previously quiescent helium can go through
complex evolution probably connected to sudden advection of
remnant vorticies pinned to the wall [37]. Additionally, growth
from nonzero VLD does not seem to exhibit the nonmonotonic
behavior common in the decay. Lastly, the theories of VLD
dynamics should work equally well in the turbulence growth
but have received little testing in this regime [38]. Following
Schwarz and Rozen [38], our goal is therefore to experimen-
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growth

decay

vns switch

possible thermal
inertia

0

FIG. 1. Idealized sketch of the phase portrait of VLD according
to Eq. (6) for sharp changes in the heat flux. See Sec. III for the
explanation of the indicated possible thermal inertia.

tally test the proposed models of the dynamics of VLD using
transients between two well-defined turbulent states of thermal
counterflow, with the emphasis on the growth of turbulence.

In order to study the dynamics, one can compare the
experimentally observed time evolution of L(t) with the
solution of the appropriate differential equation. The solutions
to the proposed Eq. (3) are, however, very similar and difficult
to distinguish. Plus, this path a priori restricts the possible
functional forms of F in Eq. (1) with little justification. A
more direct way of studying the dynamics is to look at the
phase portrait (i.e., a set of trajectories in the phase space) of
L(t). A straightforward choice of phase space would be (L,
L̇), where the dot denotes differentiation with respect to time.
However, a slight manipulation of Eq. (3) gives us a much
simpler expression on the right-hand side:

− d

dt

(
1

�

)
= L0Dn

[(
1√
�

)n

− 1

]
, (6)

where �(t) = L(t)/L0 is a dimensionless VLD and L0 =
(Cn/Dn)n/2 v2

ns is the steady-state VLD corresponding to the
instantaneous counterflow velocity vns. Motivated by this
simple functional form we chose to work with the phase
space ( 1√

�
, − d

dt
( 1
�
)). The physical meaning of these axes is the

rate of change of the average (dimensionless) area occupied
by a vortex (intervortex spacing squared) as a function of
(dimensionless) intervortex spacing. The Schwarz equation,
Eq. (4), in these variables reads

− d

dt

(
1

�

)
= αβc2

2L0

(
1√
�

− 1

)
. (7)

An expected form of a phase trajectory of VLD according
to Eq. (6) or (7) for sharply switching counterflow velocity
between two turbulent steady states is sketched in Fig. 1.

Note that the dimensionless VLD defined as � = L/L0 is
unsuitable for free decay due to the fact that L0 = 0. For
decays we therefore define the dimensionless VLD: �̃ = L/Li

where Li is the initial VLD from which the decay starts. This
definition leads to only a small modification of Eq. (6)

− d

dt

(
1

�̃

)
= L0Dn

[(
vns

vi
ns

)n( 1√
�̃

)n

− 1

]
, (8)

Heater

FIG. 2. A sketch of the geometrical arrangement of the channel.
The figure is to scale. The counterflow is created by a resistive heater
placed at one end of the channel (left end of the channel in the figure).
The channel is positioned vertically, with the heater at the bottom,
and placed in a bath cryostat. The heater is approximately 1 cm from
the channel entrance inside a detachable small brass enclosure which
is connected to the main channel cavity and sealed against the bath
through an indium o-ring.

where vns is the instantaneous counterflow velocity and vi
ns is

the one that produced Li. In a similar way, Eq. (7) becomes

− d

dt

(
1

�̃

)
= αβc2

2L0

(
vns

vi
ns

1√
�̃

− 1

)
. (9)

In the following we drop the �̃ notation because dimension-
less growth and decay curves are never shown together.

III. EXPERIMENTAL ARRANGEMENT

The counterflow turbulence we study is set up in a brass
channel of square cross section A = 7 × 7 mm2 sketched
in Fig. 2. The channel length is approximately 21 cm. The
counterflow is generated using a resistive heater of about
50 �. During the experiments the temperature of the bath is
controlled within 0.1 mK by pumping rate of the bath in com-
bination with temperature controller; for further experimental
details, see our previous reports [29,39].

