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Odd-frequency pairing and Kerr effect in the heavy-fermion superconductor UPt3
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We study the emergence of odd-frequency superconducting pairing in UPt3. Starting from a tight-binding
model accounting for the nonsymmorphic crystal symmetry of UPt3 and assuming an order parameter in the
E2u representation, we demonstrate that odd-frequency pairing arises very generally, as soon as intersublattice
hopping or spin-orbit coupling is present. We also show that in the low temperature superconducting B phase,
the presence of a chiral order parameter together with spin-orbit coupling, leads to additional odd-frequency pair
amplitudes not present in the A or C phases. Furthermore, we show that a finite Kerr rotation in the B phase is
only present if odd-ω pairing also exists.
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I. INTRODUCTION

The heavy-fermion material UPt3 has a truly unconven-
tional superconducting phase diagram, possessing two zero-
field superconducting phases, the A phase and the B phase,
with critical temperatures Tc,+ ≈ 550 mK and Tc,− ≈ 500 mK
[1,2], respectively. Additionally, a third phase, the C phase,
emerges at high magnetic field [3]. Knight shift observations
point to a spin-triplet superconducting order parameter [4].
Josephson interferometry has revealed the presence of line
nodes in the A phase [5], as well as the onset of a complex order
parameter in the B phase [5,6]. Recently, measurements of the
Kerr effect have also demonstrated time-reversal symmetry
breaking in the B phase [7]. These observations appear to
be consistent with a gap belonging to the E2u representation
[2,5,6,8]. Furthermore, recent work considering the nonsym-
morphic crystal structure [9,10] suggested that the measured
value of the Kerr rotation is related to the presence of a
nonunitary linear combination of f -wave and d-wave pairing
in the B phase [11].

It is well known that the fermionic nature of electrons tightly
constrains the allowed symmetries of the superconducting gap
function. Specifically, in the limit of equal-time pairing and
a single-component gap, spatially even-parity gap functions
(like the s or d wave) must correspond to spin-singlet states,
while odd-parity gap functions (p or f wave) must correspond
to spin-triplet states. However, if the electrons comprising the
condensate are paired at unequal times the superconducting
gap can be odd in time, or equivalently, odd in frequency (odd-
ω). In that case the condensate can be even in spatial parity
and spin-triplet or odd-parity and spin-singlet. This possibility,
originally posited for 3He by Berezinskii [12] and then later
for superconductivity [13–15], is intriguing both because of the
unconventional symmetries which it permits and for the fact
that it represents a class of hidden order due to the vanishing
of all equal time correlations.

While the thermodynamic stability of intrinsically odd-ω
phases is, so far, only discussed as a theoretical possibility
[16–23], significant progress has been made understanding
systems with conventional superconductors in which odd-ω
pairing can be induced by altering the native superconducting
correlations [24–42]. Well-established examples can be found

in ferromagnet-superconductor junctions [24–30] in which
experiments have recently observed key signatures of odd-ω
pair correlations [43,44]. For a modern review of this field see
Ref. [45].

Another intriguing possibility for odd-ω superconductivity
can be found in multiband superconductors in which it has
been shown that odd-ω pairing is ubiquitously induced in the
presence of interband hybridization [46–49]. As an illustrative
example, if we consider a generic two-band model: H =
ξ1ψ

†
1ψ1 + ξ2ψ

†
2ψ2 + �1ψ

†
1ψ

†
1 + �2ψ

†
2ψ

†
2 + H.c., the addi-

tion of any finite hybridization term of the form �ψ
†
1ψ2 induces

odd-ω interband pairing proportional to the difference of the
two gaps, ∼ω�(�1 − �2) [46,49]. An interband hybridization
of this form is intrinsic to the superconductor whenever
there is a mismatch between the orbital character of the
Cooper pairs and that of the quasiparticles of the normal
state, or alternatively, it can arise from scattering processes
in the presence of disorder [47,48]. In contrast to other
known mechanisms for realizing odd-ω pairing which employ
superconductor heterostructures, multiband superconductors
allow for the generation of odd-ω pair amplitudes in the bulk,
without breaking either spatial translation or time-reversal
symmetry. With many known multiband superconductors with
highly unconventional features, such as Sr2RuO4,[50,51] iron-
based superconductors [52,53–56], MgB2 [57–61], and UPt3

[1–3,5,6], it remains a very interesting question how much odd-
ω superconductivity contributes to their physical properties.

