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Unconventional field induced phases in a quantum magnet formed by free radical tetramers
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We report experimental and theoretical studies on the magnetic and thermodynamic properties of NIT-2Py, a free
radical based organic magnet. From magnetization and specific-heat measurements we establish the temperature
versus magnetic field phase diagram which includes two Bose-Einstein condensates (BEC) and an infrequent half-
magnetization plateau. Calculations based on density functional theory demonstrate that magnetically this system
can be mapped to a quasi-two-dimensional structure of weakly coupled tetramers. Density matrix renormalization
group calculations show the unusual characteristics of the BECs where the spins forming the low-field condensate
are different than those participating in the high-field one.
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I. INTRODUCTION

The exact mapping between spin S = 1
2 systems and hard

bosons proposed by Matsubara and Matsuda in 1956 [1] has
opened the possibility of observing Bose-Einstein condensates
(BEC) in quantum magnets. Several experimental realizations
can be found in the literature, very often formed by interacting
transition metal dimers [2,3]. A typical scenario invokes a
ground state described by pairs of localized spins forming
singlets. An external magnetic field acts as an effective chem-
ical potential for triplet excitations that can subsequently form
the BEC, characterized by the presence of (XY ) long-range
magnetic order in the direction perpendicular to the field.
Since a finite magnetic field Hc1 is necessary to break the
dimerized singlets, the temperature versus magnetic field phase
diagrams typically display a “dome” structure bounded by
two critical fields, Hc1 < H < Hc2, and a field-dependent
critical temperature Tc(H ). While most cases of magnetic
BECs formed by S = 1

2 dimers follow this picture (see Ref. [2]
for a review), there are magnets such as Cs2CuCl4 [4–6], where
the system is already ordered at zero field.

BECs have also been observed in systems formed by S =1
dimers such as Ba3Mn2O8 [7,8] or the organic biradical
F2PNNNO [9–11] where the total spin can take the values 0, 1,
and 2. These systems present an energy gap above the singlet
ground state and a half-magnetization plateau corresponding
to the triplet state of the dimers. In Ba3MnO8 [7,8], two field
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induced domes have been observed, the first one corresponding
to the condensation of triplets and the second one to the
condensation of quintuplets.

A similar behavior with two field induced domes can be
expected in a system of weakly interacting S = 1

2 tetramers,
where it is possible to realize nontrivial intratetramer quantum
order determined by the relative strength of the exchange
interactions. Unfortunately, contrary to the large amount of
low-dimensional systems where the magnetic centers form
dimers, there are very few low-dimensional systems formed
by interacting tetramers: Cu2CdB2O6 [12–15], CuInVO5 [16],
and SeCuO3 [17]. In these S = 1

2 systems, where the magnetic
centers are d electrons carried by the Cu atoms, the large
values of the magnetic interactions prevent the experimental
exploration of the full phase diagram. For these reasons, to
the best of our knowledge, no observation of Bose-Einstein
condensation has been reported so far in S = 1

2 tetramers.
In this work, we present experimental and theoretical evi-

dence for Bose-Einstein condensation in a crystal of NIT-2Py,
a free radical based organic magnet [18] which behaves as
weakly interacting S = 1

2 tetramers. We show that the physics
can be described in terms of a fully rotational invariant system
of quantum spins without frustration. When increasing the
magnetic field, at low temperature, we find the existence of
three quantum phases. We interpret two of them as having the
physics of BECs. In the low-field phase only the edge spins
of each tetramer contribute to the condensate, while in the
high-field phase, the order is determined by the two central
spins. These unusual BECs are separated by an incompressible
state at half-magnetization that is a genuine quantum phase,
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with half of the spins forming dimerized pairs and the other
half aligned in the direction of the field.

The paper is organized as follows. The experimental de-
tails are given in Sec. II and the experimental results are
presented in Sec. III. The latter includes the determination
of the crystallographic structure (Sec. III A), the character-
ization of the magnetic properties from susceptibility and
magnetization measurements (Sec. III B), the evaluation of the
magnetic contribution to the specific heat (Sec. III C), and
the determination of the temperature versus magnetic field
phase diagram (Sec. III D). The theoretical evaluation of the
effective exchange interactions of the Heisenberg Hamiltonian
is presented in Sec. IV and the determination of the ground
state of the system versus the applied magnetic field is given
in Sec. V. Section VI concludes the paper with a short
summary.

II. EXPERIMENTAL DETAILS

The organic insulator 2-(2-Pyridyl)-4,4,5,5-tetramethyl-
4,5-dihydro-1,H-imidazole-3-oxide-1-oxyl, shortly called
NIT-2Py, is part of the nitronyl nitroxide family. Crystals of
NIT-2Py were grown according to the method published in
Refs. [19,20] and single crystals up to 1×1×10 mm have
been obtained. The crystal structure was confirmed in a
single-crystal x-ray diffraction experiment performed on a
Bruker Microstar X8/Proteum diffractometer equipped with a
Copper rotating anode delivering Cu K−α radiation through
multilayer Helios mirror optics. These data can be obtained
free of charge from the Cambridge Crystallographic Data
Centre (CCDC-1531994).

The magnetic susceptibility and magnetization were mea-
sured in a commercial Quantum Design VSM SQUID mag-
netometer in the temperature range from 1.8 to 300 K and
magnetic fields up to 7 T, where the sample was mounted
with Apiezon N grease. For temperatures from 0.5 to 2 K,
and magnetic fields up to 7 T we used a Quantum Design
SQUID magnetometer equipped with an iHelium3 option
from IQUANTUM. Here, the sample was positioned in a
Kapton tube and fixed with Teflon tape. We also carried out
measurements in pulsed magnetic fields up to 20 T in a pumped
4He cryostat. Here, the sample was fixed inside a compensated
pick-up coil with Apiezon N grease.

