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Critical phenomena at the complex tensor ordering phase transition
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We investigate the critical properties of the phase transition towards complex tensor order that has been
proposed to occur in spin-orbit-coupled superconductors. For this purpose, we formulate the bosonic field theory
for fluctuations of the complex irreducible second-rank tensor order parameter close to the transition. We then
determine the scale dependence of the couplings of the theory by means of the perturbative renormalization group
(RG). For the isotropic system, we generically detect a fluctuation-induced first-order phase transition. The initial
values for the running couplings are determined by the underlying microscopic model for the tensorial order.
As an example, we study three-dimensional Luttinger semimetals with electrons at a quadratic band-touching
point. Whereas the strong-coupling transition of the model receives substantial fluctuation corrections, the weak-
coupling transition at low temperatures is rendered only weakly first order due to the presence of a fixed point
in the vicinity of the RG trajectory. If the number of fluctuating complex components of the order parameter is
reduced by cubic anisotropy, the theory maps onto the field theory for frustrated magnetism.
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I. INTRODUCTION

Recent years have witnessed a revolution in the synthesis
and study of three-dimensional superconducting materials with
multiband touching points in the electronic band dispersion.
The modified nature of the electronic degrees of freedom
can lead to exotic or topological superconducting states [1,2].
An example is provided by the half-Heusler superconductors
RPtBi and RPdBi with R a rare-earth-like atom [3,4], where
strong spin-orbit coupling due to the heavy element Bi in-
duces band inversion and quadratic band touching (QBT) near
the Fermi energy so that the electronic degrees of freedom
carry an effective spin 3

2 [5–10] and many Cooper pairing
channels with spins ranging from 0 to 3 are possible and have
been studied theoretically [11–22]. Numerous types of other
higher-pseudospin fermions have been proposed to describe
multiband touching points and make this direction of research
on superconductivity particularly rich [23–28].

For three-dimensional systems with an inverted QBT point,
which we refer to as Luttinger semimetals, suitable electron-
electron interactions can induce a superconducting complex
tensor order state describing a condensate of Cooper pairs
with spin 2 [18]. The corresponding order parameter is given
by a complex irreducible second-rank tensor, which can be
represented by a symmetric traceless 3 × 3 complex matrix.
The mean-field phase structure of the model shows both first-
and second-order transitions. In particular, at weak coupling,
the transition is of second order at the mean-field level, and the
corresponding critical phenomena may thus be observable in
the half-Heusler superconductors.

In this work, we address the question of the critical proper-
ties of the complex tensor ordering phase transition. For this we
construct the bosonic field theory for the order parameter close
to the critical point and determine the running of couplings
by means of the perturbative renormalization group (RG). We
find that fluctuations of the complex tensor field significantly
influence the nature of the phase transition. We emphasize

that the matrix field theory considered here is distinct from
matrix models considered in the context of superfluid He-3
[29] or high-energy physics [30–32] because in these cases the
fluctuating matrix field is not restricted to be symmetric and
traceless. The physics discussed here may also be observed in
spin-2 Bose-Einstein condensates of ultracold atoms [33–36].

Here, we summarize our main findings. The free energy for
the complex tensor φ close to the second-order transition is
given by

F (φ) = r

2
tr(φ†φ) + λ̄1

4
[tr(φ†φ)]2 + λ̄2

4
|tr(φ2)|2

+ λ̄3tr(φ†φφ†φ) (1)

with r ∝ (T − Tc). The symmetry group of the theory is
SO(3) × U(1). Note that a term tr(φ3), characteristic for real
tensor order describing liquid crystals, is forbidden here due to
the global U(1) symmetry. For r < 0 and generic values of the
couplings {λ̄m}, the ground state of the theory is determined
from Eq. (1). However, for λ̄3 = 0 the expression has an
accidental SO(5) × U(1) symmetry [37] so that the ground
state is determined by additional terms of sextic order in the
field [18]. At the critical point (r = 0), fluctuations of the order
parameter lead to a scale dependence of the couplings {λ̄m} and
can thereby alter the equilibrium state. To one-loop order we
find a fluctuation-induced first-order transition.

For the complex tensor ordering transition in isotropic
Luttinger semimetals we have λ̄3 = 0 at the mean-field level.
Due to the enlarged SO(5) × U(1) symmetry of the quartic
free energy in this case, one might expect at first sight that a
coupling λ̄3 �= 0 cannot be generated by the running of λ̄1 and
λ̄2. However, the field theory for complex tensor order features
a nonstandard kinetic term parametrized by a parameter K

that reduces the symmetry to the physical SO(3) × U(1).
Consequently, the coupling λ̄3 is generated during the RG
flow for K �= 0. We find K ∼ 1 in Luttinger semimetals at
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the mean-field level, so that the accidental degeneracy of the
quartic theory is lifted beyond mean-field theory.

In superconducting materials such as the half-Heusler com-
pounds, rotation symmetry is reduced by the cubic anisotropy
of the crystal structure. This effect can suppress fluctuations
of the complex tensor order parameter and thereby modify
the critical properties. In particular, whereas the complex
tensor in the isotropic case is described by N = 5 fluctuating
complex components, cubic symmetry can reduce the number
of fluctuating complex components to N = 2,3. For instance,
for YPtBi [14,38–40] we deduce N = 2 from the electronic
band structure [14]. Under certain conditions on the parameters
of the theory that we specify below, the phase transition is then
captured by the O(N ) × O(2) symmetric theory for frustrated
magnetism, which also describes the transition of stacked
triangular antiferromagnets, helimagnets, or the dipole-locked
A-phase of He-3 (see Refs. [41,42] for an overview). The
phase structure of this model is highly controversial [41–49],
with contradicting conclusions from perturbative RG, nonper-
turbative RG, Monte Carlo computations, and experiment. In
particular, it has been conjectured that the transition lies in an
exotic chiral universality class [43,44] or that it is of first order.
A detailed discussion of different scenarios is presented below.

This work is organized as follows. In Sec. II we introduce the
complex tensor field theory that captures critical phenomena
close to a second-order or weak first-order phase transition.
In Sec. III we then analyze the running of couplings of the
theory due to fluctuations of the order parameter. In Sec. IV we
elaborate the relevance of our findings for superconductivity
in Luttinger semimetals. In Sec. V we summarize our results
and point out directions for future work. In the Appendices we
present our convention for the representation of Gell-Mann ma-
trices, clarify the difference to matrix models with U(3) × U(3)
symmetry, derive inequalities for tensor invariants, compute
the RG beta functions that are used in the main text, and list
the initial conditions for the flow that describes the transition
in Luttinger semimetals.

II. FIELD THEORY OF COMPLEX TENSOR BOSON

In the following, we construct the field theory that captures
fluctuations of a complex irreducible second-rank tensor boson
close to a second- or weak first-order phase transition. We first
introduce our notation for the two key parametrizations of the
fluctuating field, then derive the Lagrangian for the theory close
to the phase transition, discuss the stable parameter regime
of the model together with how to physically interpret its
instability, and eventually present the modification of the model
due to cubic anisotropy.

A. Field representations

The irreducible second-rank complex tensor field can be
represented in several equivalent ways. In particular, we can
identify it with a complex symmetric traceless 3 × 3 matrix φij

(i,j = 1,2,3) or its five independent complex components ϕa

(a = 1, . . . ,5). We employ both parametrizations interchange-
ably, using whichever makes our arguments most transparent.
Here, we briefly summarize the most important relations to
translate between both pictures.

The irreducibility of the tensor φ is equivalent to being
symmetric and traceless, φij = φji and δijφij = 0. Under R ∈
SO(3) it transforms as φij → RikRjlφkl . We can represent φ

by a symmetric traceless matrix that transforms as

φ → RφRT. (2)

Two configurations φ and φ′ are physically equivalent if there
exists an R such that φ′ = eiαRφRT with eiα a phase. The
matrix φ can be parametrized as

φ =

⎛
⎜⎝

ϕ1 − 1√
3
ϕ2 ϕ5 ϕ3

ϕ5 −ϕ1 − 1√
3
ϕ2 ϕ4

ϕ3 ϕ4
2√
3
ϕ2

⎞
⎟⎠. (3)

Here, {ϕa} are the five independent complex components of
the tensor. We have

φij = ϕa�
a
ij (4)

with the five real Gell-Mann matrices {�a} given in Eq. (A1).
They form an orthogonal basis for symmetric traceless 3 × 3
matrices with orthogonality relation tr(�a�b) = 2δab. More
generally, we define the J symbols

Jab...c = tr(�a�b . . . �c). (5)

Obviously, Ja = 0 and Jab = 2δab. One easily verifies that Jabc

is invariant under any permutation of its indices.
We collect the components of φ in the five-tuple

	ϕ = (ϕ1,ϕ2,ϕ3,ϕ4,ϕ5)T ∈ C5, (6)

which transforms under the five-dimensional (� = 2) represen-
tation of SO(3): for R ∈ SO(3) we have ϕa → Mab(R)ϕb with
Mab(R) = 1

2 tr(R�bRT�a). We denote 	ϕ with a vector arrow
and employ the notation

| 	ϕ|2 := ϕ∗
aϕa, 	ϕ2 := ϕaϕa. (7)

B. Effective action

In this section we construct the most general low-energy
effective action for a complex tensor which is invariant under
SO(3) × U(1) transformations. In order to address the physics
close to the transition, it is sufficient to consider the long-
wavelength limit and the limit of small field amplitudes. We
thus restrict the effective action to terms of second order in
derivatives of φ and to terms of at most fourth order in φ. We
show that the most general such action compatible with the
symmetry group is then given by

S =
∫

d3x

[
ϕ∗

a

(
− δab∇2 + K√

3
Jabcdc(−i∇)

)
ϕb

+ λ̄1| 	ϕ|4 + λ̄2| 	ϕ2|2 + λ̄3tr(φ†φφ†φ)

]
, (8)

with the da functions defined in Eq. (12) below. The upper
critical dimension for this theory is four. For our derivation we
write

S =
∫

d3x(Lkin + Lint), (9)

where Lkin and Lint constitute the kinetic and interaction
parts of the effective Lagrangian, respectively. Remarkably,

064504-2



CRITICAL PHENOMENA AT THE COMPLEX TENSOR … PHYSICAL REVIEW B 97, 064504 (2018)

complex tensor order in three dimensions features peculiar
properties in both terms.

The kinetic part of the Lagrangian contains the contribution

tr(∇φ† · ∇φ) = (∂iφ
∗
jk)(∂iφjk) = 2(∇ϕ∗

a · ∇ϕa) (10)

that is commonly encountered in bosonic field theories. How-
ever, in three spatial dimensions also the term

(∂iφ
∗
ik)(∂jφjk) = (∂iϕ

∗
a )(∂jϕb)(�a�b)ij (11)

is compatible with SO(3) × U(1) symmetry. Note that this
term is reminiscent of the term (∇ · 	m)2 that is admissible for
the three-dimensional Heisenberg model, or (∂iTik)(∂jTjk) for
nematic order described by a real second-rank tensor T [50].

We introduce the functions da(p) =
√

3
2 pipj�

a
ij so that

d1(p) =
√

3

2

(
p2

x − p2
y

)
, d2(p) = 1

2

(
2p2

z − p2
x − p2

y

)
,

d3(p) =
√

3pzpx, d4(p) =
√

3pypz, d5(p) =
√

3pxpy.

(12)

The normalization is such that
∑5

a=1 da(p)2 = p4. We then
rewrite the right-hand side of Eq. (11) by means of [15]

pipj (�a�b)ij = 2

3
p2δab + 1√

3
Jabcdc(p). (13)

Whereas the first term merely results in a shift of the prefactor
of tr(∇φ† · ∇φ), the second contribution is genuinely different.
We can thus parametrize the most general kinetic part to the
Lagrangian in three dimensions with up to two derivatives as

Lkin = ϕ∗
a

(
− δab∇2 + K√

3
Jabcdc(−i∇) + rδab

)
ϕb, (14)

where K is a dimensionless parameter. We further included a
quadratic masslike term.