It was recently shown that the multiband superconductor
Sr2RuO4 hosts odd-ω pairing due to the finite hybridization
between the different orbitals in the normal state [48]. At
the same time it was shown that the conditions leading
to the observation of a finite Kerr rotation angle also guarantee
the emergence of odd-ω pairing. Since the Kerr effect has
been observed in Sr2RuO4 [62], this directly implies that
Sr2RuO4 hosts odd-ω pair amplitudes. The Kerr effect has
also been observed in the multiband superconductor UPt3 [7];
however, while Sr2RuO4 is a relatively simple system assumed
to possess a p-wave order parameter, the gap structure in UPt3

is thought to be primarily f wave and likely with additional
character. Given that the Kerr rotation angle is known to be
highly sensitive to system-specific details, such as the existence
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FIG. 1. Schematic depiction of the locations of the U atoms in the
AB-stacked hexagonal lattice of UPt3 with vectors in the basal plane
labeled ei and intersublattice vectors labeled ri .

of interband transitions [63–65] or the presence of disorder [66]
the observation of a finite Kerr rotation angle in UPt3 cannot
simply be presumed to imply the presence of odd-ω pairing
also in this material. The purpose of this work is therefore
to elucidate the possibility of odd-ω pairing channels in UPt3

and, if possible, connect these to the Kerr effect found in the
B phase of UPt3.

In this work we use a tight-binding model, which, while
simple enough to allow for analytical results, captures the 5f

states on the U atoms, the main Fermi surfaces, and explicitly
takes into account the nonsymmorphic symmetry of the lattice.
Adhering to the bulk of experimental results we further assume
spin-triplet pairing within the E2u irreducible representation.
By calculating the full anomalous Green’s function we are
able to extract all possible odd-ω pairing amplitudes in UPt3.
We find that as soon as intersublattice hopping is present, i.e.,
out-of-plane nearest neighbor U-U hopping, intrasublattice
odd-ω pairing emerges in all three superconducting phases of
UPt3. For finite spin-orbit coupling, we find that intersublattice
odd-ω pairing is also always present in all three phases. In the B

phase we find additional inter and intrasublattice odd-ω pairing
due to spin-orbit coupling and the nonunitary order parameter.
We furthermore compare the criteria for the existence of odd-ω
pairing and finite Kerr effect, as experimentally measured in
the B phase of UPt3. We are able show that the conditions
needed for a finite Kerr rotation angle automatically lead to
odd-frequency pairing. Thus, the finite Kerr effect measured
in the B phase serves as experimental evidence for odd-ω
superconductivity in UPt3.

The remainder of this article is organized as follows. In
Sec. II we introduce the model used to describe the electronic
properties of UPt3 and discuss the assumptions used to solve
it analytically. In Sec. III we perform our analysis of the
symmetries exhibited by the anomalous Green’s functions,
finding the conditions under which odd-ω pairing is expected
to emerge in UPt3. In Sec. IV we compare these conditions
to previous theoretical work characterizing the Kerr effect in
UPt3. In Sec. V we conclude our study.

II. MODEL

In Fig. 1 we show the three-dimensional (3D) crystal struc-
ture of UPt3 with the U ions (blue spheres) formingAB-stacked
layered triangular lattices with basal plane lattice vectors

given by: e1 = (1,0,0), e2 = (− 1
2 ,

√
3

2 ,0), e3 = (− 1
2 , −

√
3

2 ,0)
and intersublattice vectors given by: r1 = ( 1

2 , 1
2
√

3
, 1

2 ), r2 =
(− 1

2 , 1
2
√

3
, 1

2 ), and r3 = (0, − 1√
3
, 1

2 ). The Pt ions (omitted for
simplicity) are located between each of the nearest-neighbor U
ions. To model the electronic properties of UPt3 near the Fermi
level we focus on the itinerant 5f electrons originating from
the U atoms. Motivated by previous work we assume the same
tight-binding Bogoliubov–de Gennes Hamiltonian [9–11]

H =
∑

k,m,σ

ξkc
†
kmσ ckmσ +

∑
k,σ

[εkc
†
k1σ ck2σ + H.c.]