The specific heat at ambient and under pressure was mea-
sured between 0.35 and 35 K in Quantum Design Physical
Properties Measurement System (PPMS) equipped with a 3He
option and in magnetic fields up to 9 T. The specific heat
under pressure was measured using a homemade miniature
CuBe pressure clamp [21] with a small piece of lead as the
pressure indicator. This pressure cell is small enough to fit into
the 3He insert of a PPMS. The magnetocaloric measurements
were carried out in a dilution refrigerator equipped with a
20-T magnet. The sample was attached to a sapphire chip with
Apiezon N. This platform has a thermometer, and is weakly
coupled to a temperature-regulated bath. The measurements
were then carried out by placing the sample at a specific point
in the H -T phase diagram and then a field ramp was started.
During the ramp, the temperature of the bath was set to the
sample temperature in a closed loop, while temperature and
field were recorded continuously.

FIG. 1. Atomic and magnetic structure of NIT-2Py. (a) Structural
formula. (b) Atomic structure and isosurfaces of positive (yellow)

and negative (blue) spin density (±0.003 e/Å
3
). Oxygen atoms are

represented in red, carbon atoms in brown, nitrogen atoms in gray,
and hydrogen atoms in light pink. (c) Monoclinic unit cell. (d) Lateral
and top view of the 2D arrangement of the three leading magnetic
interactions in the (−1,0,2) plane: J4 (black), J6 (red), and J9 (violet).
The circles represent the C atom in the central O-N-C-N-O branch
and the numbers correspond to those in (c). The solid lines outline a
unit cell. (e) Topologically equivalent network of the magnetic lattice
used for the DMRG calculations.

III. EXPERIMENTAL RESULTS

A. Crystallographic structure

NIT-2Py crystallizes in the P 21/c space group No. 14.
The chemical and atomic structure of the isolated molecule
is shown in Figs. 1(a) and 1(b) and the monoclinic unit cell in
Fig. 1(c). It contains 264 atoms. The lattice parameters are a =
6.1471 Å, b = 30.0605 Å, c = 12.9583 Å, and β = 100.269◦.
There are eight molecules per unit cell [18] belonging to
two inequivalent groups of four molecules each (molecules
numbered in red 1 to 4 and numbered in blue 5 to 8).

B. Susceptibility and magnetization

While the magnetism of metallic ions arises from unfilled
atomic d or f orbitals, the magnetic moment in free radicals
stems from unfilled molecular orbitals. For each NIT-2Py
molecule, there is one unpaired electron that leads to a spin
S = 1

2 per molecule. The inverse of the magnetic susceptibility
χ measured on polycrystalline NIT-2Py is shown in Fig. 2(a). A
deviation from the expected Curie-Weiss law is observed due
to significant diamagnetic contributions χDia [see Fig. 2(a)].
As NIT-2Py carries only one spin S = 1

2 per molecule, which
contains a total of 33 atoms, the diamagnetic contribution to the
magnetic susceptibility from molecular bonds is significant.
It has been subtracted requiring that the remaining (paramag-
netic) part would follow a perfect Curie-Weiss law resulting in a
χDia of −131(2) μemu/mol. A value which is of the same order
of magnitude as the one that can be calculated from tabulated
values of Pascal’s contributions from closed molecular orbitals
[22].
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FIG. 2. (a) The magnetic susceptibility χm of a NIT-2Py poly-
crystal measured in an applied field of 1000 Oe is shown as blue
squares. The paramagnetic susceptibility χPara = χm − χDia obtained
after the subtraction of χDia is shown as red circles. The solid line is
a straight-line fit of χPara to a Curie-Weiss law. (b) Low-temperature
region of 1/χPara vs T . The dashed line is the Curie-Weiss fit. (c)
Magnetization of a single crystal for temperatures below 2 K measured
in a applied field of 50 Oe showing the behavior characteristic of
antiferromagnetic order.

Fitting a Curie-Weiss law to χPara = χ − χDia results in an
effective moment of 1.71 ± 0.01 μB per molecule, which is in
agreement with the expected value of g

√
(S(S + 1) for a S = 1

2
spin from the unpaired electron of each NIT-2Py molecule.
The Curie-Weiss temperature of θCW of −1.38 ± 0.05 K [see
Fig. 2(b)] points to antiferromagnetic interactions between the
NIT-2Py molecules.

Measurements on a single crystal of NIT-2Py along different
crystallographic directions showed no significant evidence for
an angular dependence of the magnetic susceptibility after
we corrected for sample geometry [23]. This is expected for
an organic compound such as NIT-2Py with small spin-orbit
coupling.

Temperature-dependent magnetization measurements at
50 Oe and below 2 K on a single crystal show a maximum
around 1.4 K and a point of inflection at 1.3 K [see Fig. 2(c)]
indicating a possible antiferromagnetic transition at a charac-
teristic temperature similar to the Curie-Weiss temperature.

Magnetization isotherms of NIT-2Py at different tempera-
tures are shown in Fig. 3(a), where it can be seen that a plateau at
half of the saturation value begins to develop for temperatures
below 1.45 K and which is fully developed at 0.5 K. The
observed saturation value corresponds to 1 μB per molecule,
as expected for one free S = 1

2 spin per NIT-2Py molecule.
The dependence of the magnetization versus temperature at
different magnetic fields is shown in Fig. 3(b). The convergence
of the magnetization curves to 0.5 μB at low temperature for
magnetic fields between 2 to 5 T corresponds to the plateau at
half the full magnetization.