In order to study the dynamics of VLD with the afore-
mentioned methods, some sort of nonstationarity is necessary.
Additionally, the numerical differentiation of experimental
data requires strong reduction of experimental noise. We
achieve both of these goals by modulating the counterflow
velocity in a channel by a square wave; see Fig. 6. We measure
several thousands of transients which, when averaged, provide
us with sufficiently low noise data sets to allow for numerical
differentiation. The differentiation is performed either using
centered differences or using a weakly smoothing cubic spline.
Both methods gave nearly identical results, the only difference
being slightly larger noise with the centered differences. Spline
differentiation was used for all data shown in this paper.

Since the problem under study represents a strongly nonsta-
tionary flow, thorough understanding of all physical processes
triggered in the channel by switching on and off the applied
heat flux is necessary. Not all of these processes are necessarily
directly related to the dynamics of the turbulent tangle of
quantized vortices. It is useful to describe these processes by
their characteristic times, which can be estimated as follows:

(1) Kinetic characteristic time. In steady-state counterflow
in a channel Lch long, both the normal and superfluid compo-
nents of He II move, carrying kinetic energy. Neglecting the
flow generated in the bath outside the channel and the turbulent
velocity inside the channel, it takes time tkin

char to gain this kinetic
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FIG. 3. Kinetic (top panel) and thermal (bottom panel) char-
acteristic time scales given by Eqs. (11) and (13), respectively.
Dependencies for the three experimental temperatures 1.45, 1.65,
and 1.95 K are shown. The symbols indicate configurations where
experiments took place. , 1.45 K; , 1.65 K; , 1.95 K. The
time constants have been calculated for the highest heat flux in a
given experimental configuration. The highest point on a given curve
corresponds to the last point in Table I.

energy from the heater, which can be estimated from the energy
balance as

Q̇tkin
char = ρsALch

v2
s

2
+ ρnALch

v2
n

2
. (10)

Taking into account that in counterflow vs = (ρn/ρs)vn and
vn = q̇/(ρσT ), where q̇ = Q̇/A and σ denotes the entropy of
He II at temperature T , we estimate the kinetic characteristic
time as

tkin
char = ρn

2ρsρσ 2T 2
Lchq̇. (11)

Figure 3 shows tkin
char for our channel for various applied heat

fluxes at different temperatures.
(2) Thermal characteristic time. This can be estimated in

the same way as in our earlier work [40]. Let us consider a
switch of the applied heat input to the channel heater from q̇1

to q̇2. For simplicity, we assume linear temperature gradients in
steady states, ∇T1 and ∇T2, leading to temperature differences
�T1 = Lch∇T1 and �T2 = Lch∇T2, while the temperature
of the helium bath, T , remains unchanged. In a steady-state
counterflow, it is an established experimental fact that, for high
enough VLD, q̇1 = ζ (T )∇T

1/3
1 , where for any temperature

[19] ζ � constant. On the other hand, the heat that must
be either taken away or supplied between the two steady

FIG. 4. Second-sound resonance peak for different counterflow
velocities at 1.95 K, measured with sensor L2.

states, assuming that specific heat of He II c(T2) ∼= c(T1) ∼=
c(T ) = c, equals Q = 1

2cρALch|�T2 − �T1|. Differentiating
with respect to time, we get

q̇ = 1

2
cρLch ˙�T (t) = ζ (T )[�T (t)/Lch]1/3, (12)

which is easy to solve by separating the variables and finally
yields the thermal characteristic time

t th
char = 3cρ

∣∣�T
2/3

2 − �T
2/3

1

∣∣
4ζ

L
4/3
ch . (13)

Figure 3 shows calculated t th
char for all individual experimental

runs discussed in this paper. Temperature in the channel
was monitored using multiple independent thermometers; see
Ref. [37] for details.