+
∑

k,m,m′,σ,σ ′
gkτ

z
mm′ ⊗ σ z

σσ ′c
†
kmσ ckm′σ ′

+ 1

2

∑
k,m,m′,σ,σ ′

[�mm′,σσ ′(k)c†kmσ c
†
−km′σ ′ + H.c.], (1)

where c
†
kmσ (ckmσ ) creates (annihilates) a fermionic quasipar-

ticle with crystal momentum k, on sublattice m = {1,2}, and
with spin σ = {↑ , ↓}. The intrasublattice hopping terms are
given by ξk = 2t

∑
i cos k|| · ei + 2tz cos kz − μ, with k|| ≡

(kx,ky,0), which is manifestly even in k. The intersublattice
hopping terms are given by εk = 2t ′ cos kz

2

∑
i e

ik|| ·ri , which is,
in general, complex with Re{εk} even in k, while Im{εk} is odd
in k. The Kane-Mele-like spin-orbit coupling is described by
gk = α

∑
i sin k|| · ei which is clearly odd in k. Following the

same conventions, a general superconducting order parameter
is written as �mm′,σσ ′(k). As is widely done, we assume an
order parameter within the E2u irreducible representation and
with spin-triplet mz = 0 pairing [2,9,67].

Quantum oscillation measurements employing the de Haas–
van Alphen effect [68,69] combined with first-principles calcu-
lations [8,67,70–72] revealed several Fermi surfaces in UPt3:
two Fermi surfaces at the A point, the so-called “starfish” and
“octopus”; three Fermi surfaces at the �-point, the “oyster,”
“mussel,” and “pearl”; and also relatively small Fermi surfaces
at the K-points, the “urchins.” The Hamiltonian in Eq. (1)
can reproduce the topology of the Fermi surfaces appear-
ing at the � point using the parameters [9] (t,tz,t ′,α,μ) =
(1,4,1,0,16), see Figs. 2(a) and 2(b). This same model can
also reproduce the topology of the “starfish” Fermi surface
appearing at the A point, using a different set of parameters
[9] (t,tz,t ′,α,μ) = (1, − 4,1,2,12), see Figs. 2(c) and 2(d).
Therefore, the intersublattice hybridization as described by the
Hamiltonian in Eq. (1) is necessarily appreciable at both � and
A, while the spin-orbit coupling is only relevant at A due to
its k dependence. In what follows, we derive general results
without assuming a particular set of values for these parameters
and proceed to discuss the implications considering the sets of
parameters associated with the Fermi surfaces appearing at A

and � separately.
In general, a superconducting order parameter belonging to

the E2u irreducible representation, as widely assumed for UPt3,
may be written as �̂(k) = η1�̂1(k) + η2�̂2(k) where �̂i(k) are
basis functions and ηi are complex numbers parameterizing the
phase diagram [2,8,9,67]. Previous analyses using Ginzburg-
Landau theory demonstrated that the minimum energy solution
may be parameterized by a single real number, η, such that

064505-2



ODD-FREQUENCY PAIRING AND KERR EFFECT IN THE … PHYSICAL REVIEW B 97, 064505 (2018)

FIG. 2. (a) Fermi surface of UPt3 shown within the 3D Brillouin
zone (hexagonal frame) plotted using the Hamiltonian in Eq. (1) with
parameters (t,tz,t ′,α,μ) = (1,4,1,0,16) to reproduce the topology of
the Fermi surface near the � point. (b) A 2D cross-section of the
Fermi surface shown in (a) for kz = 0. (c) Same as (a) except using
different parameters, (t,tz,t ′,α,μ) = (1, − 4,1,2,12), to reproduce
the topology of the Fermi surface at the A point. (d) A 2D cross-section
of the Fermi surface shown in (c) for kz = π .

(η1,η2) = �0(1,iη)/
√

1 + η2, where in the A phase η = ∞,
in the B phase 0 < η < ∞, and in the C phase η = 0 [2,9,67].
Following recent work [8,9,11], we use basis functions that
explicitly account for the symmetries of the lattice, which have
been shown [9] to give rise to a linear combination of p-wave,
d-wave, and f -wave symmetries:

�̂1(k) = [δ{px(k)σx ⊗ τ 0 − py(k)σy ⊗ τ 0}
+ f(x2−y2)z(k)σ z ⊗ τ x − dyz(k)σ z ⊗ τ y]iσ y,

�̂2(k) = [δ{py(k)σx ⊗ τ 0 + px(k)σy ⊗ τ 0}
+ fxyz(k)σ z ⊗ τ x − dxz(k)σ z ⊗ τ y]iσ y, (2)

where δ is a small parameter associated with a weak p-wave
component [9], while σ i and τ i are Pauli matrices in the
spin and sublattice spaces, respectively. Notice the unusual
combination of spin-triplet f -wave terms being odd in spatial
parity and spin-triplet d-wave terms being even in parity.
This combination is caused by the nonsymmorphic lattice
symmetry. Note that these terms still satisfy the constraints
imposed by Fermi-Dirac statistics on the Cooper pairs since
the f -wave terms are even in the sublattice index while the
d-wave terms are odd in the sublattice index. From Eq. (2) we
can see that, in the absence of the p-wave component, the order
parameter is completely off-diagonal in sublattice space.