While fractional plateaus are usually associated with quan-
tum effects, a simple possible explanation for the existence
of this plateau could be that one of the two crystallograph-
ically inequivalent groups of molecules [see Fig. 1(c)] form
antiferromagnetic dimers and the other ones behave as S = 1

2
paramagnets [24,25]. This picture fails to be conclusive be-
cause the magnetization increase between 0 and 2 T is slower

FIG. 3. (a) Magnetization of NIT-2Py as a function of the applied
field. The data at 0.5 K are shown as solid diamonds, for 1.45 K as
solid circles, for 5 K as filled squares, and for 50 K as open circles.
The dashed line shows pulsed field magnetization at 1.43 K. The
solid lines are obtained by minimizing the difference between the
calculated magnetization obtained from diagonalizing Eq. (2) for a
system of tetramers and the experimental results, as discussed in the
last paragraph of Sec. IV. (b) Magnetization of NIT-2Py as a function
of temperature. The filled symbols are the data taken with a VSM
SQUID, and the open symbols were taken with the 3He option. The
solid lines are theoretical values calculated as described in (a).

than the paramagnetic contribution 0.672 μBH/T indicating
that other antiferromagnetic interactions are also playing a
significant role.

C. Specific heat

The specific heat Cp of NIT-2Py is shown in Fig. 4(a) for
temperatures up to 35 K. The magnetic contribution to the
specific heat is given by Cm = Cp − Cph, where Cph is the
phonon contribution. This contribution was estimated by fitting
the specific heat above 12 K to a Debye model:

Cph = 9NkB

(
T

θD

)3 ∫ θD
T

0

x4ex

(ex − 1)2
dx. (1)

Here, T is the temperature, θD the Debye temperature, and
N the number of molecules. The fit resulted in a θD of 122
K. Such a low value of θD is expected in a system with
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FIG. 4. (a) The measured specific heat Cp of NIT-2Py in zero
magnetic field, the phonon contribution from the lattice Cph, and the
magnetic contribution Cm = Cp − Cph are shown in black (solid line),
red (diamonds), and blue (circles), respectively. The inset shows the
linear extrapolation of Cp/T to zero temperature used to calculate the
entropy. (b) Entropy associated with the phase transition in various
magnetic fields for temperatures up to 10 K. The dashed line marks
S = R ln 2, the value expected for a S = 1

2 per molecule.

weak bonds between the molecules such as in a molecular
crystal like NIT-2Py. The fit also resulted in a N of 2.1, which
indicates that the two rings of the molecule act as independent
vibrational units. In zero applied fields, Cm features a sharp
peak at Tc1(0) = 1.32 K superimposed over a large Schottky-
type anomaly towards higher temperatures. This value of Tc1

is the same temperature, at which we observe a point of
inflection in the magnetization, suggesting the presence of an
antiferromagnetic phase transition.

We calculated the magnetic entropy associated with the
phase transition by numerically integrating our specific-heat
data S = ∫ T

0
Cm

T
dT . The result of this integration is shown in

Fig. 4(b). In order to be able to carry out this integration, we
extrapolated Cm

T
linearly to zero Kelvin, as shown in the inset

of Fig. 4(b). The zero-field entropy shows that only a small
fraction of the value of S = R ln 2 expected for the magnetic
entropy of a spin S = 1

2 is recovered just above the transition
at 1.32 K. In order to fully recover S = R ln 2, we have to
integrate up to 8 K, which indicates that only a fraction of a
spin 1

2 is ordering in the transition.
We have also carried out specific-heat measurements in

a number of magnetic fields. The corresponding magnetic
contributions are shown in Fig. 5(a). The phase transition seen
in zero field is rapidly suppressed in a magnetic field. At a
field of 2 T, only a small peak is visible, whereas most of the
weight of the transition has merged with the Schottky-type
anomaly centered at 2 K, until the transition is completely
suppressed at Hc1 � 2.2 T. Increasing the field further pushes
the broad anomaly to higher temperatures. At 6 T, a very
sharp peak is observed, indicating the presence of a second
phase transition. This transition occurs only for a limited field
range, being absent at 5 and 7 T. To map out this second
phase transition, we additionally carried out specific-heat
measurements at fixed temperatures as a function of magnetic
field. Specific-heat measurements versus magnetic field at

FIG. 5. (a) Magnetic contribution to the specific heat of NIT-2Py
for various magnetic fields and temperatures from 0.35 to 3 K. The
zero-field data shown as the solid squares show a peak at 1.32 K. A
field of 2 T almost completely suppresses this phase transition shown
as the solid green diamonds, and by 3 T, shown as solid blue triangles,
all that is left of the transition is very broad anomaly centered at 2 K.
The red solid diamonds show the data at 6 T, where we see a second
sharp peak associated with a second phase transition. This transition
is fully suppressed by 9 T. (b) Specific heat as a function of magnetic
field measured at fixed temperatures. The data at 0.38 K, shown as
solid diamonds, displays a first anomaly at about 2.2 T, followed by
two more anomalies at 5.1 and 6.7 T.

0.38 K present anomalies at 2.2, 5.1, and 6.7 T confirming
the existence of the three phase transitions [Fig. 5(b)]. When
increasing the temperature the first anomaly shifts to lower
magnetic fields and the other two approach each other and
finally disappear for temperatures above the maximum critical
temperature Tc2(H = 6 T) of 0.53 K.

D. Phase diagram

The second anomaly seen in the specific heat forms a dome
in the H -T phase diagram (see Fig. 6), which is reminiscent of
the Bose-Einstein condensation of magnons seen in quantum
paramagnets [2], and easy-plane antiferromagnets with U(1)-
rotational invariance around a crystallographic axis [5]. In
order to further explore the phase boundary of this field
induced dome, we carried out magnetocaloric measurements,
which are shown in Fig. 7(a). Characteristic traces for fields
being swept up or down both show heating when the phase
boundary is crossed. This suggests that our sample and the
thermal bath are in equilibrium according to the discussion of
magnetocaloric experiments in Ref. [2]. We determined the
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FIG. 6. Magnetic phase diagram T vs H deduced from sharp
peaks in the specific heat Cp (solid black circles) and magnetocaloric
effect (MCE) measurements (red triangles, open for down swept
fields, solid for fields swept up). Gray, red, and blue regions represent
the low-field quantum phase (LFQP), high-field quantum phase
(HFQP), and ferromagnetic (FM) phases, respectively. The solid
squares (3D) and open diamonds (2D) are the size of the gap �

extracted from a fit of the magnon excitation spectrum. The open
circles are the phase boundaries of the BEC region of the phase
diagram determined from specific heat with an applied pressure of
10 kbar.

phase boundary as the midpoint between the two extrema
of the H -T trace. The phase boundary determined from
magnetocaloric measurements is in fair agreement with the
one determined from specific-heat measurements. The critical
exponent φ of the upper critical field Hc3 extracted from
the results of the magnetocaloric measurements suggests that
the field induced order is a Bose-Einstein condensation of
magnons. The critical exponent is related to the power-law
dependence of Hc3(T ) − Hc3(0) ∝ T φ . Since the value of φ

depends sensitively on Hc3(0), we followed the procedure laid
out in Ref. [26] to obtain an accurate value for the critical
exponent.