In order to construct the interaction part of the Lagrangian,
we note that terms cubic in the field φ are forbidden due to
U(1) invariance. At the quartic level, the four terms that can
be constructed for a symmetric traceless complex matrix are
given by

Q1 = [tr(φ†φ)]2 = 4| 	ϕ|4, (15)

Q2 = |tr(φ2)|2 = 4| 	ϕ2|2, (16)

Q3 = tr(φ†φφ†φ), (17)

Q4 = tr(φ†2φ2). (18)

However, in the case of φ being also a 3 × 3 matrix we
additionally have the relation

2Q1 + Q2 = 2Q3 + 4Q4. (19)

This can be checked by direct computation or by inserting
A = φ + αφ† into tr(A4) = 1

2 [tr(A2)]2, which is valid for any
symmetric traceless 3 × 3 complex matrix A, and by reading
off the coefficient of α2. We may thus eliminate Q4 by
expressing it through the remaining three quartic terms. This is
a special case of the fact that SO(3) invariance of the interaction

part implies that it is a polynomial in the eight invariants [18,51]

I1 = tr(φ†φ), I2 = tr(φ2), I3 = tr(φ†2),

I4 = tr(φ3), I5 = tr(φ†3), I6 = tr(φ2φ†),

I7 = tr(φ†2φ), I8 = tr(φ†φφ†φ). (20)

We thus conclude that the interaction part of the Lagrangian
including up to four powers of the field is given by

Lint = λ̄1| 	ϕ|4 + λ̄2| 	ϕ2|2 + λ̄3tr(φ†φφ†φ). (21)

In our presentation, we often refer to the rescaled couplings

λm = Sd

d−4

(2π )d
λ̄m (22)

with dimension d, Sd the area of the (d − 1)-dimensional
sphere, and ultraviolet momentum cutoff 
 (see Sec. III).

The Lagrangian Lkin + Lint is constructed to respect
SO(3) × U(1) symmetry of an irreducible second-rank tensor
field φ. Depending on the parameters of the theory, however,
the symmetry group can be enlarged:

(i) If K = 0 and λ2 = λ3 = 0, the theory is invariant under
ϕa → Mabϕb with M ∈ U(5).

(ii) If K = 0 and λ3 = 0, the theory possesses an enlarged
SO(5) × U(1) symmetry with respect to ϕa → Mabϕb with
M ∈ SO(5).

Crucially, if ϕa are the five components of a symmetric
traceless matrix, then ϕ′

a = Mabϕb with either M ∈ U(5) or
M ∈ SO(5) are still viable components of (another) symmetric
traceless matrix. Consequently, the RG flow preserves the
enlarged symmetries in the cases (i) and (ii). This is not so for
the following case: (iii) Set K = 0 and λ2 = 0. The theory with
quartic terms [tr(φ†φ)]2 and tr(φ†φφ†φ) is then reminiscent of
the U(3) × U(3) symmetric matrix models that are well known
in the literature [30–32]. Indeed, the Lagrangian is invariant
under the transformation φ′ → φ = UφV † with U,V ∈ U(3).
However, the matrix φ′ will generally not be symmetric
and traceless. Thus, the coupling λ2 is not prohibited by
symmetry even if initially absent (see Appendix B for a detailed
discussion of the difference of both matrix models). Eventually,
if K �= 0, the symmetry of the theory is always reduced to
SO(3) × U(1) due to the kinetic term. We will later see how
the features discussed here manifest in the RG evolution of the
running couplings of the theory.

C. Stability and first-order transition

The consistency of the theory described by the effective
action S requires the parameters K,λ1,2,3 to satisfy certain
inequalities that we derive in the following. If these stability
bounds are not satisfied, S needs to be replaced by a more
elaborate description.

In momentum space, the kinetic part of the critical
theory (r = 0) is given by the quadratic form Skin =∫

d3p

(2π)3 ϕ
∗
a (p)Dab(p)ϕb(p) with

Dab(p) = p2δab + K√
3
Jabcdc(p). (23)

The long-wavelength approximation of keeping only terms
quadratic in p is a consistent assumption if and only if all
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TABLE I. Stability of the quartic theory described by S requires
the interaction term to be bounded from below. In the table, the
first three columns indicate a positive (+) or negative sign (−) of
the corresponding coupling λm, and the fourth column gives the
corresponding stability condition that needs to be satisfied. If a
coupling vanishes, we can use the row with either + or − for that
coupling, and check whether the condition can be fulfilled. (Both
tests yield the same conclusion.) If the stability condition is violated,
higher-order terms in the field need to be included in S.

λ1 λ2 λ3 Stability condition

+ + + Stable

+ + − λ1 + 4λ3 > 0

+ − + λ1 + λ2 + 4
3 λ3 > 0

+ − − λ1 + λ2 + 4λ3 > 0

− + + λ1 + 4
3 λ3 > 0

− − + λ1 + λ2 + 4
3 λ3 > 0

− + − Unstable

− − − Unstable

eigenvalues of the 5 × 5 matrix D(p) are strictly positive
for all p. We determine the eigenvalues to be (1 + K

3 )p2

(doubly degenerate), (1 + 2
3K)p2, and (1 − 2

3K)p2 (doubly
degenerate). Consequently, a stable theory needs to satisfy the
condition

|K| < 3
2 . (24)

Note that in writing Eqs. (14) and (23) we implicitly assumed
the prefactor of p2δab to be positive so that we can normalize it
to unity by a field redefinition. If this prefactor is not positive,
the theory is unstable for any value of K . Negative directions
of D(p) in momentum space would imply that the ground state
is given by an inhomogeneous field configuration with some
ordering wave vector p∗ > 0.

In a similar fashion, stability of the field theory requires the
quartic interaction term to be bounded from below: Lint(φ) →
+∞ for | 	ϕ| → ∞. In this case, a second-order phase transition
is induced by a sign change of r . Since the field-dependent
terms Q1,2,3 in Lint are all positive, the stability is determined
by the signs and relative sizes of the couplings λ1,2,3. The
corresponding stability bounds result from the inequalities

0 � | 	ϕ2|2 � | 	ϕ|4, 4
3 | 	ϕ|4 � tr(φ†φφ†φ) � 4| 	ϕ|4, (25)

which we derive in Appendix C. We summarize the stability
criteria in Table I. If the quartic part of S is not bounded from
below, higher orders in the field expansion need to be included,
which typically implies that the field theory describes a first-
order transition for certain r > 0. For the small-amplitude
expansion to still be a valid assumption, only weak first-order
transitions (with a small jump of the order parameter at the
transition) can be considered.

D. Cubic anisotropy

The two quintessential symmetries of the theory, rotation in-
variance and particle-number conservation, expressed through
the global symmetry group SO(3) × U(1), tightly restrict the

action S for complex tensor theory in three dimensions. We
have seen that the fluctuating second-rank tensor field is bound
to have five complex components ϕa and three quartic self-
interaction constants λ1,2,3. In particular, even if the symmetry-
breaking ground state of the system condenses only, say, one
or two of the components, the fluctuations about this state
still comprise all five components. However, if the rotational
symmetry group SO(3) is reduced by the crystal structure to a
discrete point group, the number of fluctuating components can
be decreased. As we lay out in the next section, this may have
drastic effects on the nature of the complex tensor ordering
phase transition.

We focus here on the important case that rotations are
restricted to the cubic group. We write φ = φE + φT with

φE =
∑
a=1,2

ηa�
a, (26)

φT =
∑

a=3,4,5

χa�
a. (27)

Then, φE is entirely diagonal and φT is entirely off diagonal.
Importantly, if φ is diagonal (off diagonal), it remains diagonal
(off diagonal) under cubic transformations. The notation is to
indicate that φE and φT constitute the Eg (“E”) and T2g (“T”)
representations of the cubic group.

If the system is only cubic symmetric, the masslike
quadratic term r| 	ϕ|2 in the Lagrangian generically splits into
the two contributions

rE|	η|2 + rT| 	χ |2. (28)

At a critical point where rE = 0 but rT > 0, fluctuations of 	χ
are suppressed by a mass rT > 0, and vice versa. Consequently,
a large difference |rE − rT| can efficiently suppress two or three
components of the fluctuating field. Since tr(φ†

EφEφ
†
EφE) =

4
3 |	η|4 + 2

3 |	η2|2 and tr(φ†
TφTφ

†
TφT) = 2| 	χ |4, the quartic term Q3

can be expressed in terms of Q1 and Q2 in the cubic case. For
the three-component case, however, a further cubic symmetric
quartic term QC = ∑

a<b |χa|2|χb|2 is allowed. Consequently,
after a proper redefinition of the couplings, critical fluctuations
of φE and φT are described by the effective actions

SE =
∫

d3x[η∗
a(−∇2δab)ηb + λ̄1|	η|4 + λ̄2|	η2|2] (29)

and

ST =
∫

d3x

[
χ∗

a (−∇2δab)χb + λ̄1| 	χ |4 + λ̄2| 	χ2|2

+ λ̄C

∑
a<b

|χa|2|χb|2
]
, (30)

respectively. Although, in principle, cubic symmetry allows
for additional kinetic terms similar to the K-dependent con-
tribution in Eq. (14), we omit them here as they likely are
irrelevant at the fixed points of the theory. The actions SE and
ST for λC = 0 reduce to the N -component model S ′ studied in
Sec. III C with N = 2 and 3, respectively.
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III. RENORMALIZATION GROUP

The effective action S is defined with respect to an ultravi-
olet momentum cutoff scale 
 so that fluctuations of the order
parameter are restricted to momenta p � 
. Fluctuations of
the order parameter are incorporated by successively reducing

 which results in a running of the parameters of S. If the
bosonic theory is derived from an underlying microscopic
electronic model, the ultraviolet cutoff 
 corresponds to the
infrared cutoff of the electron system. Typically, this infrared
scale is given by temperature T and we have 
 ∼ T 1/2. (We
use nonrelativistic units h̄ = kB = 2M = 1 with electron mass
M .) Note that the electron system itself has an ultraviolet
momentum cutoff � delimiting its applicability, often related
to the bandwidth or Debye frequency.

In the following we discuss the RG flow for the running of
couplings of the critical action S (with r = 0) as the ultraviolet
momentum cutoff of the theory is changed from 
 to 
/b

with b > 1 [52]. In order to address the phase structure of the
theory in three dimensions, we define several deformations of
the theory that can be treated perturbatively close to the critical
dimension of four by an expansion in ε = 4 − d with 0 <

ε 
 1. The expansion around four dimensions is complicated
by the fact that S intimately links the dimension of space
to the number of field components and independent quartic
couplings. Therefore, the RG evolution will be discussed for
the following three limits:

(a) The weak-coupling limit of the three-dimensional
model with SO(3) × U(1) symmetry, where the Gell-Mann
algebra and angular momentum integrations are performed for
d = 3

(b) The generalization of the model to d dimensions with
SO(d) × U(1) symmetry so that both Gell-Mann algebra and
angular momentum integrations are consistently performed in
d dimensions, with a subsequent ε expansion

(c) The extension of the SO(5) × U(1) symmetric model
with K = 0 and λ3 = 0 to an arbitrary number N of field
components ϕa

The RG flows of the three distinct cases are qualitatively
compatible and thus give an idea of the critical behavior of the
theory. In this section, we focus on discussing the implications
of the RG equations on the phase structure of the model,
whereas the beta functions are derived in Appendix D.

To one-loop order, we only have to determine the fluctua-
tion corrections to the three quartic couplings λ1,2,3. Indeed,
diagrammatically it is clear that at one-loop order there is no
anomalous dimension η or change of the parameter K . We can
further assume that the system is fine tuned to the transition
such that r = 0 after fluctuation contributions to r have already
been taken into account. To higher-loop order we expect η > 0
and

dK

d ln b
= ηKK (31)

with ηK < 0 so that K becomes an irrelevant perturbation.
This expectation derives from the behavior of corresponding
couplings in similar models for real order in three-dimensional
Heisenberg or tensor models [50,52]. Therefore, we can treat
K as a small perturbation, which, however, leads to some
qualitative effects.