To reduce the complexity of the problem we first neglect
the p-wave component by setting δ = 0. This term has by far
the smallest contribution and as an intrasublattice term we do
not expect it to interfere significantly with any potential odd-
ω pairing originating from the intersublattice channels. This

also allows us to make direct contact with previously derived
expressions for the Kerr effect in UPt3 which also used δ = 0.
In this case, the Hamiltonian in Eq. (1) breaks down into the
following two decoupled sectors [11]

H = Ha + Hb

= 1

2

∑
k

[�†
a,kĤa(k)�a,k + �

†
b,kĤb(k)�b,k], (3)

where

Ĥa(k) =

⎛
⎜⎜⎜⎝

ξk + gk εk 0 �12(k)

ε∗
k ξk − gk �21(k) 0

0 �∗
21(k) −ξk − gk −εk

�∗
12(k) 0 −ε∗

k −ξk + gk

⎞
⎟⎟⎟⎠,

(4)

Ĥb(k) =

⎛
⎜⎜⎜⎝

ξk − gk εk 0 �12(k)

ε∗
k ξk + gk �21(k) 0

0 �∗
21(k) −ξk + gk −εk

�∗
12(k) 0 −ε∗

k −ξk − gk

⎞
⎟⎟⎟⎠

(5)

and the gap functions take the form

�12(k) = fk + idk, �21(k) = fk − idk, (6)

with

fk = η1f(x2−y2)z(k) + η2fxyz(k),

dk = η1dyz(k) + η2dxz(k), (7)

and all expressed with the bases defined by

�
†
a,k = (c†k1↑ c

†
k2↑ c−k1↓ c−k2↓),

�
†
b,k = (c†k1↓ c

†
k2↓ c−k1↑ c−k2↑). (8)

Notice that the two 4 × 4 Hamiltonian matrices are nearly
identical, they are related by simply changing the sign of the
spin-orbit coupling gk. Therefore, without loss of generality,
for the remainder of this article, we focus on just Ha and note
that the results for Hb may be obtained by taking α → −α.

III. PAIR SYMMETRY CLASSIFICATION

We begin our discussion by defining both the normal
Green’s function G and the anomalous Green’s function F

in terms of the creation and annihilation operators in Eq. (1):

Gmm′,σσ ′(k; τ ) = −〈Tτ ckmσ (τ )c†km′σ ′(0)〉,
Fmm′,σσ ′(k; τ ) = −〈Tτ ckmσ (τ )c−km′σ ′(0)〉, (9)

where τ is the imaginary time and Tτ is the usual τ -ordering
operator for fermions. The pair symmetry of UPt3 can be
determined by studying the anomalous Green’s function F .

Using the Hamiltonian matrix in Eq. (4) it is straightforward
to find the Matsubara representation of the total Green’s
functions from

Ĝa(k; iωn) = [iωn − Ĥa(k)]−1, (10)
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where ωn = π (2n + 1)/β is a Matsubara frequency for inverse
temperature β. Here Ĝa(k; iωn) is a 4 × 4 matrix with compo-
nents given by

Ĝa =

⎛
⎜⎜⎜⎝

G11,↑↑ G12,↑↑ F11,↑↓ F12,↑↓
G21,↑↑ G22,↑↑ F21,↑↓ F22,↑↓
−F ∗

11,↓↑ −F ∗
12,↓↑ −G∗

11,↓↓ −G∗
12,↓↓

−F ∗
21,↓↑ −F ∗

22,↓↑ −G∗
21,↓↓ −G∗

22,↓↓

⎞
⎟⎟⎟⎠, (11)

where we suppressed the dependence on crystal momentum
k and Matsubara frequency ωn for brevity. Notice that Ĝa is
comprized of four 2 × 2 blocks in sublattice space, where we
can identify the upper off-diagonal block as the anomalous
Green’s function F̂a ≡ F̂↑↓.

To isolate F̂a , we start by noting that the Hamiltonian Ĥa in
Eq. (4) has the form

Ĥa =
(

ĥk �̂(k)

�̂†(k) −ĥk

)
. (12)

Combining Eq. (12) with Eq. (10) it can be shown that the
anomalous Green’s function associated with Ĥa is given by

F̂a(k; iωn) = [(iωn + ĥk)�̂−1(k)(iωn − ĥk) − �̂†(k)]−1. (13)

The remainder of this section is dedicated to understanding
the symmetries of Eq. (13). However, before we study the
general expressions for the full model appearing in Eq. (4)
we turn our attention to three limiting cases: (i) no spin-
orbit coupling or intersublattice hopping, α = t ′ = 0; (ii) no
spin-orbit coupling but finite intersublattice hopping, α = 0,
t ′ �= 0; and (iii) finite spin-orbit coupling but no intersublattice
hopping, α �= 0, t ′ = 0.