(3) Second-sound response time t ss
char. VLD is detected by

measuring the extra attenuation of second sound caused by
scattering of normal-component thermal excitations by the
vortex lines [19]. In this work, second sound is generated
and detected simultaneously by three pairs of vibrating porous
membranes located in the walls of the channel as shown in
Fig. 2; the second sound travels across the channel, which acts
as a resonator [29,39]. An example of the second-sound reso-
nance being attenuated by the presence of quantum turbulence
is shown in Fig. 4. The attenuated amplitude of second sound
at resonance, a, is related to VLD through the equation

L = 3πρn�f

ρακ

(a0

a
− 1

)
, (14)

where a0 and �f are the amplitude and full width at half
maximum of the second-sound amplitude resonant curve for
quiescent helium, and α is the mutual friction coefficient [26].
Correct estimation of the resonant second-sound amplitudes a

and a0 is necessary to obtain the measurement of VLD. This
is a challenge for time-resolved second-sound measurements,
which are of primary interest for our purposes. The changing
attenuation is accurately reflected only if the natural second-
sound response time t ss

char of the second-sound resonator (on the
order of the product of the time in which second sound crosses
the width of the channel and the time-dependent quality factor
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FIG. 5. Steady-state VLD as a function of the counterflow ve-
locity. Filled symbols are measured using second-sound sensor L1,
empty using sensor L2; see Fig. 2. , –1.45 K; , –1.65; ,

–1.95 K.

of the resonant peak) is sufficiently short—in our experiment
on the order of 10 ms (for attenuated peaks). Moreover, the
time-dependent measurements (such as generation and decay)
are usually accomplished by tuning the excitation frequency
and measuring the second-sound amplitude directly, for exam-
ple as the in-phase component measured by a lock-in amplifier.
This is not possible in our long channel, due to significant
temperature shifts caused by the presence of the temperature
gradient naturally associated with thermal counterflow. We
overcome this difficulty using a postprocessing technique,
described in our previous publication [37], which calculates
the resonant amplitude from slightly off-resonant real and
imaginary components of the complex amplitude measured
with a lock-in amplifier. Another option could have been the
resonance-tracking technique recently developed by Yang et al.
[41]. We opted not to use this technique due to concerns about
about resolving fast transients in a system that continually
adjusts its excitation frequency.

Estimated times tkin
char, t th

char, and t ss
char are generally rather

short, on the order of the time constant of the lock-in amplifier
(10 ms in our case) which in turn must be chosen based on the
frequency and quality factor of the second-sound resonance
used for direct measurement of the VLD in the channel.
The processes described above ought to work simultaneously
and in parallel. The actual limitation to the experiment is
therefore given roughly by the longest time constant (i.e.,
the slowest process) for a given experimental configuration.
In our case this is always less than 60 ms—meaning that, in
general, measurements of the VLD in the first 60 ms after a
transient in the heat flux might be affected by processes that
are not interesting from the point of view of the intrinsic tangle
dynamics.

In practice, the X and Y components of all three lock-ins
(for the three second-sound sensors) and the power dissipated
by the counterflow heater are all sampled simultaneously by a
multichannel digital-to-analog converter at a fixed rate of 100
points per second. The data measured with sensors L1 and L2
are generally very similar and the results reported below are

FIG. 6. Illustration of the time dependence of the VLD in mod-
ulated counterflow. The displayed case is for 1.95 K and 2 s pulse
width, and modulation depth is roughly between densities of 5 × 105

and 106 cm−2. The sharp square wave shows the time dependence of
the applied heater power (with values on the right y axis). The two
experimental curves show measured vortex line density with sensor
L1 (higher; blue color) and L2 (lower; orange color) with values on
the left y axis.