A. Three-dimensional model

We first consider the three-dimensional action S in Eq. (8),
where the indices of φij take values i,j = 1,2,3, the field
has five complex components ϕa , and angular integrations
are performed in three dimensions. For K = 0 the one-loop
running of the quartic couplings is given by

λ̇1 = ελ1 − 18λ2
1 − 8λ1λ2 − 8λ2

2 − 160
3 λ1λ3

− 32λ2λ3 − 272
9 λ2

3, (32)

λ̇2 = ελ2 − 12λ1λ2 − 10λ2
2 − 56

3 λ2λ3 + 112
9 λ2

3, (33)

λ̇3 = ελ3 − 12λ1λ3 + 8λ2λ3 − 124
3 λ2

3. (34)

We rescale the couplings according to λm = 1
2π2 


−ελ̄m and
define λ̇m = dλm/d ln b. We further introduce ε in the linear
terms of the flow equations. By formally treating 0 < ε 
 1
as a small parameter we can address the weak-coupling limit
because any fixed point of the set of the beta functions has
coupling values λm� = O(ε).

The flow equations (32)–(34) have a couple of remarkable
properties that are related to the symmetries of the theory
when K = 0, which we discussed below Eq. (21): (i) First,
for λ2 = λ3 = 0 we have λ̇2 = λ̇3 = 0. Indeed, if these two
couplings vanish for some value of 
, the theory has an
enlarged U(5) symmetry. Consequently, the fluctuations of
this theory cannot generate terms | 	ϕ2|2 or tr(φ†φφ†φ) in the
effective Lagrangian for b > 1, as these terms do not possess
this symmetry. (ii) Similarly, if λ3 = 0, we have λ̇3 = 0, which
can be ascribed to the SO(5) × U(1) symmetry of the theory
with λ3 = 0. This also implies that the coupling λ3 cannot
change sign during the RG flow since this would require it to
cross the plane of λ3 = 0. (iii) Note also that even if λ2 = 0 at
some scale, the coupling is generated from a term in λ̇2, 112

9 λ2
3.

This manifests the difference of our model for symmetric
traceless tensors from the field theory for the matrix model
with U(3) × U(3) symmetry, where a nonzero λ2 is forbidden
by symmetry. Similarly, our flow equations for λ2 = 0 do not
reproduce those of the matrix model (see Appendix B).

The stability of a fixed point of the RG flow (defined by
λ̇m = 0 for all m) is determined by the number of relevant
perturbations at the fixed point. We define the stability matrix
at a fixed point λ� by

Mmn = ∂λ̇m

∂λn

∣∣∣∣
λ=λ�

. (35)

We denote the eigenvalues of M by {θm}. A relevant (irrele-
vant) direction in the space of couplings is represented by a
positive (negative) eigenvalue. Since temperature as the only
tuning parameter is needed to fine tune r = 0, a second-order
phase transition is described by a completely stable fixed point
with all θm being negative. Although the flow of the parameters
of the kinetic termLkin vanishes at the one-loop level, it is fair to
expect them to constitute irrelevant directions when including
higher-loop orders.

The set of Eqs. (32)–(34) features two fixed points. The
noninteracting fixed point (λ1,λ2,λ3) = (0,0,0) is completely
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FIG. 1. Flow of the quartic couplings according to
Eqs. (32)–(34) in the plane spanned by λ3 = 0. The flow equations
in the plane λ3 = 0 correspond to those of the N -component model
discussed in Sec. III C for N = 5. We parametrize λ1,2 in terms of
u = 6(λ1 + λ2) and v = 12λ2. This parametrization is useful because
(i) the coupling v cannot change sign and (ii) the quartic potential is
stable if and only if u > 0. The arrows of stream lines point towards
the infrared, so that b increases along the flow. We observe a runaway
flow towards u < 0 for all generic initial values of λ1,2. This signals
that fluctuations induce a first-order phase transition. Trajectories in
the vicinity of the interacting fixed point (u�,v�) = ( ε

3 ,0) are shown
in red.

unstable with (θ1,θ2,θ3) = (ε,ε,ε). The interacting fixed point
is located at

(λ1�, λ2�, λ3�) =
(

ε

18
,0,0

)
, (36)

and thus possesses an emergent U(5) symmetry. It is unstable
in two directions with eigenvalues

(θ1,θ2,θ3) =
(

−ε,
ε

3
,
ε

3

)
. (37)

The flow of couplings is thus repelled from both fixed points,
leading to a runaway flow in the space of couplings.

The flow in the representative plane spanned by λ3 = 0 is
shown in Fig. 1. As b > 1 increases, we first observe that
|λ2| increases. This induces a significant running of λ1, and
eventually at b = b0 > 1 the couplings flow into the unstable
region with λ1 + λ2 < 0. The negative sign of λ1 + λ2 for b >

b0 signals a fluctuation-induced first-order phase transition:
For r = 0, the assumption of the effective action being of the
form (8) is inconsistent. Instead, a first-order transition occurs
for a certain r > 0, and higher orders in the field need to be
included in the effective action to compute the minimum of the
Ginzburg-Landau free energy.

For K �= 0, the symmetry of the theory is reduced to
SO(3) × U(1) and none of the quartic couplings are prohibited
by an enlarged symmetry. The corresponding flow equations
for arbitrary K are displayed in Appendix D. Here, we only
discuss the flow equations for small K , as they exhibit many
of the characteristic features of the full equations. We have

λ̇1 = ελ1 − (
18 + 692

45 K2)λ2
1 − (

8 + 48
5 K2)λ1λ2 − (

8 + 208
45 K2)λ2

2 − (
160

3 + 7072
135 K2)λ1λ3

− (
32 + 3968

135 K2)λ2λ3 − (
272

9 + 14368
405 K2)λ2

3 + O(K3), (38)

λ̇2 = ελ2 − 4
15K2λ2

1 − (
12 + 376

45 K2
)
λ1λ2 − (

10 + 148
15 K2

)
λ2

2 + 112
135K2λ1λ3 − (

56
3 + 592

45 K2
)
λ2λ3

+ (
112

9 + 4688
405 K2

)
λ2

3 + O(K3), (39)

λ̇3 = ελ3 − 2
15K2(λ2

1 − 4λ1λ2 + 2λ2
2) − (

12 + 128
15 K2

)
λ1λ3 + (

8 + 64
9 K2

)
λ2λ3 − (

124
3 + 4144

135 K2
)
λ2

3 + O(K3). (40)

Clearly, for nonzero K all couplings are generated, even if they are initially absent. Note that K can have both positive or negative
sign. However, since the first corrections are of order K2, there is an accidental symmetry K → −K of the flow for small K .
Expanding the full beta functions further, however, terms of order K3 appear that break this invariance. The behavior for small
K is rooted in the fact that D(p)−1 = 1

p2 1 + O(K2), and therefore no contribution linear in K can be generated perturbatively
(see Appendix D). For the same reason, terms linear in K cannot appear to any perturbative loop order. If λ3 is initially absent, a
negative (positive) coupling λ3 is generated if λ2/λ1 < ρ (if λ2/λ1 > ρ) with ρ = 1 − 1√

2
= 0.293. (We assume here λ2/λ1 � 1

as it is relevant for the applications below.) We generically find that the explicit appearance of K in the beta functions for λ1,2

quantitatively modifies the flow of both couplings, whereas the effect of a nonzero value of λ3 is small.
The fixed-point structure is only mildly affected by the parameter K �= 0. For small K , the interacting fixed point is shifted

towards

λ1� = 1

18

(
1 − 1142

1215
K2

)
ε + O(K3), (41)

λ2� = K2

405
ε + O(K3), λ3� = K2

810
ε + O(K3). (42)
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FIG. 2. Fixed-point structure of the three-dimensional theory with
action S as a function of K . The plot shows the couplings λ1�/ε (blue,
continuous line), 100λ2�/ε (red, short-dashed line), and 100λ3�/ε

(orange, long-dashed line). For better visibility, we magnify λ2� and
λ3� by a factor of 100. To determine the couplings, we use the full
K-dependent expressions (D29)–(D31), which yield Eqs. (38)–(40)
for small K . The eigenvalues of the stability matrix at the fixed point
are θ1 = −ε and positive θ2,3 = O(ε) for all values of K .

As K is increased further, λ2� and λ3� remain comparably

small. However, in the extreme limit the fixed-point couplings
vanish: λm� → 0 as |K| → 3

2 . The stability of the fixed point
is not changed qualitatively due to K , as it always features one
irrelevant direction with θ1 = −ε, and two relevant directions
with positive θ2,3 = O(ε). The behavior of {λm} as a function
of K is displayed in Fig. 2.

B. d-dimensional model

In this section we study the RG evolution of a complex
tensor field close to its critical dimension of d = 4. The
corresponding action for an irreducible second-rank tensor
under SO(d) × U(1) is given by

Sd =
∫

ddx

[
ϕ∗

a

(
− δab∇2 + K

√
d − 1

2d
Jabcdc(−i∇)

)
ϕb

+ ḡ1| 	ϕ|4 + ḡ2| 	ϕ2|2 + ḡ3tr(φ†φφ†φ) + ḡ4tr(φ†2φ2)

]
.

(43)

We parametrize the tensor as φij = ϕa�
a
ij with i,j = 1, . . . ,d,

and a,b,c = 1, . . . ,Nd , where Nd = (d−1)(d+2)
2 is the number

of real Gell-Mann matrices in d dimensions [50]. We define

da(p) =
√

d

2(d − 1)
pipj�

a
ij (44)

so that
∑

a d2
a = p4. When computing perturbative corrections

derived from Sd , the angular momentum integrals can be
computed in d dimensions. In the interaction part of Sd we
account for the fact that tr(φ†2φ2) is not a function of the
remaining three quartic terms when d > 3. For this reason,
we labeled the quartic couplings by {ḡm} to distinguish them
from {λ̄m}.

The action Sd=4 consistently lifts all the algebraic and
analytic properties of the three-dimensional model to four di-
mensions. In particular, for the number of field components ϕa

to be consistent with a second-rank tensor in four-dimensional
space, we need to replace the N3 = 5 components of the
original model by N4 = 9 components. The nine Gell-Mann
matrices in four dimensions are given in Eq. (A2). The
extension from five to nine functions da(p) was first employed
by Abrikosov in order to perform an ε expansion for the
three-dimensional fermionic QBT system [5].

The RG evolution of the quartic couplings for small ε and
to leading order in K are given in Eqs. (D48)–(D51) in the
Appendix, where we rescale the couplings according to gm =

1
8π2 ḡm. The leading order in K is again found to be O(K2). In
four dimensions, stability of the kinetic operator requires −1 <

K < 2. Analogous to the three-dimensional model, for K = 0,
the couplings g3 and g4 cannot be generated from g1 and g2 if
initially absent because the theory has an enlarged SO(Nd ) ×
U(1) symmetry for g3 = g4 = 0. For K �= 0, however, both
couplings are generated even if initially absent.

The fixed-point structure of the flow equations is analogous
to the behavior of the three-dimensional model S discussed
in the previous section. We have the noninteracting fixed
point (g1,g2,g3,g4) = (0,0,0,0), which is completely unstable
with (θ1,θ2,θ3,θ4) = (ε,ε,ε,ε). An interacting fixed point with
enlarged U(9) symmetry is found for

(g1�,g2�,g3�,g4�) =
(

ε

26
,0,0,0

)
, (45)

with stability eigenvalues

(θ1,θ2,θ3,θ4) = (−ε, 7
13ε, 7

13ε, 7
13ε

)
. (46)

It thus constitutes a four-dimensional analog of the interacting
fixed point of the three-dimensional model in Eq. (36). Hence,
both the structure of the beta functions and the fixed points
of the RG flow obtained here are similar to those obtained in
Sec. III A. This supports the results obtained for the three-
dimensional model and the conclusions drawn from them.
Since the d-dimensional model with d > 3 has four quartic
terms instead of three, it is difficult to directly physically
interpret the running of couplings for d > 3 in the context of
superconductors.