First, the critical field Hc3(0) is determined by a fit to the
data for different temperature windows Tw for various trial
values of φ. The values of Hc3(0) resulting from these fits are
shown in Fig. 7(b). An accurate value of the physical critical
field is obtained by the extrapolation to an infinitesimally small
temperature window for each trial value of φ. Here, all the
different extrapolations for different φ converge to Hc3(0) =
7.345 ± 0.003 T. Using this value, the critical exponent φ

was obtained through a similar extrapolation to infinitesimally
small temperature window, as shown in Fig. 7(c). The resulting
value φ = 1.47 ± 0.09 corresponds well to φ = 1.5 expected
for a 3D Bose-Einstein condensate of magnons [27–29].

The field dependence of Cm at fixed temperatures [see
Fig. 5(b)] shows a Schottky-type anomaly for fields above the
upper critical field Hc3, indicating the presence of a gap in the
magnon spectrum of the field polarized ferromagnetic phase.
For the transition at Hc3 to be a Bose-Einstein condensation,
this magnon gap needs to close at Hc3 [5]. To search for a

FIG. 7. (a) The solid black circles are the position of the anomaly
from specific-heat measurements. The open red triangles indicate the
position of the anomaly in temperature for fields being swept down,
the solid red triangles are obtained from up sweeps. The dashed (solid)
red line presents a characteristic temperature-field trace for sweeping
the magnetic field down (up). (b) Determination of the critical field
Hc3(0) by fitting the phase boundary Hc3(T ) − Hc3(0) ∝ T φ for
various values of the critical exponent and different temperature
windows. (c) Determination of the critical exponent φ using the value
of the critical field Hc3 of 7.345 ± 0.003 T found in (b).

magnon gap in NIT-2Py, we analyzed the magnetic specific-
heat data for fields above Hc3. To extract the size of the magnon
gap � we tested contributions from a 2D as well as from a
3D magnon fluctuation spectrum. This analysis is shown in
Figs. 8(a) and 8(b), respectively. Here, we are following the
example laid out for Cs2CuCl4, which in zero field displays
XY antiferromagnetic order which is U(1) invariant around the
a axis [5]. Applying a magnetic field H along the a axis then
breaks this U(1) symmetry, as the transverse spin component
orders at Tc [5]. This leads to the appearance of a Goldstone
mode with a linear dispersion, which in the case of Cs2CuCl4

in Ref. [5] was interpreted as the signature of a magnon
Bose-Einstein condensation. We fitted our 7-, 8-, and 9-T data

with C2D
m = Ae

− �
T

T
, which is characteristic for a 2D magnon

spectra, as well as C3D
m = B e

− �
T√
T

, which is characteristic for
a 3D spectrum. Both curves fit our data equally well in the
available temperature and magnetic field range, and we are
unable to determine the dimensionality of the magnons in
the field induced ferromagnetic phase. The values of the gaps
obtained from our fits, which are very similar in size for both
models, are shown in the H -T phase diagram shown in Fig. 6.
For both spectra, the resulting magnon gap � disappears at
Hc3 at zero temperature, as required for case of Bose-Einstein
condensation.

The interactions in NIT-2Py are due to the overlap of the
atomic orbitals of the different molecules. Organic materials
often show a drastic change of their physical properties (see
for example Ref. [30]), such as the appearance of supercon-
ductivity and charge- or spin-density wave transitions. We
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FIG. 8. (a) Semilogarithmic plot of the magnetic specific heat Cm

of NIT-2Py presented as CmT vs 1/T for 7 (diamonds), 8 (circles), and

9 T (squares). The dashed lines are fits to C2D
m = Ae

− �
T

T
expected for

2D magnons. (b) Same data as shown in (a), but shown as Cm

√
T vs

1/T . The dashed lines are fits to C3D
m = B e

− �
T√
T

. (c) Magnetic specific
heat Cm of NIT-2Py measured in a pressure cell at ambient pressure
in the temperature range from 0.4 to 4 K. The solid line marks the
position of the zero-field anomaly. (d) Cm data for an applied pressure
of 5 kbar. (e) Cm data for 10 kbar of pressure.

measured specific heat of NIT-2Py with applied pressures of
0, 5, and 10 kbar in a number of applied fields. The results are
shown in Figs. 8(c)–8(e). While pressure somewhat broadens
the anomalies in the specific heat, the anomalies are still visible.
Pressure increases the temperature of the first dome, as well as
the second dome, but also pushes the maximum of the domes
and the upper critical field of the anomalies to higher fields, as
shown in Fig. 6.

The H -T phase diagram of Fig. 6 combines specific-heat
and magnetocaloric data. For fields below Hc1 of ≈2.2 T, we
find a low-field quantum phase from specific-heat measure-
ments. For this range of magnetic fields, the magnetization
increases approximately linearly with applied field at 0.5 K.
For fields between Hc1, and Hc2, the magnetization shows a
plateau at half the saturation value at 0.5 K. The occurrence
of half-magnetization plateaus is rare, and we are only aware
of two examples: the spin-1 dimers Ba3Mn2O8 [7,8] and
the organic biradical F2PNNNO [9–11]. For fields above
Hc2, the magnetization increases again and saturates at Hc3,
where the specific-heat and magnetocaloric results indicate a

phase boundary. This suggests that NIT-2Py displays two field
induced Bose-Einstein condensations. This is also borne out
by the vanishing magnon gap � at Hc3, which was extracted
from specific-heat data in magnetic fields larger than Hc3.