measured with L1. Sensor L3 displayed much higher noise and
was generally not used.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Vortex line density obtained in the steady state measured
using the full resonance peak is shown in Fig. 5. The observed
relationship between VLD and counterflow velocity obeys

FIG. 7. Averaged growth of the VLD during a heat pulse for
different pulse widths. Shown are 0.2, 0.5, 1, and 2 s pulse widths.
Temperature was 1.45 K and the heat flux was pulsed between
266 mW and 0. Heat flux 266 mW corresponds to a steady-state
VLD of about 106 cm−2. The standard deviation of the average is
not visible on the scale shown. The rising edge of the counterflow
velocity (width of the edge of the heat flux is about 300 μs; the VLD
is measured every 10 ms) is used as the time origin.
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FIG. 8. Full phase portrait obtained from the pulsed heat flux. The
data are the same as in Fig. 7: , 2 s pulse; , 1 s; , 0.5 s; , 0.2
s. The inset shows the detail of the behavior near the “bump”. While
the growth of the VLD is hardly affected by the pulse width, decay
can be affected quite strongly.

the expected L = γ 2v2
ns with γ coefficients approximately

129, 141, and 186 s/cm2 for 1.45 K, 1.65 K, and 1.95 K,
respectively. The values for 1.45 K and 1.65 K are within about
10% of values reported in the literature [29] whereas the 1.95 K
case is either about 30% too low or within the expected range,
depending on the data set with which one compares.

The dynamics of the VLD, however, cannot be studied
using the properties of the steady state. In order to study
the dynamical properties of the tangle we do not allow the
tangle to settle to a constant value of the VLD. To achieve
this in a controlled fashion we use a square-wave modulated
counterflow, an example of which is shown in Fig. 6. Several
thousands of the pulses have been measured and the results,

FIG. 9. Growth phase trajectory for sparse ( , modulation of
VLD between 0 and 105 cm−2) and dense ( , modulation between
105 and 106 cm−2) tangle at 1.45 K. Lines are fits of Eq. (6) with
dashed line n = 1, dash-dotted line n = 2, and dotted line n = 3. For
the sparse tangle all fits are adequate (fits for different n essentially
overlap); for the dense tangle all models provide a poor description.
For the fit, only � ∈ [1,1.2] are used.

FIG. 10. Phase portrait of the VLD growth dynamics. The dashed
lines coinciding with the experimental data for 1/

√
� = 1 are predic-

tions according to simulations of Schwarz [20]. The curves and the
theoretical predictions are offset for clarity. We emphasize that no
fitting was used in comparison of the numerical prediction with the
experiment. Temperatures (top to bottom): 1.45, 1.65, and 1.95 K.
VLDs high and low are increasing for the curves going from bottom
to top; see Table I for details about the data sets. The y-axis offset
increment is 2 in the units of the axis.

when averaged, are illustrated in Fig. 7. Attempting to fit
these time dependencies using solutions to one of the expected
dynamical equations bears little fruit. The solutions are, indeed,
very similar and all can be said to provide an adequate fit.

In order to study the dynamics of the VLD more directly we
look at its phase portrait using a coordinate system motivated
by Eq. (7). A particular case for 1.45 K (the same data as in
Fig. 7) and several different pulse widths is shown in Fig. 8. As
can be expected already from Fig. 7, the dynamics of the VLD
growth are unaffected by the pulse width; however, the decay
can be quite different. The VLD alone, in general, is unsuitable
for the description of the decay due to the nonmonotonic
behavior usually referred to as the “bump” (seen as the small
loop in the decaying part of a phase trajectory). Nonmonotonic
behavior cannot be modeled by a one-dimensional dynamical
system. The physical origin of the bump is beyond the scope
of this article but is thought to be connected to the existence of
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TABLE I. Experimental data sets shown in Figs. 10 and 12. The pulse width for the displayed cases was 2 s except for 1.45 K where it was
1 s (marked ∗ near the symbol), 0.5 s (marked ∗∗), or 2 s for all other cases. The numbers shown are in the format Xhigh/Xlow; the “high” and
“low” subscripts correspond to the square-wave modulated heat flux being in the higher or lower state. For counterflow velocity vns, the average
across the entire duration of the pulse is shown. For L, Lhigh is the VLD 10 ms before the heat pulse is switched to the lower state and Llow