C. N-component model

From the findings of the previous sections, we conclude
that in order to make the critical properties of S particularly
transparent, it is advantageous to focus on the plane spanned by
(λ1,λ2,λ3,K) = (λ1,λ2,0,0) in coupling space. RG trajectories
within this plane are protected by symmetry to stay within this
plane. We generalize the setup to N field components ϕa by
considering the action

S ′ =
∫

ddx[ϕ∗
a (−∇2)ϕa + λ̄1| 	ϕ|4 + λ̄2| 	ϕ2|2] (47)

with a = 1, . . . ,N . The system described by S ′ is invariant
under SO(N ) × U(1) transformations.

We study the running of the couplings λ1,2 of S ′ by means
of an ε expansion around d = 4 dimensions. After rescaling
of the couplings according to λm = 1

8π2 λ̄m we obtain the flow
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equations

λ̇1 = ελ1 − 2(N + 4)λ2
1 − 8λ1λ2 − 8λ2

2, (48)

λ̇2 = ελ2 − 12λ1λ2 − 2Nλ2
2. (49)

For N = 5 we recover the flow equations of Sec. III A for
K = 0 and λ3 = 0. Similarly, the flow equations of Sec. III B
for K = 0 and (g1,g2,g3,g4) = (λ1,λ2,0,0) are obtained for
N = 9.

The set of Eqs. (48) and (49) has the following fixed-
point structure as N is varied. The noninteracting fixed point
(λ1,λ2) = (0,0) is repulsive with (θ1,θ2) = (ε,ε). For all N

there exists an interacting “Heisenberg” fixed point “H” with
U(N ) symmetry at

H : (λ1�, λ2�) =
(

ε

2(N + 4)
,0

)
(50)

with

(θ1,θ2) =
(

−ε,
N − 2

N + 4
ε

)
. (51)

We recognize this fixed point to be the generalization towards
N field components of the interacting fixed points found in
Sec. III A (N = 5) and Sec. III B (N = 9).

The fixed point H is stable for N < 2 and unstable for
N > 2. The change in stability at N = 2 can be understood
from a stability exchange with yet another fixed point of the
system. Indeed, the flow equations feature two more fixed
points B1 and B2 with couplings

B1 : (λ1�,λ2�) =
(

f − Nξ

4h
,

g + 3ξ

2h

)
ε, (52)

B2 : (λ1�, λ2�) =
(

f + Nξ

4h
,

g − 3ξ

2h

)
ε, (53)

where f = 48 + N (N − 4), g = N (N + 1) − 12, ξ =√
48 − 24N + N2, h = 3f + Ng > 0. The fixed points

B1,2 are real for 48 − 24N + N2 > 0, which requires
either N < 4(3 − √

6) = 2.20 or N > 4(3 + √
6) = 21.8

components of the field. As these critical values of N are
approached from below or above, respectively, the fixed
points B1 and B2 collide (ξ = 0) and mutually annihilate
each other. For N = 2, fixed point B1 coincides with H
(λ1� = ε

12 , λ2� = 0) and exchanges stability with it. We have
the following stable fixed points as N varies:

(1) For N < NH, four fixed points exist, only H is stable.
(2) For NH < N < N−, four fixed points exist, only B1 is

stable with λ2� < 0.
(3) For N− < N < N+, only the Gaussian and Heisenberg

fixed points exist, and none of them is stable.
(4) For N+ < N , four fixed points exist, only B2 is stable

with λ2� > 0.
To one loop order we have NH = 2 + O(ε) and N± = 4(3 ±√

6) + O(ε). The correlation length exponent ν is given by

ν = 1

2
+ N + 1

2
λ1� + 1

2
λ2� + O(ε2) (54)

so that for H we obtain ν = 1
2 + N+1

4(N+4)ε + O(ε2), which is the
exponent at the Wilson-Fisher fixed point of the O(2N ) model,

whereas the fixed points B1 and B2 lie within a distinct “chiral”
universality class, as pointed out first by Kawamura [43,44].
The anomalous dimension for N = 2 at both H and B1 reads
as η = ε2

48 + O(ε3) [47], and the susceptibility exponent at H
is related to ν and η via the scaling relation γ = ν(2 − η) =
2ν + O(ε2).

The coincidence of the fixed points H and B1 for N = 2 and
their instability for N � 3 indicates that higher-loop terms in
the RG beta functions play a crucial role for the cases N =
2,3 that are relevant for superconductors with cubic anisotropy.
The fixed-point structure of S ′ has been investigated in the
context of frustrated magnetism. To see the correspondence
write ϕa = 1√

2
(σa + iτa), so that

S ′ =
∫

ddx

(
1

2
σa(−∇2)σa + 1

2
τa(−∇2)τa

+ (λ̄1 + λ̄2)

4
(	σ 2 + 	τ 2)2 + λ̄2[(	σ · 	τ )2 − 	σ 2 	τ 2]

)
, (55)

which coincides with the spin model given by

S ′ =
∫

ddx

(
1

2

∑
α

	ψα · (−∇2) 	ψα + ū

4!

∑
α

( 	ψ2
α

)2

+ v̄

4!

∑
α,β

[
( 	ψα · 	ψβ)2 − 	ψ2

α
	ψ2

β

]⎞⎠ (56)

upon identifying 	ψ1 = 	σ , 	ψ2 = 	τ with α,β = 1,2, and ū =
6(λ̄1 + λ̄2), v̄ = 12λ̄2.

The spin model in Eq. (56) constitutes an O(N ) × O(2)
symmetric field theory that has been approached from various
theoretical and experimental directions. The three-loop ε

expansion yields [41,45]

NH = 2 − ε + 1.29ε2 + O(ε3), (57)

N− = 2.20 − 0.57ε + 0.99ε2 + O(ε3), (58)

N+ = 21.80 − 23.43ε + 7.09ε2 + O(ε3). (59)

We observe rather bad convergence properties to this loop
order. The six-loop perturbative RG in fixed dimension d = 3
predicts stable fixed points for both N = 2,3 with u�,v� > 0
[46], although this is in conflict with three-loop order results in
the same scheme. Note that the fixed points in fixed dimension
d = 3 need not be smoothly connected to H and B1,2 that are
described by Eqs. (57) and (58). The predicted fixed points
for N = 2,3 correspond to second-order phase transitions
with universal exponents, and since they feature λ2� �= 0,
they are in the chiral universality class. As is carefully dis-
cussed in Refs. [42], there exists strong evidence conflicting a
second-order phase transition, crucially, a negative anomalous
dimension in Monte Carlo results, and distinct experimental
systems that observe some scaling, but with nonuniversal
exponents. Based on these observations and a study with the
nonperturbative RG, it is then argued that the transition is first
order but with an extended regime of scaling because of the
proximity of a complex fixed point close to the RG trajectory.

For the cubic anisotropic system with N = 3 the addi-
tional quartic termλC

∑
a<b |χa|2|χb|2 = λC

2 (| 	χ |4 − ∑
a |χa|4)
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introduces a further marginal operator that influences the RG
flow. In particular, for λ2 = 0 the system may feature a stable
fixed point with cubic symmetry [41]. For the applications that
are relevant here, however, we have λ2 �= 0. For a discussion
of the three-loop ε expansion of the model with λ1,2,C, see
Ref. [53]. The nonperturbative RG flow of the O(3) × O(2)
symmetric model with λC = 0 and its relevance for experi-
ments with spin-1 Bose-Einstein condensates has been laid
out in Refs. [48,49].

IV. SUPERCONDUCTIVITY IN LUTTINGER SEMIMETALS

In this section we discuss the significance of the structure
of the RG flow for the complex tensor order superconducting
transition in Luttinger semimetals. For this purpose, we first
derive the initial conditions for the bosonic RG flow from
the underlying fermionic model at the mean-field level. We
then discuss the implication of the running of couplings for
the phase transitions of the system. Then, we investigate the
influence of cubic anisotropy.

The Lagrangian for spin- 3
2 Luttinger electrons at an

isotropic three-dimensional quadratic band-touching point
with local short-range interactions is given by

Lψ = ψ†[∂τ + da(−i∇)γa − μ]ψ + gs(ψ
†γ45ψ

∗)(ψTγ45ψ)

+ gd(ψ†γaγ45ψ
∗)(ψTγ45γaψ), (60)

with ψ a four-component Grassmann spinor, {γa} a set of five
anticommuting 4 × 4 Dirac matrices such that γ1,2,3 are real
and γ4,5 are imaginary, γ45 = iγ4γ5, and coupling constants
gs and gd. The chemical potential is denoted by μ. We use
units such that h̄ = kB = 2M = 1 with electron mass M . The
Lagrangian for the electrons is defined with respect to an
ultraviolet momentum cutoff �. A transition towards complex
tensor order is induced for gs = 0 and gd = −g < 0. At
nonzero temperature T > 0 we can integrate out the fermions
on the mean-field level to obtain a Ginzburg-Landau theory for
the order-parameter field �a = 〈ψTγ45γaψ〉.

When integrating out the fermions, we generate kinetic
terms for the field �a(τ,x), which result in fluctuations of the
order-parameter field close to the second-order phase transition
with 〈�a〉 = 0. The corresponding Ginzburg-Landau effective
action in the isotropic case is given by

S
 =
∫ 1/T

0
dτ

∫
d3x

(
�∗

a

[
rδab + Zδab∂τ − Xδab∇2

+ Y√
3
Jabcdc(−i∇)

]
�b + q1| 	�|4 + q2| 	�2|2

)
. (61)

This bosonic theory is defined with respect to an ultraviolet
momentum cutoff 
 ∼ T 1/2 that we identify with the tem-
perature of the microscopic fermionic theory. The coefficients
r,X,Y,Z,q1,q2 are functions of g,μ,T ,� and are given in
Appendix E. Importantly, no quartic term Q3 is generated at
the mean-field level so that the quartic theory has an accidental
SO(5) × U(1) symmetry. Since temporal fluctuations with fre-
quency ωn = 2πnT (n ∈ Z) are suppressed for n �= 0, the fluc-
tuations close to the transition are τ independent: �a(τ,x) =∑

n �a(x,n)eiωnτ ≡ �a(x). The critical theory with cutoff 


can then be written as

S
 =
∫

d3x

(
ϕ∗

a

[
− δab∇2 + K
√

3
Jabcdc(−i∇)

]
ϕb

+ λ̄1
| 	ϕ|4 + λ̄2
| 	ϕ2|2
)

, (62)

where we applied a field redefinition ϕa ∝ T −3/4�a . From this
expression for S
 the initial values of the couplings K(b) and
λ1,2,3(b) for b = 1 can be read off. We explicitly construct
Eq. (62) from Eq. (61) in Appendix E, where we also give the
expressions for the initial values used in the following.

At the mean-field level, the fermion system with gs = 0 and
gd = −g < 0 features two qualitatively distinct second-order
phase transitions towards complex tensor order, which we refer
to as the strong- and weak-coupling transitions, respectively.
The mean-field phase diagram is discussed in Ref. [18]. The
strong-coupling transition appears for couplings succeeding a
critical value g > gc, and for high relative temperatures Tc ∼
�2. In particular, it persists for μ = 0. It features λ2
 < 0
and thus real nematic order develops at the transition. The
weak-coupling transition, on the other hand, only appears for
finite chemical potential μ > 0, at exponentially small critical
temperatures Tc 
 μ, and for arbitrarily weak coupling g. Due
to λ2
 > 0 at this transition, genuinely complex orders that
break time-reversal symmetry are energetically favored. We
thus conclude that the strong- and weak-coupling transitions
are initialized, respectively, in the lower and upper half-planes
of the flow diagram for u = 6(λ1 + λ2) and v = 12λ2 shown
in Fig. 1.