A. Case (i): α = t ′ = 0

In the limit of no spin-orbit coupling and no intersublattice hopping, α = t ′ = 0, all terms proportional to gk or εk vanish in
Ĥa . In this case Eq. (13) takes on a relatively simple form:

F̂a(k; iωn) = Ak;iωn

(
0 �12(k)[(iωn)2 − E21(k)2]

�21(k)[(iωn)2 − E12(k)2] 0

)
(14)

where we define

A−1
k;iωn

= {
(iωn)4 − (iωn)2

[
E2

12(k) + E2
21(k)

] + E2
12(k)E2

21(k)
}
, Eij =

√
ξ 2

k + |�ij (k)|2. (15)

This trivial case demonstrates that without any mixing of the sublattice or spin degrees of freedom the anomalous Green’s
function has exactly the same symmetries as the underlying gap functions, �ij (k). It is thus clear that there are no odd-ω pair
amplitudes in this case. This result is consistent with the previous results in multiband superconductors showing a required mixing
of degrees of freedom for odd-ω pairing [46].

B. Case (ii): α = 0, t ′ �= 0

In the limit of no spin-orbit coupling but finite intersublattice hopping, α = 0, t ′ �= 0, we neglect all terms proportional to
gk appearing in Eq. (4); however, we must keep track of the intersublattice hopping terms, εk, which are, in general, complex
numbers. In this case, the anomalous Green’s function becomes

F̂a(k; iωn) = Bk;iωn

(
iωna−(k) + ξka+(k) �12(k)[(iωn)2 − E21(k)2] − �21(k)ε2

k

�21(k)[(iωn)2 − E12(k)2] − �12(k)ε∗
k

2 −iωna−(k) + ξka+(k)

)
(16)

where we define

B−1
k;iωn

= {
(iωn)4 − (iωn)2[E2

12(k) + E2
21(k) + 2|εk|2

] + E2
12(k)E2

21(k) + |εk|4 − 2ξ 2
k |εk|2 + 2Re

[
�12(k)�∗

21(k)ε∗
k

2]}
,

a± = εk�21(k) ± ε∗
k�12(k), Eij =

√
ξ 2

k + |�ij (k)|2. (17)

By inspecting Eqs. (16) and (17) it is straightforward to show that the intersublattice hopping terms generate one odd-ω pairing
channel, given by

F̂a,odd(k; iωn) = Bk;iωn

(
2ωn[dkRe{εk} − fkIm{εk}] 0

0 −2ωn[dkRe{εk} − fkIm{εk}]
)

. (18)

Note that this odd-ω pair amplitude is proportional to the sublattice hybridization but that it is strictly diagonal in the sublattice
index, i.e., it is intrasublattice pairing. Hence, starting from the initial state with only intersublattice pairing, Eq. (4), the addition
of intersublattice hopping terms acts to mix the electronic degrees of freedom on the two sublattices allowing for the emergence
of a finite intrasublattice pair amplitude. From the form of Eq. (18) we see that, generically, for any finite intersublattice hopping
amplitude εk this odd-ω intrasublattice pair amplitude will be nonzero. Furthermore, we see that, because Re{εk} = Re{ε−k}
and Im{εk} = −Im{ε−k} the symmetry constraints imposed by Fermi-Dirac statistics are always satisfied since the odd-ω state
is spin-triplet and has even spatial parity.
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Notice that, in the absence of the d-wave component, the two gaps are equal, �12(k) = �21(k). In this case, for purely
real values of εk the odd-ω term vanishes. This is consistent with the expectation that emergent odd-ω pairing in a multiband
superconductor is proportional to the difference between the two gaps [46–49]. However, the addition of an imaginary component
to the interband hybridization allows the generation of odd-ω pairing in multiband systems even when the two gaps are equal.
This is distinct from all other forms of odd-ω pairing that were previously discussed in multiband superconductors [46–49].