IV. CALCULATION OF THE EFFECTIVE
EXCHANGE INTERACTIONS

To understand the magnetic order at the origin of the phase
transitions, one needs to determine the leading magnetic inter-
actions between the NIT-2Py molecules. Due to the negligible
anisotropy we have assumed that the magnetic properties can
be described by a rotational invariant Heisenberg Hamiltonian

Ĥ = Ĥ0 +
∑
i>j

Jij Ŝi · Ŝj, (2)

where Ĥ0 is the spin-independent part of the Hamiltonian, Jij

are the magnetic couplings, and Ŝi and Ŝj are the S = 1
2 spin

operators localized on the NIT-2Py molecules at sites i and
j , respectively. Unfortunately, it is difficult to see an obvious
arrangement of the molecules which can be used to predict the
relative strength of the exchange interactions by inspection of
the crystal structure.

Moreover, compared to transition metal oxide based quan-
tum magnets [31–33], the spin polarization in NIT-2Py is
highly delocalized on the O-N-C-N-O branch in the center
of the molecule [see Fig. 1(b)] like in other members of the
family [34,35]. Hence, the interactions are expected to have a
rather extended range. For this reason, we have calculated 13
different interactions up to intermolecular distances of 9.404 Å
(see Table I). To classify the exchange interactions, we used
the distance between the central C atoms in the O-N-C-N-O
branch of each molecule.

The calculations were performed using a broken-symmetry
formalism, i.e., by mapping total energies corresponding to
various collinear spin arrangements within a supercell onto
the Heisenberg Hamiltonian of Eq. (2). For the calculations
we have used the QUANTUM ESPRESSO [36] code based on
density functional theory, ultrasoft pseudopotentials, and the
PBE functional [37] with a plane-wave and charge-density
cutoff of 80 and 320 Ry, respectively. We have used a 4×1×2
Monkhorst-Pack [38] grid for the first Brillouin zone sampling
of the 264-atom monoclinic 1×1×1 unit cell and adapted
equivalent samplings for the double 2×1×1 and 1×1×2 or
the quadruple 2×1×2 supercell calculations. A full relaxation
of the internal coordinates of the 264 atoms has been performed
in the 1×1×1 cell. The same relaxed coordinates have been
consistently used to construct the supercells. The different
supercells were needed to distinguish the exchange interactions
between a molecule and two different molecules which are
connected by the translation symmetry if the 1×1×1 unit cell is
used. Only the 1056-atom 2×1×2 unit cell allows to calculate
separately the 13 interactions. The 264-atom 1×1×1 unit cell,
whose total energy can be written as

E111 = E0 + 1
4 [4 (J1 + J ′

1) + b2 (J2 + J4 + J7 + J11)

+ b3 (J3 + J10) + b5 (J5 + J9)

+ b6 (J6 + J12) + b8 J8] (3)
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neither allow to calculate J1 and J ′
1 nor to separate J2, J4,

J7, and J11; J3 and J10; J5 and J9; and J6 and J12. Similar
limitations arise with the 528-atom 1×1×2 and 2×1×1 unit
cells, whose total energies are

E112 = 2 E0 + 1
4 [8 (J1 + J ′

1) + c2 (J2 + J7)

+ c4 (J4 + J11) + c3 J3 + c5 J5

+ c6 (J6 + J12) + c8 J8 + c9 J9 + c10 J10] (4)

and

E211 = 2 E0 + 1
4 [d1 J1 + d ′

1 J ′
1 + d2 (J2 + J4)

+ d3 J3 + d5 J5 + d6 J6 + d7 (J7 + J11)

+ d8 J8 + d9 J9 + d10 J10 + d12 J12]. (5)

The coefficients bj , cj , and dj depend on the spin arrangements
of the molecules.

Two different calculation procedures have been used to cal-
culate the effective exchange interactions. The first procedure
uses a least-squares minimization of the difference between
the DFT and Ising relative energies to obtain a numerical
evaluation of the couplings. The second procedure allows to
calculate separately the effective exchange interaction. For
example, the interaction between spin i and j can be evaluated
from

Jij = Eij (↑↑) + Eij (↓↓) − Eij (↑↓) − Eij (↓↑), (6)

where Eij (σi,σj ) are the four spin configurations where the
spins i and j take the values up or down while all the other
spins are kept up [39]. Jij could be a single or a sum of
exchange interactions depending on the size of the unit cell
used to calculate the total energies.

As the 1×1×1 unit cell contains 8 molecules, there are
a total of 256 distinct spin configurations. However, taking
crystal and spin-reversal symmetries into account, this number
can be reduced to 39. The application of the least-squares
minimization procedure to this unit cell gives a first estimation
of the exchange interactions (in units of K):

J2 + J4 + J7 + J11 = 12.5

J3 + J10 = −0.5,

J5 + J9 = 7.5,

J6 + J12 = 8.6,

J8 = −0.2.