We first study the strong-coupling transition for μ = 0 with
critical temperatures Tc/�

2 > 0.291. (For smaller Tc/�
2 the

mean-field transition is of first order.) In this regime we find
λ1
 ∼ 1 and λ2
 ∼ −1 so that u
 = 6(λ1
 + λ2
) � 0 and
K
 ∼ 0.5. Consequently, a negative coupling λ3 is generated
during the flow. The effect of the nonzero λ3 onto the running
of λ1,2 is negligible. In particular, due to the large value of
|λ2
| the flow trajectories rapidly enter the instability region
of u(b) < 0 for b > b0 with b0 ∼ 1. As a result, a first-order
transition is induced due to fluctuations. The flow is depicted
in Fig. 3.

At the weak-coupling transition for g → 0 and Tc/μ 
 1,
we have λ1
 = 2λ2
 > 0. In this regime we have K
 = 0.86
and due to the ratio λ2
/λ1
 = 1

2 being larger than 1 − 1√
2

=
0.29 a positive coupling λ3 is induced. The initial values of
λ1,2 are tiny so that the flow is initialized close to the two
fixed points and the flow of λ3 has a quantitative but small
influence on the other two couplings. The RG trajectories are
repelled from the fixed points and eventually flow into a region
of instability, again indicating a fluctuation-induced first-order
transition. However, due to the small initial values, the running
couplings λm(b) stay in a region of parameter space with stable
quartic potential for a sufficiently long RG time b < b0 with
b0 ∼ 10. The slowing down of the flow in the stable region
results from the vicinity of the interacting fixed point. Further,
this proximity of the RG trajectory to the interacting fixed point
might yield a certain range of temperatures where scaling is
observed, despite the transition being of first order. The flow
is visualized in Fig. 4.
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FIG. 3. Strong-coupling transition in isotropic Luttinger
semimetals. Upper panel: the solid lines, from top to bottom,
show the scale evolution of the running couplings λ1(b) (blue
line), λ3(b) (magnified by a factor of 10, orange line), λ2(b) (red
line). They rapidly enter the region of (−,−,+) in Table I and
the stability criterion is violated because λ1 + λ2 + 4

3 λ3 < 0 for
b > b0 ∼ 1, indicating a fluctuation-induced first-order transition.
The dashed lines show the result of integrating the flow for K = 0
(same color scheme), which constitutes a reasonable approximation.
Lower panel: the solid line represents the evolution of the couplings
u = 6(λ1 + λ2) and v = 12λ2 projected onto the plane with λ3 = 0
(see Fig. 1 for comparison). Arrows point towards the infrared. The
dashed line again constitutes the flow when setting K = 0. In the
latter case, the instability is indicated by u < 0. In the plots we chose
T/�2 = 0.3 as the sole input parameter and set ε = 1.

The size of the scale b0 at which the flow enters the region of
instability gives an indication on the temperature range where
critical fluctuations are important and the size of the jump
of the order parameter. For b0 � 1, as occurs for the weak-
coupling transition with b0 ∼ 10, only the temperature interval
|T − Tc| ∼ Tc/b

2
0 in the vicinity of the transition temperature

shows the fluctuation-induced first-order transition. Outside
this temperature range, mean-field theory gives a solid estimate
of the size of the order parameter. The jump of the order
parameter is thus delimited by the mean-field value for the
gap �MF ∼ |T − Tc| to be �MF/b

2
0. Consequently, both the

critical region and the order-parameter jump are very small at
the weak-coupling transition and it may thus appear continuous
in experiment or numerical simulation. If b0 is not particularly
large, as in the case of the strong-coupling transition, a similar
estimate is more difficult to make. In fact, as we expound in
the following section, the strong-coupling transition should

FIG. 4. Weak-coupling transition in isotropic Luttinger semimet-
als. The color and line scheme is chosen as in Fig. 3 for the
strong-coupling transition. Therefore, we focus on pointing out the
differences here. Upper panel: the flow enters the regime of (−,+,+)
in Table I after a relatively long RG time b. An instability is signaled
by λ1 + 4

3 λ3 < 0 for b > b0 ∼ 10. Due to the large value of b0, the
fluctuation-induced first-order transition is only weak. Lower panel:
the slowing down of the flow before entering the region of instability
can be explained by the flow trajectory being close to the interacting
fixed point (red mark). This proximity, in contrast to the flow in Fig. 3,
is induced by the small initial couplings. The dashed line representing
the flow for K = 0 deviates more significantly since the interacting
fixed point for K = 0 is further to the right in the plot (see Fig. 2). In
the plots we choose μ/�2 = 0.4 and T/μ = 0.005, which are values
motivated from half-Heusler superconductors [18], and set ε = 1.

for several reasons rather be treated with a method that
incorporates both fermionic and bosonic fluctuations on an
equal footing such as the functional renormalization group.

The quartic coupling λ3 �= 0 that is generated during the
RG flow removes the accidental SO(5) × U(1) symmetry
of the quartic mean-field free energy. Since the effect is
small, however, we can treat λ3 as a small correction such
that the signs of the couplings λ1,2 determine whether the
order parameter is real (| 	�2| = | 	�|2) or genuinely complex
( 	�2 = 0), and the sign of λ3 determines the energy of distinct
states within this manifold of potential ground states. For the
strong-coupling transition, we have λ1 > 0 and λ2 < 0 and
real orders are favored, so that the additional quartic term
λ3Q3 → 2λ3| 	�|4 does not lift the degeneracy of different real
configurations. Instead, as laid out in Ref. [18], the sextic terms
in the free energy favor the uniaxial nematic state with 	� =
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�(0,1,0,0,0). For the weak-coupling transition with λ1,λ2 >

0, the manifold of states 	� satisfying 	�2 = 0 is energetically
degenerate for λ3 = 0. If λ3 > 0, Q3 needs to be minimized
which corresponds to Q3 → 4

3 | 	�|4 and 	� = �√
2
(1,i,0,0,0).

In contrast, for λ3 < 0, Q3 needs to be maximized, which
corresponds to Q3 → 4| 	�|4 and 	� = �√

2
(1,0,0,0,i) [37].

In the presence of cubic anisotropy, the Lagrangian in
Eq. (60) receives an additional contribution

Laniso = ψ†

(
δ ·

∑
a

sada(−i∇)γa

)
ψ, (63)

with dimensionless parameter δ ∈ [−1,1] and s1,2 = −1 and
s3,4,5 = +1. (We follow the conventions of Ref. [15].) For
nonzero δ, the quadratic mass term for 	ϕ splits into two
distinct contributions rE and rT for 	η and 	χ as in Eq. (28).
Evaluating the expressions in Eqs. (E7) and (E8) we find
that small δ < 0 favors N = 2 fluctuating components, and
small δ > 0 favors N = 3 fluctuating components. These
statements are true for both the strong- and weak-coupling
transitions [see Eqs. (E21)–(E28)]. From the band structure
of YPtBi given in Ref. [14] we determine δ = −0.19 [18],
which is considerably small and negative, so that the number
of fluctuating components is likely reduced to N = 2. The
critical theory is then described by the O(2) × O(2) symmetric
effective action SE given in Eq. (29). The phase structure of
this model has been discussed at the end of Sec. III C. Note that
due to λ1,2 > 0, the couplings for the weak-coupling transition
are within the domain of attraction of the proposed chiral fixed
points for N = 2,3 with u�,v� > 0 [46], if they exist.

V. SUMMARY AND OUTLOOK

In this work, we have analyzed the critical properties of the
complex tensor ordering phase transition in three dimensions.
In the following, we summarize our findings and point out
directions along which the present calculations should be
improved in future studies.

To capture the critical fluctuations of the complex tensor
field, we derived the low-energy effective action for the bosonic
order-parameter field and studied the scale dependence of its
couplings by means of the perturbative RG. We observed
that both the kinetic and interaction terms of the bosonic
Lagrangian feature peculiar features that are not commonly
encountered in O(N ) models for phase transitions. These
features result both from the three dimensionality of space and
the irreducibility of the tensor field. Since they are intimately
tied to the three-dimensional setting, the perturbative RG close
to the critical dimension of four is somewhat problematic.
Studying three complementary models for the critical field
theory, however, we found qualitatively consistent results in
all three of them, which gives us some confidence on their
reliability (within the confines of perturbation theory).

For the isotropic system with N = 5 fluctuating com-
ponents we found that, although mean-field theory for a
particular microscopic model of complex tensor order may
predict a second-order phase transition, fluctuations of the
order parameter induce a first-order phase transition. However,
since the flow equations permit an unstable interacting fixed
point, RG trajectories that are initiated in its vicinity might

show a slowing down of the running of couplings, so that
the corresponding transition is only weakly first order and
might appear continuous in experiment, with an extended
temperature range that shows scaling behavior of observables.
The absence of a weak-coupling fixed point in the plane
spanned by (λ1,λ2,λ3) is in agreement with other studies on the
N -component model S ′, which do not find an attractive fixed
point for N = 5.

We have further shown that cubic anisotropy reduces the
number of fluctuating components of the order-parameter field
to N = 2,3 and that the associated critical field theories are
identical to those of frustrated magnets. The critical properties
of the latter, on the other hand, are still debated among the
experts in the field, and the question on the order of the
transition essentially remains open.

When the bosonic theory is derived from the underly-
ing microscopic model for isotropic Luttinger semimetals,
it describes critical phenomena at the putative second-order
phase transitions towards complex tensor order derived in
Ref. [18]. We have shown that both the strong- and weak-
coupling transitions of the model become of first order due
to fluctuations, the second one, however, only weakly so. We
have further shown that cubic anisotropy reduces the number of
field components to N = 2,3, and for YPtBi the microscopic
parameters are such that N = 2 and the flow is initialized
for small u�,v� > 0. It thus lies within the attractive domain
of the proposed chiral fixed point of the O(2) × O(2) model
and experiments on the second-order phase transition in the
half-Heusler compound may thus contribute to the outstanding
question of the critical physics of this model.

Our analysis indicates that the phase structure of complex
tensor order is determined by the strong-coupling regime of
the model because both (i) the runaway flow of couplings and
(ii) the potential existence of additional strong-coupling fixed
points in the plane (λ1,λ2,λ3) is related to physics outside
the perturbatively accessible domain. In order to improve
on the results presented here, it is thus necessary to apply
genuinely nonperturbative methods such as classical Monte
Carlo computations [41,54,55] or the functional renormal-
ization group (FRG) [56–64]. Both methods can explicitly
resolve the first-order transition and the jump of the order
parameter at the transition because they allow to track the
RG flow of higher-order terms in the field beyond the quartic
level and their applicability is, in principle, not limited to the
weak-coupling regime. In particular, our derivation of the RG
beta functions presented in Appendix D can be generalized to
the local potential approximation of the exact FRG equation
by means of a few suitable modifications. A definite answer
to the existence of the chiral fixed points in the cubic models
for frustrated magnetism may eventually be obtained from the
conformal bootstrap approach [65–67].