C. Case (iii): α �= 0, t ′ = 0

In the limit of finite spin-orbit coupling but no intersublattice hopping, α �= 0, t ′ = 0, we neglect all terms proportional to εk
appearing in Eq. (4); however, we must keep track of all terms proportional to gk, which is a real-valued and odd function of
momentum. In this case, the anomalous Green’s function becomes

F̂a(k; iωn) = Ck;iωn

(
0 �12(k)[(iωn + gk)2 − E21(k)2]

�21(k)[(iωn − gk)2 − E12(k)2] 0

)
(19)

where we define

C−1
k;iωn

= {
(iωn)4 − (iωn)2

[
E2

12(k) + E2
21(k) + 2g2

k

] + E2
12(k)E2

21(k) + 4gkωn

[
dkf

∗
k − fkd

∗
k

] + g2
k

[
g2

k − E2
12(k) − E2

21(k)
]}

,

Eij =
√

ξ 2
k + |�ij (k)|2. (20)

From Eq. (19) we see immediately that the addition of spin-orbit coupling induces an odd-ω pair amplitude proportional to
gk. Careful inspection of Eqs. (19) and (20) reveals that the addition of spin-orbit coupling in fact gives rise to two different terms
contributing to odd-ω pairing, one from the numerator

F̂
(1)
a,odd(k; iωn) = C

(1)
k;iωn

(
0 2iωngk(fk + idk)

−2iωngk(fk − idk) 0

)
, (21)

and one coming from an odd-ω term in the denominator

F̂
(2)
a,odd(k; iωn) = −4gkωn[dkf

∗
k − fkd

∗
k ]F̂a,even(k; iωn), (22)

where we define

F̂a,even(k; iωn) = C
(2)
k;iωn

(
0 �12(k)

[
(iωn)2 + g2

k − E21(k)2
]

�21(k)
[
(iωn)2 + g2

k − E12(k)2
]

0

)
(23)

where C
(1)
k;iωn

and C
(2)
k;iωn

are both strictly even functions of the frequency ωn and can thus be ignored in the symmetry analysis.
Notice that the spin-orbit coupling cannot modify the pairing in the sublattice index and thus we find that all pairing remains
off-diagonal in the sublattice index, just as in case (i).

Recalling that gk = −g−k we can check that the constraints imposed by Fermi-Dirac statistics are satisfied in Eqs. (21) and (22).
Inspection of Eq. (21) shows that the f -wave term is converted from: sublattice-even to sublattice-odd; parity-odd to parity-even;
and from even-ω to odd-ω. While this appears to violate the statistics we must recall that these results only apply for the a sector.
To obtain the results for the b sector we take gk → −gk and ↑↔↓. Therefore, we see that the odd-ω terms in Eqs. (21) and (22)
are actually spin-singlet and hence Fermi-Dirac statistics are satisfied for both the fk and dk components.

The first type of odd-ω pair amplitude F̂
(1)
a,odd has its origin in the numerators appearing in Eq. (19). The emergence of this pair

amplitude can be understood by noting that the spin-orbit coupling acts as a momentum-dependent exchange field modifying the
spin-symmetry of the superconducting correlations and thereby generating terms in the anomalous Green’s function that are odd
in frequency. This is similar in spirit to previous analyses of heterostructures incorporating superconductors and materials with
different kinds of spin-orbit coupling [41].

The second type of odd-ω pair amplitude F̂
(2)
a,odd has its origin in the denominator appearing in Eq. (20) and is proportional to

gkωn[dkf
∗
k − fkd

∗
k ]. While the contribution from the numerator F̂

(1)
a,odd is, in general, nonzero for any finite spin-orbit coupling,

the term coming from the denominator F̂
(2)
a,odd requires both a finite spin-orbit coupling and a gap such that dkf

∗
k − fkd

∗
k �= 0.

Considering the form of fk and dk given in Eq. (7), we conclude that this term is only nonzero in the nonunitary B phase of UPt3,
where both η1 and η2 take on finite values.

D. General case: α,t ′ �= 0

Finally, we turn our attention to the most general case, both finite spin-orbit coupling and intersublattice hopping α,t ′ �= 0. In
this case the anomalous Green’s function is given by

F̂a(k; iωn) = Dk;iωn

(
iωna−(k) + (ξk − gk)a+(k) �12(k)[(iωn + gk)2 − E21(k)2] − �21(k)ε2

k

�21(k)[(iωn − gk)2 − E12(k)2] − �12(k)ε∗
k

2 −iωna−(k) + (ξk + gk)a+(k)

)
(24)
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where we define

D−1
k;iωn

= {
(iωn)4 − 2(iωn)2[ξ 2

k + |εk|2 + g2
k + |fk|2 + |dk|2

] + 4gkωn[dkf
∗
k − fkd

∗
k ]