corresponds to to the overall minimum. Ensemble averaging is used to calculate the Lhigh and Llow and the standard deviation of this average is
shown as the error. The two lines of the VLD correspond to second-sound sensors L1 and L2 (see Fig. 2).

Nominal VLD 1.45 K 1.65 K 1.95 K

105/0 symbol
vns (cm/s) 2.4/0.0 2.5/0.0
actual L 79 ± 2.7/19 ± 2.9 74 ± 3.6/7.9 ± 2.8

(103 cm−2) 64 ± 6.8/13 ± 6.6 82 ± 1.4/16 ± 1.5

105/104 symbol
vns (cm/s) 2.4/0.4 2.5/0.8 1.8/0.5
actual L 79 ± 2.4/19 ± 2.5 75 ± 3.3/13 ± 3.0 97 ± 1.9/7.5 ± 2.5

(103 cm−2) 65 ± 7.1/16 ± 7.0 83 ± 3.3/15 ± 3.2 85 ± 2.2/5.0 ± 3.1

5 × 105/105 symbol
vns (cm/s) 4.3/1.8
actual L 54 ± 0.39/10 ± 0.67

(104 cm−2) 48 ± 0.39/8.5 ± 0.47

106/0 symbol **
vns (cm/s) 8.4/0.0 8.3/0.0 6.1/0.0
actual L 97 ± 0.47/11 ± 0.34 83 ± 0.25/1.3 ± 0.22 100 ± 0.52/1.8 ± 0.52

(104 cm−2) 96 ± 2.4/13 ± 0.70 100 ± 0.26/2.0 ± 0.18 99 ± 0.49/1.7 ± 0.45

106/104 symbol
vns (cm/s) 8.4/0.4 8.3/0.8 6.1/0.5
actual L 99 ± 0.82/5.7 ± 0.34 83 ± 0.34/1.5 ± 0.28 100 ± 0.42/0.61 ± 0.47

(104 cm−2) 98 ± 2.3/6.3 ± 0.65 100 ± 0.62/0.91 ± 0.26 98 ± 0.58/0.96 ± 0.62

106/105 symbol
vns (cm/s) 8.4/2.4 8.3/2.5
actual L 99 ± 0.48/9.2 ± 0.21 83 ± 0.20/7.6 ± 0.13

(104 cm−2) 98 ± 2.4/8.7 ± 0.63 100 ± 0.37/7.3 ± 0.20

106/5 × 105 symbol
vns (cm/s) 6.1/4.3
actual L 100 ± 0.35/53 ± 0.43

(104 cm−2) 100 ± 0.73/48 ± 0.64

energy at large scales in quantum turbulence [9,10]. Note that
the VLD is sampled at a rate of 100 points/s; i.e., all points are
equidistant in time and separated by 10 ms. The first five or six
points after a transient might be affected by parasitic effects;
see Sec. III. From now on, the first 50 ms of the growth phase
trajectories are never shown. Decay trajectories will be shown
in full.

Looking at the phase trajectories of two particular cases of
high and low VLD transients from 1.45 K in Fig. 9 we imme-
diately see that trying to decide between the different forms of
the Vinen equation Eq. (3), in particular which exponent from
the three proposed models of n = 1,2,3 best describes the data,
is an ill-posed question. The behavior of these functions is very
similar and for sparse tangles the fits are adequate regardless of
the exponent. For dense tangles, none of the models provides
a good description. In the following, we chose to base most of
our interpretation on the model of Schwarz (and assuming that
n = 1) since that is the simplest currently available theory that
connects the microscopic physics of the motion of the vortices
with macroscopic VLD dynamics.