In our application to the microscopic Luttinger semimetal
we first integrated out the fermion fluctuations on the mean-
field level and then incorporated bosonic fluctuations. This
procedure is a good approximation for the corresponding
weak-coupling transition, where the effect of bosonic fluctua-
tions is small and we have a clear separation of energy scales
where fermionic or bosonic contributions to the phase structure
are important. At the strong-coupling transition, however, we
find a strong renormalization of the quartic self-interaction
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with a divergence of the runaway flow for b = b0 ∼ 1. For this
transition, it would thus be more reasonable to simultaneously
integrate out fermionic and bosonic fluctuations to account for
their mutual coupling and feedback. The FRG could be used
as a tool to resolve this interplay as has been demonstrated
in related models for relativistic [68–74] and nonrelativistic
field theories [75–77], where the finite-temperature phase
structure including both first- and second-order transitions was
addressed. A generic obstacle of the simultaneous inclusion of
fluctuations of fermions and bosons in this setting consists in
the regulator dependence that sets the relative scale between
the fermionic and the bosonic cutoffs. This effect influences
predictions for observables in any finite truncation, although
the effect is typically small [78–80].
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APPENDIX A: GELL-MANN MATRICES

In this Appendix we give the explicit representation of
real Gell-Mann matrices {�a} in three and four dimensions
that is used in this work. Generally, the matrices are sym-
metric traceless and normalized such that tr(�a�b) = 2δab.
In d dimensions, they are d × d matrices. They constitute an
orthogonal basis for symmetric traceless matrices, and every
symmetric traceless matrix M can be represented as M =
Ma�

a with Ma = 1
2 tr(M�a). In particular, this decomposition

can also be applied if the matrix M has complex entries.
In three dimensions, the five real Gell-Mann matrices read

as

�1 =
⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠, �2 = 1√

3

⎛
⎝−1 0 0

0 −1 0
0 0 2

⎞
⎠,

�3 =
⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠, �4 =

⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠,

�5 =
⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠. (A1)

Note that the first two matrices are diagonal, whereas the
last three matrices are off diagonal. In four dimensions, the
corresponding nine matrices are

�1 =

⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠, �2 = 1√

3

⎛
⎜⎝

−1 0 0 0
0 −1 0 0
0 0 2 0
0 0 0 0

⎞
⎟⎠,

�3 =

⎛
⎜⎝

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞
⎟⎠, �4 =

⎛
⎜⎝

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎞
⎟⎠,

�5 =

⎛
⎜⎝

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠, �6 =

⎛
⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎞
⎟⎠,

�7 =

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠, �8 =

⎛
⎜⎝

0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

⎞
⎟⎠,

�9 = 1√
6

⎛
⎜⎝

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 3

⎞
⎟⎠. (A2)

We define the J symbols through Eq. (5). Note that since the
trace is cyclic, Jab...c is invariant under a cyclic permutation of
its indices. Furthermore, since tr(A) = tr(AT) and the matrices
{�a} being symmetric we have

Jab...cd = tr(�a�b . . . �c�d ) = tr([�a�b . . . �c�d ]T)

= tr(�d�c . . . �b�a) = Jdc...ba, (A3)

so that the J ’s are also invariant under reversing the order
of their indices. These two operations exhaust all possible
permutations of three indices and therefore the order of indices
in Jabc is irrelevant.

Most values of Jabc vanish. In three dimensions, the nonva-
nishing ones are

J112 = − 2√
3
, J133 = 1, J144 = −1, J222 = 2√

3
,

J233 = 1√
3
, J244 = 1√

3
, J255 = − 2√

3
, J345 = 1. (A4)

Note that Jabc ∝ ∫
q da(q)db(q)dc(q). See Appendix C of

Ref. [12] for a general discussion of properties of Gell-Mann
matrices and da functions in d dimensions.

APPENDIX B: RELATION TO U(3) × U(3) SYMMETRIC
MATRIX MODELS

In this appendix we clarify the difference of our model (and
the corresponding RG flow) to the U(3) × U(3) symmetric
matrix model of Refs. [30–32] more explicitly. For this,
consider an arbitrary 3 × 3 complex matrix � described by
the effective action

S̃[�] =
∫

d3x

[
1

2
tr(∇�† · ∇�) + u1

4
[tr(�†�)]2

+ u3tr(�†��†�)

]
. (B1)

Then, S̃ is invariant under the U(3) × U(3) transformation
� → �′ = U�V † with U,V ∈ U(3). Furthermore, since
a term u2|tr(�2)|2 breaks this symmetry, the coupling
u2 cannot be generated from u1,3 if it is initially absent:
u2 = 0 =⇒ u̇2 = 0.

At first sight, S̃ appears to correspond to the theory
described by S in Eq. (8) when λ2 = 0. This, however, is
not the case since for a symmetric traceless matrix φ, the
transformed matrix φ′ = UφV † is no longer symmetric and

064504-12



CRITICAL PHENOMENA AT THE COMPLEX TENSOR … PHYSICAL REVIEW B 97, 064504 (2018)

traceless, so that the U(3) × U(3) transformation was not an ad-
missible operation. To make the situation more transparent, we
parametrize � by its N = 9 complex components according to

� =
9∑

a=1

ζa�
a, (B2)

where �a = �a for a = 1, . . . ,5 with the real 3 × 3

Gell-Mann matrices from Eq. (A1), �6 =
√

2
313, and we

employ the additional imaginary Gell-Mann matrices

�7 =
⎛
⎝ 0 0 i

0 0 0
−i 0 0

⎞
⎠, �8 =

⎛
⎝0 0 0

0 0 i

0 −i 0

⎞
⎠,

�9 =
⎛
⎝ 0 i 0

−i 0 0
0 0 0

⎞
⎠. (B3)

The completeness of the set {�a} to represent any complex 3 ×
3 matrix results from the fact that we can uniquely decompose
each such matrix into a diagonal, symmetric-traceless, and
antisymmetric-traceless part. Introduce further the H symbols

Hab...c = tr(�a�b . . . �c). (B4)

The action and partition function for the U(3) × U(3)
symmetric model are then given by

S̃[ζ ] =
∫

d3x(ζ ∗
a (−∇2)ζa + u1(ζ ∗

a ζa)2 + u3Habcdζ
∗
a ζbζ

∗
c ζd )

(B5)

and

Z̃ =
∫

Dζ Dζ ∗e−S̃[ζ ], (B6)

respectively. In contrast, S purely in terms of ϕa reads as

S[ϕ] =
∫

d3x(ϕ∗
a (−∇2)ϕa + λ1(ϕ∗

aϕa)2 + λ2|ϕaϕa|2

+ λ3Jabcdϕ
∗
aϕbϕ

∗
c ϕd ) (B7)

with partition function

Z =
∫

Dϕ Dϕ∗e−S[ϕ]. (B8)

The irreducibility of φ is fully incorporated by the Jabcd vertex
in the quartic term of S. In this representation it is then obvious
that the SO(3) × U(1) and U(3) × U(3) symmetric models
differ in two crucial aspects: first, the former comprises five
fluctuating complex components, the latter comprises nine
fluctuating complex components. Second, they explicitly
differ in the vertices λ3Jabcd and u3Habcd that enter the quartic
terms λ3tr(φ†φφ†φ) and u3tr(�†��†�), respectively.

As a proof of principle we derive the flow equations for the
U(Nf ) × U(Nf ) symmetric model for Nf = 3 by means of the
procedure outlined in Appendix D. For this we replace λ̄1 →
u1, λ̄2 → u2 = 0, λ̄3 → u3, and Jabcd → Habcd in Eq. (D15).
Note, however, that the identities for theJ symbols given below
Eq. (D15) are no longer valid, so that the full expressions
have to be inserted, that is, 2Jacbd → Hacbd + Hcbda and

4Jabcd → Habcd + Hadcb + Hcbad + Hcdab. Equations (D12)–
(D14) remain valid. Summing over nine complex components
and rescaling the couplings by a constant prefactor, we obtain

u̇1 = εu1 − 13
3 u2

1 − 4u1u3 − u2
3, (B9)

u̇2 = 0, (B10)

u̇3 = εu3 − 2u1u3 − 2u2
3. (B11)

This agrees for Nf = 3 with the expressions

u̇1 = εu1 − N2
f + 4

3
u2

1 − 4Nf

3
u1u3 − u2

3, (B12)

u̇3 = εu3 − 2u1u3 − 2Nf

3
u2

3 (B13)

given in Ref. [30].

APPENDIX C: INEQUALITIES FOR TENSOR INVARIANTS

In this Appendix we derive the inequalities (25). The first
two, 0 � | 	ϕ2|2 � | 	ϕ|4, are obviously true. For the remaining
two, one notes first that every square matrix φ can be written
in polar decomposition as

φ = HU, H Hermitian, U unitary. (C1)

We briefly recall the proof of this fact. First, note that φφ† is
Hermitian and non-negative, so there is a diagonal matrix D2

with non-negative entries, and a unitary V , such that φφ† =
V D2V † = (V DV †)(V DV †) = H 2. The matrix H := V DV †

is Hermitian and positive semidefinite.Typically, φ (and thus
H ) will be invertible. In these cases define U := H−1φ, which
is unitary. In general, even for singular φ, the singular value
decomposition guarantees that there are unitary V,W such that
φ = V DW † and, consequently, U = V W †.

The Hermitian matrix H is characterized by three non-
negative eigenvalues (h1,h2,h2). We have

| 	ϕ|4 = 1
4 [tr(φ†φ)]2 = 1

4 [tr(H 2)]2 = 1
4

[
h2

1 + h2
2 + h2

3

]2
.

(C2)

For the remainder of this appendix we normalize | 	ϕ|4 = 1 so
that h2

1 + h2
2 + h2

3 = 2. We then find

tr(φ†φφ†φ) = tr(H 4) = (
h4

1 + h4
2 + h4

3

)
= (

h4
1 + h4

2 + [
2 − h2

1 − h2
2

]2)
. (C3)

The minima and maxima of this expression can readily
be determined in the planar area 0 � h2

1 + h2
2 � 2.

For (h1,h2,h3) = √
2/3(1,1,1) we have minimal value

tr(φ†φφ†φ) = 4
3 . The maximal value tr(φ†φφ†φ) = 4 is

obtained when two of the hi vanish, say, (h1,h2,h3) =
(0,0,

√
2). In the derivation of the minimal and maximal values

for this quartic invariant we only used the decomposition in
Eq. (C1), so that the finding is true for any square 3 × 3 matrix
not necessarily symmetric or traceless.

Note that in the same manner, the maximal and minimal
values of the sextic invariant |tr(φ3)|2 can be derived. Since for
every symmetric traceless 3 × 3 matrix we have

tr(φ3) = 3det(φ), (C4)
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we have

|tr(φ3)|2 = 9h2
1h

2
2h

2
3 = 9h2

1h
2
2

(
2 − h2

1 − h2
2

)
. (C5)

We used here det(HU ) = det(H )det(U ) and |det(U )| = 1
for U unitary. The maximal value |tr(φ3)|2 = 8

3 is obtained
for (h1,h2,h3) = √

2/3(1,1,1). The obvious minimal value
|tr(φ3)|2 = 0 is obtained for φ being singular (i.e., noninvert-
ible), which means that at least one of the hi vanishes.

APPENDIX D: DERIVATION OF RENORMALIZATION
GROUP EQUATIONS

In order to compute the running of the quartic couplings, we
employ here the general formula for the one-loop correction to
the effective potential �U (φ), which constitutes an economic
way to access the beta functions forK �= 0. The running of cou-
plings can equivalently be derived from standard perturbation
theory [52]. We also performed this approach with agreeing
results, but will not present it here. We define the effective
potential as the part of the effective Lagrangian that does not
depend on derivatives of the field. A saddle-point expansion of
the path integral (see for instance the lecture notes [64]) then
yields the “trace-log formula”

�U (φ) = 1

2
tr

∫ ′

q
ln G−1(φ,q), (D1)

where G−1(φ,q) is the inverse perturbative propagator in the
presence of a spatially constant background field φ. It is related
to the second functional derivative of S[φ] by means of

δ2S

δϕa(q)δϕb(q′)
[φ(x) = φ] = G−1

ϕϕ,ab(φ,q)δ(d)(q − q′),

δ2S

δϕ∗
a (q)δϕb(q′)

[φ(x) = φ] = G−1
ϕ∗ϕ,ab(φ,q)δ(d)(q − q′), (D2)

and

G−1 =
(
G−1

ϕϕ G−1
ϕϕ∗

G−1
ϕ∗ϕ G−1

ϕ∗ϕ∗

)
. (D3)

The trace in Eq. (D1) sums over all internal field degrees of
freedom, which here comprises (ϕa,ϕ

∗
a ). The presence of the

background field allows us to conveniently take derivatives
of �U (φ), which, in this way, serves as generating function
for the one-loop corrections of all couplings of the effective
potential. For instance, we have

∂�U

∂ϕa

(φ) = 1

2
tr

∫ ′

q
G(φ,q)

∂G−1(φ,q)

∂ϕa

. (D4)

We define the momentum-shell integration by means of∫ ′

q
(. . . ) = 1

(2π )d

∫ 



/b

dq qd−1
∫
Sd−1

(. . . ). (D5)

The angular momentum integration will be carried out in either
three or four dimensions, depending on the model.