+ ξ 4
k + |εk|4 + g4

k − 2g2
kξ

2
k + 2

(
ξ 2

k − g2
k

)
[|fk|2 + |dk|2 − |εk|2] + |�12(k)|2|�21(k)|2 + 2Re[�12(k)�∗

21(k)ε∗
k

2]
}
,

a± = εk�21(k) ± ε∗
k�12(k), Eij =

√
ξ 2

k + |�ij (k)|2. (25)

By inspecting Eqs. (24) and (25), once again, we see the emergence of two distinct kinds of odd-ω pairing amplitudes, one from
the numerator

F̂
(1)
a,odd(k; iωn) = D

(1)
k;iωn

(
2ωn[dkRe{εk} − fkIm{εk}] 2iωngk(fk + idk)

−2iωngk(fk − idk) −2ωn[dkRe{εk} − fkIm{εk}]
)

, (26)

and one from the denominator

F̂
(2)
a,odd(k; iωn) = −4gkωn[dkf

∗
k − fkd

∗
k ]F̂a,even(k; iωn), (27)

where we define

F̂a,even(k; iωn) = D
(2)
k;iωn

(
(ξk − gk)[εk�21(k) + ε∗

k�12(k)] �12(k)
[
(iωn)2 + g2

k − E21(k)2
] − �21(k)ε2

k

�21(k)
[
(iωn)2 + g2

k − E12(k)2
] − �12(k)ε∗

k
2 (ξk + gk)[εk�21(k) + ε∗

k�12(k)]

)
(28)

where the functions D
(1)
k;iωn

and D
(2)
k;iωn

are strictly even functions of frequency ωn. Overall, the relative sizes of these odd-ω terms
depend on the parameters: the spin-orbit coupling term gk, the band hybridization εk, and gap symmetry parameterized by η1 and
η2. This general result is a combination of cases (ii) and (iii) with additional terms appearing in F̂a,even due to gk and εk being
nonzero simultaneously.

From Eqs. (26) and (27) we can deduce the general criteria
for obtaining finite odd-ω pair amplitudes in UPt3. To obtain
finite odd-ω intersublattice pair amplitudes we only need
gk �= 0. Additional terms are present when dkf

∗
k − fkd

∗
k �= 0;

however, these latter terms do not lead to distinct channels in
the sublattice index or in spatial parity. To obtain finite odd-ω
intrasublattice pair amplitudes only a finite intersublattice
hopping term is necessary εk �= 0. This odd-ω intrasublat-
tice channel is predominantly f wave when εk is purely
imaginary and d wave when εk is purely real. It also has
additional contributions when both dkf

∗
k − fkd

∗
k and gk are

nonzero.
Having derived the general criteria for odd-ω pairing we

finally focus on the specific Fermi surfaces. First we recall that
the Fermi surface of UPt3 around the � point is describable
with parameters: (t,tz,t ′,α,μ) = (1,4,1,0,16). Therefore, we
conclude that near the � point in UPt3 we expect to find
odd-ω pairing proportional to εk, and only in the intrasub-
lattice channel since gk = 0. Furthermore, these amplitudes
are present in all three phases, A, B, and C since they appear
very generally for any finite values of η1,η2 in Eq. (7). Next,
recall the set of parameters describing UPt3 around the A

point: (t,tz,t ′,α,μ) = (1, − 4,1,2,12). From this parameter set
we see that near the A point in UPt3 both the odd-ω intrasublat-
tice channel and odd-ω intersublattice channel are finite in all
three phases. Furthermore, while both the A phase and C phase
are unitary according to our model, the B phase is not. This
results in the B phase receiving additional contributions of the
form given in Eq. (27) in both the odd-ω intrasublattice and
odd-ω intersublattice channels. These additional contributions,
originating from a term in the denominator being odd in
frequency, are absent in the A and C phases.

It should be noted that, while the crystal symmetry of
UPt3 was originally recorded to be the close-packed hexagonal
symmetry of space group P 63/mmc [73,74] there has been
an indication in measurements combining x-ray diffraction
and transition electron microscopy that the actual symmetry

may be that of the trigonal space group P 3m1 [74]. In this
case, the lattice will be distorted from the picture appearing
in Fig. 1 leading to a layer dimerization that will introduce an
asymmetry in the intersublattice hybridization along the z-axis.
In the presence of this asymmetry the intersublattice hopping
term εk becomes [10]

ε̃k = t ′
[
(1 + d)ei

kz

2 + (1 − d)e−i
kz

2
]∑

i

eik|| ·ri

= 2t ′
[
cos kz

2 + id sin kz

2

] ∑
i

eik||·ri , (29)

where d parameterizes the magnitude of the layer dimerization.
From this expression we note that, just as with εk, Re{ε̃k} is
strictly even in k, while Im{ε̃k} is strictly odd in k. Hence,
while the precise momentum dependence of the odd-ω pairing
will be affected by the crystal distortion described by Eq. (29),
the qualitative features discussed above for the odd-ω pair
amplitudes emerging in the absence of the crystal distortion
will be preserved even in the presence of such a crystal
distortion.