The second procedure [39] was used with the larger unit cells
to evaluate J1 and J ′

1 and separate the exchange interactions.
All the calculations gave consistent values of the exchange
interactions with an overall error of ± 0.1 K. For example,
with the 2×1×1 unit cell we obtain

J2 + J4 = 11.3,

J7 + J11 = 1.2,

J5 = −0.5,

J9 = 8.1,

J6 = 6.2,

J12 = 2.3

TABLE I. Effective exchange interactions. The 13 interactions
calculated in this work between the NIT-2Py molecules obtained using
density functional theory are listed in the first column. The distances in
the second column are measured between the C atoms in the O-N-C-
N-O branch of each molecule. The third column gives the equivalent
groups of the molecules associated with the corresponding exchange
interaction. In the last column, the effective interactions are given
in units of K. A positive value is associated to an antiferromagnetic
interaction.

dC-C (Å) Equivalent group Ji (K)

J1 6.15 1-1 − 0.9
J ′

1 6.15 2-2 − 2.9
J2 6.43 1-1 − 0.6
J3 6.68 2-2 − 0.5
J4 7.00 1-1 +11.9
J5 7.40 1-2 − 0.6
J6 7.86 1-2 +6.2
J7 7.94 1-1 +1.1
J8 8.08 1-2 − 0.2
J9 8.20 1-2 +8.1
J10 8.26 2-2 +0.0
J11 8.63 1-1 +0.1
J12 9.40 1-2 +2.4

whose corresponding sums are in good agreement with the
values obtained from the single unit cell. Similarly, with the
1×1×2 unit cell we get

J2 + J7 = 0.5,

J4 + J11 = 12.0

in agreement with the above estimations. A summary of the
calculated exchange interactions is shown in Table I.

It is interesting to note that in spite of the fact that most
of the interactions have nonzero values, the three leading cou-
plings are all antiferromagnetic with positive values, namely,
J4 = 11.9, J6 = 6.2, and J9 = 8.1 K. The strongest interaction
J4 is represented by the thick black lines in Fig. 1(d) and
connects molecules, which are related by symmetry [1 and
4 or 2 and 3 as labeled in Fig. 1(c)]. If one sets J6 and J9

to zero, the equivalent magnetic lattice would correspond to
dimers on one of the two sublattices formed by one of the
groups of four crystallographically equivalent molecules and
isolated paramagnets on the other. If one keeps the second-
largest interaction J9, represented by violet lines in Fig. 1(d),
the system becomes an ensemble of independent tetramers
consisting of four S = 1

2 moments. When the third-strongest
term J6 is added, the magnetic structure forms a corrugated
2D lattice of interacting tetramers, as shown in Fig. 1(d).
This family of planes is indexed by {−1,0,2}. Despite the
complexity of the structure and the large number of couplings,
the system is not frustrated, and it is possible to satisfy
the conditions for an antiferromagnetic Stot = 0 Néel order
(see Fig. 11), in agreement with experiments.

Magnetization isotherms calculated by exact diagonaliza-
tion for a system of four coupled tetramers show a good
qualitative agreement with the experimental data in spite of
a systematic shift of the critical fields and temperatures to
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larger values. The reason for this difference lies in the known
overestimation of the exchange interactions when a semilocal
functional is used [33,40]. A quantitative match with the ex-
periments requires smaller values of the exchange interactions.

The order of magnitude of the intratetramer exchange
interactions (J4 and J9) can be obtained by comparing the two
critical fields EST(J4,J9) and ETQ(J4,J9) [Eqs. (A8) and (A9)],
corresponding to the stabilization of the triplet and quintuplet
ground states of the isolated tetramer, to the values of the
magnetic field at the center of the domes in the T vs H phase
diagram shown in Fig. 6. The intensity of the intertetramer
interaction (J6) can be estimated from the width of the domes at
zero temperature. The critical fields of about 1.1 and 5.8 T and a
half-width 1.25 T (see Fig. 6) give a rough estimate of J4 = 5.7,
J6 = 1.7, and J9 = 3.3 K. A more precise estimation can be
obtained by a least-squares minimization of the differences be-
tween the experimental and theoretical magnetization obtained
by exact diagonalization of the Heisenberg Hamiltonian given
in Eq. (2). With this procedure we obtained J4 = 6, J6 = 1,
and J9 = 2.8 K. These values have been used in the rest of the
work and for the solid lines in Fig. 3.

V. CALCULATION OF THE GROUND STATE
VERSUS MAGNETIC FIELD

In order to determine the ground state of this system in an
applied magnetic field, we performed density matrix renor-
malization group calculations (DMRG) [41,42]. For clarity
and convenience, we have placed the tetramers on the vertices
of a square lattice, as shown in Fig. 1(e). The calculations
were performed on cylinders of different aspect ratios. The
antiferromagnetic exchange between tetramers J6 is smaller
by at least a factor of 3 compared to the ones within tetramers
J4 and J9. In zeroth-order approximation we can consider the
ground state to be a crystal of singlets. Nevertheless, these
interactions are very important since they are responsible for
establishing long-range magnetic order. The weakly entangled
nature of our model makes it amenable to DMRG calcula-
tions, which have already proven very successful in unveiling
the magnetic phases of the Shastry-Sutherland compound
SrCu2(BO3)2 [43–45]. Simulations at zero field yield a small
but finite singlet-triplet gap of 0.38 K. Moreover, the ground-
state energy per tetramer E0 = −0.9787 J4 is very close to
the value for an isolated tetramer −0.9675 J4, indicating
that the ground state is a crystal of tetramers without long-
range antiferromagnetism (the dependence of the ground-state
energy is shown in Fig. 12). However, it is possible that
interlayer or additional interactions could close the gap and
establish true long-range order. We notice that the zero-field
critical temperature is Tc1(0) = 1.32 K, so it is possible that the
material is very close to a quantum critical regime separating a
magnetically ordered state from a crystal of tetramers. At the
magnetization plateau at m = 1