In order to compute the running of the quartic couplings,
we first determine

I1 = ∂4�U

∂ϕ∗
1∂ϕ∗

1∂ϕ1∂ϕ1

∣∣∣∣
φ=0

, (D6)

I2 = ∂4�U

∂ϕ∗
1∂ϕ1∂ϕ∗

2∂ϕ2

∣∣∣∣
φ=0

, (D7)

I3 = ∂4�U

∂ϕ∗
1∂ϕ∗

3∂ϕ4∂ϕ5

∣∣∣∣
φ=0

. (D8)

Writing U = λ̄1| 	ϕ|4 + λ̄2| 	ϕ2|2 + λ̄3tr(φ†φφ†φ), we identify

I1 = 4�λ̄1 + 4�λ̄2 + 8�λ̄3, (D9)

I2 = 2�λ̄1 + 8
3�λ̄3, (D10)

I3 = −4�λ̄3, (D11)

where �λ̄m is the one-loop correction to λ̄m. The linear set
of equations (D9)–(D11) can be inverted and we eventually
obtain

�λ̄1 = 1
2I2 + 1

3I3, (D12)

�λ̄2 = 1
4I1 − 1

2I2 + 1
6I3, (D13)

�λ̄3 = − 1
4I3. (D14)

Since the one-loop correction depends on b, we can define
running couplings λ̄m(b) = λ̄m(1) + �λ̄m(b) and the renor-
malization group flow ˙̄λm = dλ̄m(b)/d ln b. As we increase
b, we successively lower the cutoff of the theory and thereby
include fluctuations at high momenta to obtain an effective
infrared theory.

We first derive the flow equations for the quartic couplings
for K = 0. We have

G−1
ab (φ,q) =

(
2λ̄2( 	ϕ2)∗δab (q2 + 2λ̄1| 	ϕ|2)δab

(q2 + 2λ̄1| 	ϕ|2)δab 2λ̄2( 	ϕ2)δab

)

+
(

2λ̄1ϕ
∗
aϕ

∗
b 2λ̄1ϕ

∗
aϕb + 4λ̄2ϕaϕ

∗
b

2λ̄1ϕaϕ
∗
b + 4λ̄2ϕ

∗
aϕb 2λ̄1ϕaϕb

)

+
(

2λ̄3ϕ
∗
c ϕ

∗
dJacbd 4λ̄3ϕcϕ

∗
dJabcd

4λ̄3ϕ
∗
c ϕdJabcd 2λ̄3ϕcϕdJacbd

)
. (D15)

In the last line we employed Jcadb + Jcbda = 2Jacbd and
Jabcd + Jadcb + Jcbad + Jcdab = 4Jabcd , which follows from
the fact that we can cyclic permute the indices of Jab...c and
reverse their order (see Appendix A). We have

∂4�U

∂ϕ∗
a∂ϕ∗

b∂ϕc∂ϕd

∣∣∣∣
φ=0

= −1

2
tr

∫ ′

q
G

∂2G−1

∂ϕ∗
a∂ϕ∗

b

G
∂2G−1

∂ϕc∂ϕd

− 1

2
tr

∫ ′

q
G

∂2G−1

∂ϕ∗
a∂ϕc

G
∂2G−1

∂ϕ∗
b∂ϕd

− 1

2
tr

∫ ′

q
G

∂2G−1

∂ϕ∗
a∂ϕd

G
∂3G−1

∂ϕ∗
b∂φc

(D16)

with G = G(q) = G(φ = 0,q). We used that the field depen-
dence of G−1 is purely quadratic in the components ϕa , so that
derivatives of G−1 with respect to three or more fields vanish
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identically. For φ = 0 we can easily invert G−1 to obtain

Gab(q) = 1

q2

(
0 δab

δab 0

)
. (D17)

Furthermore, given the explicit expression in Eq. (D15), it is easy to determine the second derivatives of G−1 and eventually
perform the contractions by hand or with Mathematica. We arrive at

I1 = −8

(
9λ̄2

1 + 10λ̄1λ̄2 + 9λ̄2
2 + 116

3
λ̄1λ̄3 + 52

3
λ̄2λ̄3 + 452

9
λ̄2

3

)∫ ′

q

1

q4
, (D18)

I2 = −4

(
9λ̄2

1 + 4λ̄1λ̄2 + 4λ̄2
2 + 104

3
λ̄1λ̄3 + 32

3
λ̄2λ̄3 + 128

3
λ̄2

3

) ∫ ′

q

1

q4
, (D19)

I3 = 16

3
λ̄3(9λ̄1 − 6λ̄2 + 31λ̄3)

∫ ′

q

1

q4
. (D20)

Using
∫ ′

q
1
q4 = 1

2π2 

−ε ln b for ε → 0, rescaling the couplings according to λm = 1

2π2 

−ελ̄m, we arrive at the one-loop flow

equations (32)–(34).
Now, we determine the flow equations for arbitrary K . The sole change in the formulas is that we have to replace q2δab in the

off diagonal of G−1 in Eq. (D15) by

Dab(q) = q2δab + K√
3
Jabcdc(q) (D21)

from Eq. (23). Since this term is independent of the fields, it does not effect the vertices ∂2G−1/∂ϕ2 that enter the expressions for
I1,2,3. However, the additional kinetic term contributes to the propagator. We have

G(q) =
(

0 D(q)−1

D(q)−1 0

)
, (D22)

where D(q)−1 is the inverse of the 5 × 5 matrix D(q). Here, we can employ the general formula for the inverse of an invertible
5 × 5 matrix D given by

D−1 = 1

det(D)

(
1

24

[
(trD)4 − 6(trD)2tr(D2) + 3[tr(D2)]2 + 8(trD)tr(D3) − 6tr(D4)

]
15

− 1

6
[(trD)3 − 3(trD)tr(D2) + 2tr(D3)]D + 1

2
[(trD)2 − tr(D2)]D2 − (trD)D3 + D4

)
. (D23)

(The formula follows from the Cayley-Hamilton theorem.) For D = D(q) from Eq. (D21) we obtain

det(D) = 1
243 (3 + 2K)(3 − 2K)2(3 + K)2q10, (D24)

tr(D) = 5q2, (D25)

tr(D2) = 1
9 (45 + 14K2)q4, (D26)

tr(D3) = 1
9 (45 + 42K2 − 2K3)q6, (D27)

tr(D4) = 1
81 (405 + 756K2 − 72K3 + 50K4)q8. (D28)

The angular dependence introduced by the term proportional to K makes the loop integration more involved. However, since the
determinant is rotationally invariant, no angular dependence appears in the denominators. Consequently, the angular integration
can be carried out explicitly and yields simple rational coefficients in the beta functions. The full beta functions for K �= 0 are
found to be

λ̇1 = ελ1 + 1

35(3 + 2K)2(3 − 2K)2(3 + K)2

[−18(25515 + 17010K + 1953K2 + 3372K3 + 2228K4)λ2
1

− 72(2835 + 1890K + 1197K2 + 1308K3 + 484K4)λ1λ2 − 216(945 + 630K − 189K2 − 124K3 + 12K4)λ2
2

− 288(4725 + 3150K + 966K2 + 1200K3 + 592K4)λ1λ3 − 96(8505 + 5670K + 1197K2 + 1644K3 + 772K4)λ2λ3

− 16(48195 + 32130K + 19089K2 + 21036K3 + 10004K4)λ2
3

]
, (D29)
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λ̇2 = ελ2 + 1

35(3 + 2K)2(3 − 2K)2(3 + K)2

[−36K2(189 + 180K + 52K2)λ2
1

− 108(2835 + 1890K − 231K2 − 52K3 + 116K4)λ1λ2 − 18(14175 + 9450K + 2961K2 + 3660K3 + 1748K4)λ2
2

+ 48K2(441 + 420K + 52K2)λ1λ3 − 24(19845 + 13230K − 1449K2 − 204K3 + 716K4)λ2λ3

+ 16(19845 + 13230K + 3024K2 + 4056K3 + 1216K4)λ2
3

]
, (D30)

λ̇3 = ελ3 + 1

35(3 + 2K)2(3 − 2K)2(3 + K)2

[−162K2(3 + 2K)(7 + 2K)
(
λ2

1 − 4λ1λ2 + 2λ2
2

)
− 108(2835 + 1890K − 189K2 − 12K3 + 92K4)λ1λ3 + 216(3 + K)(315 + 105K + 52K3)λ2λ3

− 36(29295 + 19530K − 1029K2 + 756K3 + 1052K4)λ2
3

]
. (D31)

When expanding to quadratic order in K , we obtain Eqs. (38)–
(40). Note that since the beta functions diverge as |K| → 3

2 ,
the fixed-point couplings vanish accordingly to yield a solution
of λ̇i = 0. This behavior is visible in Fig. 2.

The computation of the flow equations for the four-
dimensional model Sd=4 in Eq. (43) follows the same steps
as for the three-dimensional model. We therefore only discuss
the necessary modifications. First, note that in order to project
onto the four couplings ḡm in

U = ḡ1| 	ϕ|4 + ḡ2| 	ϕ2|2 + ḡ3tr(φ†φφ†φ) + ḡ4tr(φ†2φ2),

(D32)

we need four terms Im. We choose

I1 = ∂4�U

∂ϕ∗
1∂ϕ∗

1∂ϕ1∂ϕ1

∣∣∣∣
φ=0

= 4�ḡ1 + 4�ḡ2 + 8�ḡ3 + 8�ḡ4,

(D33)

I2 = ∂4�U

∂ϕ∗
1∂ϕ1∂ϕ∗

2∂ϕ2

∣∣∣∣
φ=0

= 2�ḡ1 + 8

3
�ḡ3 + 8

3
�ḡ4,

(D34)

I3 = ∂4�U

∂ϕ∗
1∂ϕ∗

3∂ϕ4∂ϕ5

∣∣∣∣
φ=0

= −4�ḡ3 + 2�ḡ4, (D35)

I4 = ∂4�U

∂ϕ∗
3∂ϕ∗

7∂ϕ1∂ϕ6

∣∣∣∣
φ=0

= 2�ḡ4, (D36)

which leads us to

�ḡ1 = 1
2I2 + 1

3I3 − I4, (D37)

�ḡ2 = 1
4I1 − 1

2I2 + 1
6I3 − 1

2I4, (D38)

�ḡ3 = − 1
4I3 + 1

4I4, (D39)

�ḡ4 = 1
2I4. (D40)

In Eq. (D15) we add a term proportional to g4 according to

G−1
ab (φ,q) =

(
S(2)

ϕaϕb

[
S

(2)
ϕ∗

aϕb

]∗

S
(2)
ϕ∗

aϕb

[
S(2)

ϕaϕb

]∗

)
, (D41)

with

S
(2)
ϕ∗

aϕb
= (q2 + 2ḡ1| 	ϕ|2)δab + 2ḡ1ϕaϕ

∗
b + 4ḡ2ϕ

∗
aϕb

+ 4ḡ3ϕ
∗
c ϕdJabcd + 2ḡ4ϕ

∗
c ϕd (Jacbd + Jacdb),

(D42)

S(2)
ϕaϕb

= 2ḡ1ϕ
∗
aϕ

∗
b + 2ḡ2δab( 	ϕ2)∗ + 2ḡ3ϕ

∗
c ϕ

∗
dJacbd

+ ḡ4ϕ
∗
c ϕ

∗
d (Jabcd + Jbacd ). (D43)

The computation of G(q) requires to invert the 9 × 9 matrix

Dab(q) = q2δab + K

√
3

8
Jabcdc(	q) =: q2δab + δDab(q).

(D44)

Analogous to Eq. (D23), the general formula for the inverse
of a 9 × 9 matrix D is of the form D−1 = 1

det(D)

∑8
k=0 akD

k ,
where the coefficients k are functions of tr(Dn) with n � 8.
We expand D−1 to quadratic order in K . For this we employ

Dn = (q219 + δD)n

= q2n19 + nq2(n−1)δD + n(n − 1)

2
q2(n−2)δD2 + O(K3).