IV. ODD-FREQUENCY PAIRING AND THE KERR EFFECT

Now that we have shown how odd-ω superconductivity is
ubiquitous in UPt3, we turn to investigating its relationship
with the Kerr effect, which has been measured within the B

phase. In general, the frequency-dependent rotation angle for
the polarization of reflected light, known as the Kerr angle, is
given by

θ (ω) = 4π

ω
Im

[
σH (ω)

n(n2 − 1)

]
, (30)

where σH (ω) is the anomalous Hall conductivity and n is the
index of refraction for the material. Motivated by observations
of a finite Kerr angle in UPt3 [7], a recent work [11] computed
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the value of Eq. (30) employing the same Hamiltonian as used
here, Eq. (1). It was shown that θ (ω) is given by a sum over the
Brillouin zone of a quantity proportional to [fkd

∗
k − f ∗

k dk],
where fk,dk are those given by Eq. (7). Furthermore, it
was determined that θ (ω) = 0 if the intersublattice hopping
function εk is real. Therefore, the criteria for observing a
finite Kerr rotation angle in UPt3 are given by: (1) [fkd

∗
k −

f ∗
k dk] �= 0, and (2) Im{εk} �= 0. Additionally, it was found that

a second contribution to the Kerr angle arises when gk is finite.
Comparing these criteria to the results of the previous sections
of this work, we see that, while they differ from our general
criteria for the emergence of odd-ω pairing amplitudes in UPt3,
there are still strong similarities.

In particular, notice that to observe the Kerr effect the system
must possess finite εk and finite contributions from both fk
and dk. From this alone we can conclude that the system must
then also possess odd-ω intrasublattice pairing of the form
appearing in Eq. (18). Additionally, we note that when gk �= 0,
the Kerr angle picks up an additional contribution, comparable
in magnitude to the contribution independent of spin-orbit cou-
pling [11]. Directly correlated with this additional term is the
emergence of a finite odd-ω intersublattice pairing amplitude
with finite gk given in Eqs. (21) and (22). Also, since this
second term in σH (ω) is proportional to both fkd

∗
k − f ∗

k dk as
well as gk, we see from Eq. (27) that novel odd-ω contributions
to both the intrasublattice and intersublattice pairing channels
emerge, arising from the denominator of the Green’s function.

Therefore, we conclude that the observation of the Kerr
effect directly implies the presence of odd-ω intrasublattice
pair amplitudes in UPt3. While this observation alone can-
not tell us whether or not odd-ω intersublattice pair am-
plitudes also exist in UPt3, the same expressions determin-
ing the size of the odd-ω intersublattice pair amplitudes
also provide a contribution to the size of the Kerr rotation
angle.

V. CONCLUSION

In this work we study the emergence of odd-ω pairing in
the heavy-fermion superconductor UPt3. Using a tight-binding
model describing the electrons associated with the U ions
capturing the nonsymmorphic crystal structure, and assuming
an order parameter belonging to E2u, we characterize the
emergence of odd-ω pair amplitudes and their dependence on
the underlying parameters. We find that, in the presence of
intersublattice hopping, odd-ω intrasublattice pairing is present
in the system in all three superconducting phases of UPt3, A,
B, and C. Similarly, in the presence of spin-orbit coupling we
found that odd-ω intersublattice pairing will be present in all
three superconducting phases. Furthermore, we find that in the
B phase additional odd-ω contributions emerge. Considering
model parameters which faithfully portray the topology of
the Fermi surface near the � point and A point, we find that
near � the model predicts finite odd-ω intrasublattice pairing,
while at A both odd-ω intrasublattice and odd-ω intersublattice
pairing are finite. Additionally, we compare our criteria for
the realization of odd-ω pairing in UPt3 to recent calculations
of the size of the Kerr effect using the same model [11] and
find very strong similarities. Notably, we show that when
the Kerr rotation angle is finite, odd-ω pair amplitudes are
always present. Since the Kerr effect was observed in UPt3

[7], this strongly suggests the presence of odd-ω pairing in this
heavy-fermion superconductor.
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