2 , the Heisenberg contribution
to the ground-state energy is E1/2 = −0.8038 J4, whereas the
one of isolated tetramers is −0.8017 J4. Therefore, the plateau
can also be described as an incompressible crystal of tetramers,
in which the spins sitting at the edges on the weak bonds are
fully polarized in the direction of the field, and the two central
spins form a tightly bound dimer. Explicitly, the wave function

of a single tetramer at half-magnetization can be written as

|g.s.〉m=1/2 = α|ψ1〉 + β|ψ2〉, (7)

with

|ψ1〉 = 1/
√

2[|↑↑↑↓〉 − |↓↑↑↑〉] (8)

and

|ψ2〉 = 1/
√

2[|↑↑↓↑〉 − |↑↓↑↑〉] (9)

describing a singlet between the two edge spins and between
the central spins, respectively. In our case we find β2 = 0.95,
meaning that the latter carries almost all the weight. Although
we assume this picture of decoupled tetramers to simplify the
description of the problem, in reality the DMRG simulations
indicate that the moment of the edge spins is 〈Sz〉 = 0.48
and finite but very small correlations 〈S+

i S−
j 〉 ∼ 10−3 connect

nearby tetramers.
The BEC regime is realized both between zero and the

lower critical field Hc1 and between the end of the plateau
at Hc2 and full polarization at Hc3, corresponding to the gray
LFQP and red HFQP regions in Fig. 6, respectively. As the
magnetic field increases, the edge spins start canting in the
direction of the field, simultaneously establishing a correlated
state with long-range order in the transverse plane. In bosonic
language, the edge spins form a superfluid with off-diagonal
long-range order, while the central spins remain dimerized. A
similar behavior is found above the plateau, with the central
spins canting in the direction of the field, while the edge spins
remain fully polarized.

In order to characterize the different field induced phases
we calculated the longitudinal and transverse spin-structure
factors, defined as

Sz(q) = 1

N

∑
ij

〈
Sz

i S
z
j

〉
eiq(̇ri−rj ), (10)

S+−(q) = 1

N

∑
ij

〈S+
i S−

j 〉eiq(̇ri−rj ), (11)

where the z direction is chosen along the applied magnetic field
and the spin coordinates ri and momenta q are the ones of the
topologically equivalent square lattice mentioned above. In the
Sz basis, these quantities measure diagonal and off-diagonal
long-range order, respectively.

Results for different magnetization values are shown in
Fig. 9. Figures 9(a)–9(d) display the longitudinal component
Sz, while Figs. 9(e)–9(h) show the transverse S+− component.
Note that the unit cell used for these calculations is a single
spin on a square lattice [Fig. 1(e)]. The corresponding order
is sketched below. At m = 0 the correlations do not display
a sharp peak, and they are almost evenly distributed along
the qy = ±π axes. This result can be easily recovered by
considering a crystal of tetramers in their singlet ground state.
At m = 1

2 we similarly can reproduce the measured quantities
by assuming a crystal of triplets. The edge spins are fully polar-
ized, as reflected in the peaks of the longitudinal structure factor
at q = (π,π ) (see Fig. 9). The peak at q = (0,0) is proportional
to the total magnetization squared. In the transverse direction,
we do not observe a sharp peak, and our results describe a
valence-bond solid, or crystal of dimers. At m = 1

4 and 3
4 the
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FIG. 9. Structure factor and magnetic order in NIT-2Py calculated
by DMRG in the Brillouin zone of the square lattice for a cylinder
of size Lx×Ly = 32×8 (see text). (a)–(d) Longitudinal and (e)–(h)
transverse components of the spin structure factor for different values
of magnetization m = 0, 1

4 , 1
2 , and 3

4 . The corresponding magnetic
order is sketched below each column. Red spins align along the field
direction, while violet spins have a component along the field direction
and order in the plane transverse to the field. White/empty arrows
represent spins in a rotational invariant quantum superposition for
tetramers. The gray scale in the bonds indicates the relative strength
of the correlations, with black representing a strong dimer.

off-diagonal correlations show sharp additional peaks at q =
(π/2,π ), indicating the onset of long-range order (see Fig. 9).
It is important to highlight that this regime cannot be explained
in terms of isolated tetramers, and emerges as an effect of corre-
lations and due to the intermolecule interactions. In this sense,
neither dimers nor edge spins are fully disentangled. In order
to determine the existence of off-diagonal order in the thermo-
dynamic limit we perform a finite-size scaling of the structure
factor, shown in Fig. 10. We carried out a linear extrapolation
in 1/N using cylinders with the same aspect ratio. Results
indicate a finite window around m = 1

2 where the off-diagonal

0 0.2 0.4 0.6 0.8 1
m

0

0.005

0.01

0.015

0.02

0.025

0.03

S
+

- (π
/2

,π
)

12 x 4 
24 x 8
Extrapolated

FIG. 10. Transverse structure factor S+−(π/2,π ) for two system
sizes with the same aspect ratio, N = Lx×Ly = 12×4 and 24×8.
Results in the thermodynamics limit were obtained through a linear
extrapolation in 1/N . Numerical errors are smaller than the symbol
size.

correlations vanish, suggesting the existence of a new phase
with a coexistence of fully polarized spins and a disordered
state resulting from the “melting” of the valence-bond solid.

VI. SUMMARY

Our experimental data backed by comprehensive theoretical
and numerical analysis demonstrate a rich and unconventional
magnetic behavior in the organic molecular crystal NIT-2Py
with field induced phases that can only be interpreted in
terms of a quantum-mechanical description. Specific-heat and
magnetocaloric measurements indicated the presence of two
domes in H -T phase diagram: at zero field, NIT-2Py shows
an antiferromagnetic phase transition. However, the entropy
associated with this phase transition is only a fraction of R ln 2,
indicating that the ground state of this crystal of spin- 1

2 carrying
molecules is quantum mechanical in nature. An applied field
suppresses this phase transition at a critical field Hc1 of 2.2 T.
This is the same field at which the magnetization measured
at 0.5 K becomes field independent and shows a plateau at
half the saturation value up to a Hc2 of 4.5 T, where a second
anomaly appears in the specific heat. Here, the magnetization
starts to increase again linearly up to saturation value of 1 μB

to saturate at a field of Hc3 of 7.3 T, where the second anomaly
in specific heat disappears. The exponent φ of the power-law
behavior Hc3(T ) − Hc3(0) ∝ T φ at Hc3 of this second dome in
the H -T phase diagram corresponds to the value expected for
a Bose-Einstein condensation of magnons. This is supported
by the magnon gap � we see in the specific heat for magnetic
fields above Hc3, which closes at Hc3.