The growth part of the phase portrait for different modulated
flows is shown in Fig. 10 (see Table I for classification of all

data sets in Fig. 10). As a point of reference, we compare
our experimental data with numerical simulations obtained
by Schwarz [20] expressed through Eq. (7). The numerical
values of the coefficient c2 for the experimental temperatures
have been obtained by cubic spline interpolation of the data
published in Ref. [20]. We observe that the agreement between
the experimental data and simulations, with no adjustable
parameters, is nearly perfect for tangles with relatively low
VLD. The measured approach to the steady state, however,
is significantly less steep for dense tangles. As a way to
capture this behavior quantitatively we allow the geometric
coefficient c2 to vary with VLD. The c2 coefficient as a function
of intervortex distance obtained from these growth curves is
shown in Fig. 11. A sharp increase in c2 is seen for the 1.65 K
and, to a lesser extent, for 1.95 K, for small tangle densities.
For these cases, small oscillations in L are observed (visible
also in Fig. 10), especially early after the transient (not shown
in Fig 10), probably related to temperature instability and
nonideal second-sound resonance. In the first 50 ms after the
transient (which are not used for analysis; these points are
not shown) a sharp swing to smaller c2 is seen. Therefore we
regard these points as experimental artifacts [43]. It should also
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FIG. 11. Effective coefficients c2 as a function of the mean
intervortex distance. , 1.45 K; , 1.65 K; , 1.95 K. The horizontal
full lines show c2 interpolated for experimental temperatures from
values calculated by Schwarz [20] corresponding to 1.45, 1.65, and
1.95 K (top to bottom). The dashed lines are least squares fits to
Eq. (15). Black dash-dotted lines on the right: numerical simulations
of a vortex tangle with uniform normal fluid, synthetic turbulence, and
frozen Navier-Stokes turbulence in normal fluid, respectively from top
to bottom, from Ref. [42]. See text for estimation of c2 from average
curvature. Dotted lines on the right: c2 from Ref. [34] for 1.3 K, 1.6 K,
and 1.9 K (top to bottom). Lines from Ref. [42] and Ref. [34] terminate
at the minimum intervortex distance that these simulations achieved
(except for the top dashed 1.3 K case, where the intervortex spacing
was 125 μm). The tendency of the experimental points to rise for
small vortex line densities is most likely an experimental artifact; see
text for discussion.

be noted that for simplicity, we neglected the changes in c1 in
the logarithmic correction given by Eq. (5) and simply used
the values obtained by Schawrz [20,44]

Physically, it is tempting to keep the original interpretation
of c2 as a way to measure the rms curvature of the tangle.
However, the dynamical equation that leads to the calculation
of c2 from the experimental data was an approximation for
relatively sparse tangles (so that the local-induction approx-
imation is sufficient) and for only quasistationary processes.
It should be noted though that systematic numerical studies
[34] have shown that scaling of tangle rms curvature with the
VLD remains valid even when the nonlocal full Biot-Savart
interaction is taken into account. These simulations yielded
c2’s which are somewhat higher than those predicted by [20]
but roughly within the range of the experimental values, except
for their lowest 1.3 K. The comparison with c2’s from [34]
(average of values for different reconnecting algorithms) is
shown in Fig. 11. No decrease of c2 with increasing VLD
has been observed in simulations of steady-state counterflow
with uniform normal fluid velocity; however, two numerical
experiments observed changes in the tangle curvature which
could be said to be in agreement with our experimental
findings: (i) at fairly low temperatures, Kondaurova et al. [45]
observed that in freely decaying turbulence c2 increases as the
VLD decreases, and (ii) simulations which used quasiturbulent
normal fluid velocity field [42] (either synthetic turbulence or a

TABLE II. Adjustable parameters of the expression Eq. (15) for
the empirical c2.