(D45)

Now, since tr(δD) = 0 this implies

tr(Dn) = 9q2n + n(n − 1)

2
q2(n−2)tr(δD2) + O(K3)

= 3

(
3 + 1

2
n(n − 1)K2

)
q2n + O(K3), (D46)

where we used tr(δD2) = 3K2q4. Further,

det(D) = (
1 − 3

2K2
)
q18 + O(K3). (D47)

We observe that the absence of terms linear in K in D−1

is related to tr(δD) = 0, which results from
∑

a Jaab = 0.
Since the latter equation holds for any dimension d [12], the
leading contributions to the beta functions in any d and to any
perturbative loop order is O(K2). [Note that the determinant
can also be expression in terms of tr(Dn) due to the Cayley-
Hamilton theorem.] Performing the angular integrals involved
in Im in Eqs. (D33)–(D36) in four dimensions and rescaling
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the couplings according to gm = 1
8π2 ḡm, we eventually arrive at

ġ1 = εg1 − (
26 + 73

3 K2
)
g2

1 − (8 + 8K2)g1g2 − (
8 + 14

3 K2
)
g2

2 − (
72 + 226

3 K2
)
g1g3 − 4K2(g2g3 + g2g4)

− (
56 + 176

3 K2
)
g2

3 − (40 + 42K2)g1g4 − (48 + 56K2)g3g4 − (
24 + 68

3 K2
)
g2

4 + O(K3), (D48)

ġ2 = εg2 − (
12 + 26

3 K2
)
g1g2 − (18 + 18K2)g2

2 − 1
3K2g1g3 − (4 + 4K2)g2g3 − (

2 + 4
3K2

)
g2

3 − 5
3K2g1g4

− (
36 + 112

3 K2)g2g4 − (4 + 4K2)g3g4 − (
18 + 52

3 K2)g2
4 + O(K3), (D49)

ġ3 = εg3 − 1
6K2

(
g2

1 + 2g2
2

) − (12 + 9K2)g1g3 + 2
3K2g2g3 − (

44 + 106
3 K2

)
g2

3 + 1
3K2g1g4 − (8 + 6K2)g2g4

+ (8 + 8K2)g3g4 − (
8 + 20

3 K2)g2
4 + O(K3), (D50)

ġ4 = εg4 − 1
6K2

(
g2

1 + 4g1g2 + 2g2
2

) + 2
3K2g1g3 − (

16 + 38
3 K2

)
g2g3 + (

12 + 32
3 K2

)
g2

3 − (
12 + 26

3 K2
)
g1g4

− (
8 + 14

3 K2
)
g2g4 − (40 + 32K2)g3g4 − (8 + 6K2)g2

4 + O(K3). (D51)

APPENDIX E: INITIAL VALUES FOR LUTTINGER SEMIMETALS FROM MEAN-FIELD THEORY

In this Appendix we summarize the initial values for the bosonic RG flow that is deduced from the mean-field theory for
Luttinger electrons at a three-dimensional quadratic band-touching point.

The coefficients in Eq. (61) are determined from the fermion-fermion loop (see Fig. 5 and Ref. [18]). After performing the
angular momentum averaging we have

r = 1

g
− �

10π2
+

∫ �

q

(
T

∑
n

−2q2
0 + 6

5q4 − 2μ2[
q2

0 + (q2 − μ)2
][

q2
0 + (q2 + μ)2

] + 1

5q2

)
, (E1)

q1 =
∫ �

Q

2q4
0 + q2

0

(− 36
5 q4 + 4μ2

) + 6
7q8 − 12

5 q4μ2 + 2μ4[
q2

0 + (q2 − μ)2
]2[

q2
0 + (q2 + μ)2

]2 , (E2)

q2 =
∫ �

Q

−q4
0 + q2

0

(
14
5 q4 − 2μ2

) − 27
35q8 + 2q4μ2 − μ4[

q2
0 + (q2 − μ)2

]2[
q2

0 + (q2 + μ)2
]2 , (E3)

Z = −2μ

5

∫ �

Q

5q4
0 + q2

0 (−26q4 + 10μ2) + q8 − 6q4μ2 + 5μ4[
q2

0 + (q2 − μ)2
]2[

q2
0 + (q2 + μ)2

]2 , (E4)

X = 4

15

∫ �

Q

q2[
q2

0 + (q2 − μ)2
]3[

q2
0 + (q2 + μ)2

]3

(
25q8

0 + q6
0 (8q4 + 50μ2) + q4

0 (−62q8 + 198q4μ2 + 0)

+ q2
0 (−48q12 − 90q8μ2 + 252q4μ4 − 50μ6) − 3q16 + 18q12μ2 − 52q8μ4 + 62q4μ6 − 25μ8), (E5)

Y = 16

35

∫ �

Q

q6[
q2

0 + (q2 − μ)2
]3[

q2
0 + (q2 + μ)2

]3

(
9q6

0 + q4
0 (19q4 + 9μ2) + q2

0 (11q8 + 30q4μ2 − 9μ4)

+ q12 − 11q8μ2 + 19q4μ4 − 9μ6
)
. (E6)

It is a remarkable feature of the three-dimensional theory that no quartic term tr(φ†φφ†φ) ∝ Jabcd�
∗
a�b�

∗
c�d is generated

from the fermion loop at the mean-field level. In the presence of a small cubic anisotropy δ �= 0 the mass terms are given by
rE = (r + a1) and rT = (r + a2) with

a1 = δ
11

70π2
� + δ

∫ �

q

[
T

∑
n

4
35q4

(
35q4

0 + q2
0 (38q4 + 42μ2) + 3q8 − 10q4μ2 + 7μ4

)
[
q2

0 + (q2 − μ)2
]2[

q2
0 + (q2 + μ)2

]2 − 11

35q2

]
+ O(δ2), (E7)

a2 = −δ
1

14π2
� + δ

∫ �

q

[
T

∑
n

− 4
35q4

(−7q4
0 + q2

0 (2q4 + 14μ2) + 9q8 − 30q4μ2 + 21μ4
)

[
q2

0 + (q2 − μ)2
]2[

q2
0 + (q2 + μ)2

]2 + 1

7q2

]
+ O(δ2). (E8)
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These two expressions are obtained along the lines of Ref. [12]. The frequency and momentum integration are parametrized as∫ �

Q

(. . . ) := T
∑

n

∫ �

q
(. . . ) := T

∞∑
n=−∞

∫ �

0
dq q2 1

(2π )3

∫
S2

(. . . ). (E9)

The frequency integration is replaced by a summation over
fermionic Matsubara frequencies q0 = ωn = 2π (n + 1/2)T
due to T > 0. This yields an infrared regularization of the
expressions.

In order to make the transition from quantum to classical
scaling from Eq. (61) to (62) and to read off the initial values
of the boson RG, we keep a general dimension d, while
eventually setting d = 3. The temperature T defines a refer-
ence momentum scale that we denote by k = T 1/2. The field
�a scales like �a ∼ T = k2. The remaining couplings scale
like r ∼ T

d−2
2 , qm ∼ T

d−6
2 , X,Y,Z ∼ T

d−4
2 . Consequently, we

introduce dimensionless scaling functions f according to

r = 1

g
− �

10π2
+ T

d−2
2 fr (μ/�2,μ/T ), (E10)

qm = T
d−6

2 fqm
(μ/�2,μ/T ), (E11)

Z = T
d−4

2 fZ(μ/�2,μ/T ), (E12)

X = T
d−4

2 fX(μ/�2,μ/T ), (E13)

Y = T
d−4

2 fY (μ/�2,μ/T ). (E14)

For the critical theory (r = 0), temporal fluctuations are sup-
pressed by T > 0 and we can neglect the τ dependence of the
field �a . Consequently,

∫ 1/T

0 dτ (. . . ) = 1
T

(. . . ) in Eq. (61),
and we arrive at

S
 =
∫

ddx

(
T

d−6
2 �∗

a

[
− fXδab∇2 + fY√

3
Jabcdc(−i∇)

]
�b

+ T
d−8

2 fq1 | 	�|4 + T
d−8

2 fq2 | 	�2|2
)

. (E15)

FIG. 5. Loop integrations that yield the mean-field expressions
for the coefficients of the free energy in Eqs. (E1)–(E8). Here,
a straight line represents a fermion propagator and a wiggly line
denotes an insertion of �a or �∗

a with vertices γ45γa [18]. The
contribution depicted in (a) results in the terms r,a1,2 and X,Y,Z

that are quadratic in the boson field, whereas diagram (b) generates
the quartic contributions q1,2.

For the cases considered here, fX > 0 so that we can perform
a field redefinition according to

ϕa = T
d−6

4

√
fX�a. (E16)

The action expressed in terms of ϕa reads as

S
 =
∫

ddx

(
ϕ∗

a

[
−δab∇2 + fY /fX√

3
Jabcdc(−i∇)

]
ϕb

+ T
4−d

2
(
fq1/f

2
X

)| 	ϕ|4 + T
4−d

2
(
fq2/f

2
X

)| 	ϕ2|2
)

. (E17)

This action is the starting point for our classical field theory
for the complex tensor boson. We identify the initial values

K
 = fY (μ/�2,μ/T )

fX(μ/�2,μ/T )
, (E18)

λm
 = Sd

d−4

(2π )d
T

4−d
2

fqm
(μ/�2,μ/T )

f 2
X(μ/�2,μ/T )

= Sd

(2π )d

(
T


2

) 4−d
2 fqm

(μ/�2,μ/T )

f 2
X(μ/�2,μ/T )

. (E19)

In particular, λ3
 = 0 since this coupling is not generated
from the fermionic mean-field theory. We already rescaled
the quartic couplings according to Eq. (22). Note that the
field and quartic couplings scale as ϕa ∼ T

d−6
4 �a ∼ k

d−2
2 and

λm ∼ T
4−d

2 ∼ k4−d as appropriate for a classical bosonic field
theory. Note further that when identifying temperature as the
ultraviolet cutoff for the bosonic theory we have 
2 = T , so
that the initial values for the couplings become

λm
 = Sd

(2π )d
fqm

(μ/�2,μ/T )

f 2
X(μ/�2,μ/T )

. (E20)

We use the expressions for K
 and λm
 in Eqs. (E18) and
(E20) for the analysis in Sec. IV.

Next, we discuss the influence of the anisotropy δ on the
mass terms. For the strong-coupling transition we set μ = 0
and consider the expressions

rE = r + δ · T 1/2f̄a1 (T/�2) + O(δ2), (E21)

rT = r + δ · T 1/2f̄a2 (T/�2) + O(δ2) (E22)

with suitably defined dimensionless functions f̄am
(T/�2) ex-

tracted from Eqs. (E7) and (E8). In the region of interest
T/�2 � 0.29 we find

f̄a1 (T/�2) > f̄a2 (T/�2) > 0. (E23)
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Consequently, rE < rT for small δ < 0, whereas rT < rE for
small δ > 0. Hence, δ < 0 suppresses fluctuations of 	χ , lead-
ing to N = 2 fluctuating complex components, whereas δ > 0
suppresses fluctuations of 	η, leading to N = 3 fluctuating
components.

We arrive at the same conclusion for the weak-coupling
transition. In this case, it is sufficient to consider the logarithmic
divergence of the mass terms as y = μ/T → ∞. In analogy
to Eq. (E10), we define

a1 = δ
11

70π2
� + δ · T 1/2fa1 (μ/�2,μ/T ), (E24)

a2 = −δ
1

14π2
� + δ · T 1/2fa2 (μ/�2,μ/T ). (E25)

The behavior for large y is then given by

fr (μ/�2,y) → 1

10π2
(−0.30 − 0.5 log y)y1/2, (E26)

fa1 (μ/�2,y) → 1

10π2
(−1.54 + 0.75 log y)y1/2, (E27)

fa2 (μ/�2,y) → 1

10π2
(1.18 − 0.25 log y)y1/2 (E28)

as y → ∞. The divergence of log y dominates all other
contributions and the corrections to the mass terms can be
deduced from the sign of log(y)y1/2 on the right-hand sides
of Eqs. (E26)–(E28). We observe that again rE is reduced for
small δ < 0, whereas rT is reduced for δ > 0.
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