Temperature (K) φ (cm) ϑ (cm) C

1.45 1.49 × 10−3 6.54 × 10−4 1.85
1.65 1.82 × 10−3 7.46 × 10−4 1.83
1.95 1.66 × 10−3 5.03 × 10−4 0.95

stationary “frozen” snapshot of a DNS simulation of classical
turbulence at one temperature 1.95 K and one steady VLD of
about 2 × 104 cm−2) have demonstrated marked decrease in
average curvature compared to the uniform case. Data in [42]
are reported in terms of mean curvature S̄. In order to transform
them to rms curvature S̃ we use the estimate of Kondaurova
et al. [34] S̃ = S̄

√
3/2 which is then used to calculate c2 using

the reported VLD. The result is also shown in Fig. 11. If we
were to take the decrease in c2 as an empirical fact, it would be
an interesting question whether the main cause is the normal
fluid turbulence or the high tangle density. One possibility of
shedding some light on this issue is to repeat the experiments in
a mechanically generated counterflow (pure superflow) [39],
where the normal component should be on average at rest.
These experiments are planned in our laboratory.

One should bear in mind that the numerical simulations
can as yet achieve only relatively low VLD (on the order
of 104 cm−2, i.e., about 10 times lower than our present
smallest experimental VLD), where it is challenging to ob-
tain experimental data with sufficiently low noise to allow
differentiation. In addition, the simple models Eq. (3) or (4)
introduced earlier assume homogeneous counterflow and an
unbound system (although there have been fruitful attempts
[16,36] to capture inhomogeneity by introducing a flux term
in the dynamical equation). Thermal counterflow is known
to be somewhat inhomogeneous, both from experiments [7]
and simulations [46], especially at relatively low counterflow
velocities in wall-bounded setups. However, the inhomoge-
neous turbulence observed in Ref. [7] referred to a low-velocity
state (less than about 0.8 cm/s in their system), whereas for
the velocities more typically used in our experiments mostly
statistically homogeneous turbulence in the normal fluid was
observed. Furthermore, the curvature in Ref. [46], except for
very near the wall, was observed to be almost homogeneous.
Lastly, in our reported tangles the typical intervortex spacing
is 0.01–0.1 mm (0.01–0.03 mm for the more dense states),
which, even in the worst case, is separated from the size of
the system (7 mm) by nearly two orders of magnitude. We
therefore consider finite-size effects to play little role in our
experimental data. It should also be noted that due to the
nature of second-sound attenuation measurements, the value
of the VLD measured is an average over a volume of about
0.3 cm3 (7 mm cubed) and over a time interval of about
10 ms (the time constant of the lock-in amplifier); therefore
we do not have access to local information. One way to probe
tangle inhomogeneity would be to use low-lying modes of the
second-sound resonator [47]; however, this was not possible in
the current work and all the resonances used were higher than
the 10th harmonic, which measures the VLD uniformly across
the channel.
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FIG. 12. Phase portrait of the decaying turbulence. Shown with the data are also theoretical predictions using c2 coefficients either from
Schwarz [20] (dash-dotted lines) or obtained from the fit of the experimental data (dashed lines). Temperatures are (top to bottom) 1.45 K,
1.65 K, and 1.95 K. The y-axis offset increment is 100 in the units of the axis. List of shown data sets is in Table I. Left: Smaller transients
for which nominal Lhigh/Llow � 100 or Lhigh = 105 cm−2. Right: Larger transients for which nominal Lhigh/Llow � 100 and Lhigh = 106 cm−2.
For 1.95 K, very early after switching the heat flux, it is very challenging to compensate for the resulting shifts in the second-sound resonance,
hence the disruptions in the decay curves; see the shift in Fig. 4.

For simplicity of handling the empirical c2 in the subsequent
analysis we approximate the experimental data with a simple
formula

c2
2(δ) = C

[
1 + tanh

(
δ − φ

ϑ

)]
, (15)

where δ = 1/
√

L is the intervortex spacing and C,φ,ϑ are
adjustable parameters. The reason for this particular functional
form is simply convenience and the fact that c2

2 > 0 by
definition. The function parameters obtained by nonlinear least
squares fitting are given in Table II.

Even though we a priori accept that the VLD dynamical
equations are in general unsuitable for the description of
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the decay, it is interesting to compare the phase trajectory
of the decaying turbulence with the prediction based on the
dynamical equation; see Fig. 12. Using the c2 coefficients
calculated by Schwarz (dot-dashed lines) we obtain reasonable
agreement in decay rate for sparse tangles but a very gross
mismatch for denser tangles, where the actual decay rate is
much smaller (in absolute value) than predicted. However,
using the (variable) empirical c2 coefficients obtained from
the growth brings the decay rate much closer to reality and
even reproduces some qualitative features. Agreement is good
even for the very dense tangles and becomes worse only for the
free (no residual vns) or nearly free (small residual vns) decay
from very high density. Moreover, the initial decay rate for all
tangles is estimated to a high degree of accuracy. The slow
initial decay rate has usually been explained using the residual
heat flux due to thermal RC time constant [i.e., Eq. (13)]. These
results suggest that the importance of the thermal time constant
for the tangle dynamics may have been overstated.

V. CONCLUSIONS

The vortex tangle in quantum turbulence is a very complex
system and as such vortex line density, and its dynamics,
alone provide only a very coarse description. However, due
to the simplicity and time-tested reliability of second-sound
measurements and the existence of relatively simple theories of
VLD dynamics in a homogeneous counterflow it is important
to establish the boundaries within which the description of
superfluid turbulence using just the VLD is sufficient, how, if at
all, the straightforward ideas about tangle motions relate to the
experimental reality, and in what way the line-density-centric
description of quantum turbulence breaks down.

With these goals in mind we studied thermal counterflow in
a channel in a situation where the turbulence is not allowed to
settle, in a controlled way, to a statistical steady state. This we
achieved by modulating the counterflow velocity in the channel
by a square wave. The large number of turbulent transients
thus obtained allows us not only to study the time evolution of
the VLD but also to focus on the dynamics of the VLD more
directly using its phase portrait, a common tool for studying
dynamical systems.

We find that for small overall tangle densities all proposed
forms of Eq. (3) provide adequate description. For higher
densities, across all temperatures, these forms of the dynamical
equation cannot account for the significant slow-down in tangle
growth rate as the steady state is approached (Fig. 10). A
possible approach to the description of this problem is to
allow the geometrical coefficient c2, connecting rms curvature
of quantized vortices and the VLD, to depend on the VLD.
Calculating c2 using the theory of Schwarz [20], Eq. (7),
we find (see Fig. 11) that c2 is close to the value expected
from numerical simulations for relatively sparse tangles but
decreases markedly for densities L > 5 × 105 cm−2. This is
also in accord with the observed decrease in curvature, which
was found in numerical simulations of thermal counterflow in
the presence of classical turbulence in the normal fluid [42].

An important and striking observation is that even for large
counterflow velocities and dense tangles, where the phase
portrait does not have a form predicted by Eq. (6), the decay
rate occurring after the falling edge of the heat flux is predicted
well by the turbulence growth by using the effective estimated
parameter c2, as shown in Fig. 12.

It is our hope that we have demonstrated the utility and
power of looking at the behavior of the VLD from the point
of view of dynamical systems. Specifically, second-sound
measurements of the growth of turbulence might provide us
with a way to measure mean curvature of the tangle. The
observed dynamics are complex, but we believe that further
study following this line could provide deeper understanding
of the tangle dynamics even in highly turbulent cases. More
measurements, especially at higher temperatures closer to the
lambda point and other types of quantum flows, are, however,
clearly needed.
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