In order to be able to propose an effective model of the
interactions in NIT-2Py, we carried out a series of total-energy
calculations in the so-called broken symmetry formalism,
where the spins on the molecules are polarized by hand. Due
to lack of spin-orbit interaction in NIT-2Py, the total energies
can be mapped directly to the rotationally invariant Heisenberg
Hamiltonian of Eq. (2). By using supercells of up to 2×1×2
we were able to identify the different exchange interactions
between neighboring molecules. As listed in Table I, we found
that the leading interactions are all antiferromagnetic. The min-
imal magnetic model obtained by mapping the coordination
and strength of the interactions back to the structure consists in
spin- 1

2 tetramers, which form a corrugated 2D lattice parallel
to the {−1,0,2} set of crystallographic planes, as shown in
Fig. 1(d). The strength of the interactions obtained from the
broken symmetry formalism is comparable to the values which
result from fitting the exchange constants to the magnetization
data of NIT-2Py, as shown Fig. 3(a).

Having established the minimal magnetic model, we car-
ried out DMRG calculations on finite but large systems and
determined the magnetic phase diagram. To summarize the
qualitative picture that emerges from our results and analysis,
we find a low-field BEC formed by the spins at the ends of the
tetramers, with the two spins in the middle strongly entangled
into dimers. The high-field BEC is formed by the central
spins, with the ones at the edges practically fully polarized.
The high-field BEC is qualitatively similar to TlCuCl3 [46,47]
since right above the plateau the system basically consists of a
crystal of dimers, and can be described in the same language
with the (practically polarized) edge spins mediating the inter-
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actions between the singlets. Unlike most quantum magnets
that realize a classical “up-up-up-down” order in the half-
magnetization plateau, NIT-2Py exhibits a true quantum state,
similar to the one reported in CdCu2(BO3)2 [13,15], formed
by a valence-bond solid coexisting with fully polarized spins.
We hope that NIT-2Py can become a new exciting playground
to realize novel states and study quantum phase transitions, for
instance, under chemical doping or hydrostatic pressure.
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APPENDIX A: ISOLATED TETRAMER

The Hamiltonian of an isolated tetramer with interactions
J4 and J9 is

Htetra = J9(S1 · S2 + S3 · S4) + J4(S2 · S3). (A1)

The system has two singlets (S = 0), three triplets (S = 1), and
one quintuplet (S = 2) eigenstates whose energies are [48]

ES
1 = −J9

2
− J4

4
−

√
J 2

4 − 2J4J9 + 4J 2
9

2
, (A2)

ES
2 = −J9

2
− J4

4
+

√
J 2

4 − 2J4J9 + 4J 2
9

2
, (A3)

ET
1 = −J4

4
−

√
J 2

4 + J 2
9

2
, (A4)

ET
2 = −J4

4
+

√
J 2

4 + J 2
9

2
, (A5)

ET
3 = −J9

2
+ J4

4
, (A6)

E
Q
1 = J9

2
+ J4

4
. (A7)

With antiferromagnetic (positive) interactions, at zero mag-
netic field, the ground state is the ES

1 singlet. With an applied
magnetic field at zero temperature a first jump in the magneti-
zation arises when the Sz = 1 component of the lowest-energy
triplet becomes the ground state at

HST = 1

g μb

(
ET

1 − ES
1

)
(A8)

FIG. 11. Antiferromagnetic Néel order compatible with the cal-
culated exchange interactions.

and a second jump when the Sz = 2 component of the quintu-
plet crosses the Sz = 1 energy of the triplet

HTQ = 1

g μb

(
E

Q
1 − ET

1

)
. (A9)
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FIG. 12. Dependence of the DMRG calculations with the number
of states d for a cylinder of size Lx×Ly = 16×8. Ground-state energy
per tetramer E(d) (in units of J4) and magnetization equal to (a)
m = 0 and (b) m = 1

2 . Off-diagonal structure factor (c) S+−(π/2,π )
for m = 0, 1

2 , and 0.375.
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APPENDIX B: DENSITY MATRIX RENORMALIZATION
GROUP CALCULATIONS

As described in the text, the geometry of the problem was
mapped onto a system of spins at the vertices of a square lattice.
Antiferromagnetic Néel order is compatible with the calculated
exchange interactions as can be seen in Fig. 11 where the
magnetic order is represented in the topologically equivalent
lattice and magnetic unit cell used for DMRG calculations. The
blue and red circles represent opposite projections of the mag-
netic moment along z. There is no frustration when the three
leading magnetic interactions between the NIT-2Py molecules
J4 (black), J6 (red), and J9 (magenta) are all antiferromagnetic.
This magnetic order corresponds to a 4×2 superstructure with
respect to the underlying square lattice. It would appear as peak
at q = (π/2,π ) in the spin structure factor.

DMRG simulations were performed on cylinders of dif-
ferent aspect ratios. We found very small entanglement and

finite-size effects due to the weak coupling between the
tetramers. Figures 12(a) and 12(b) show the convergence of the
ground-state energy with the number of states d for a system
of size Lx×Ly = 16×8.

For m = 0, four significant figures in the ground-state
energy are achieved with moderate effort d = 800 while for
m = 1

2 seven significant digits can be obtained with just d =
200 states. This can be attributed to the weak entanglement in
these gaped phases. Results in the paper where obtained with
six to seven significant figures for a lattice size of Lx×Ly =
32×8 containing 256 spins. Typical runs involved 1000 states
for the m = 1

2 phase and up to 2400 states in the other cases.
The dependence of the off-diagonal structure factor

S+−(π/2,π ) on the number of DMRG states is shown in
Fig. 12(c). The estimated error with d = 1200 is in the third
significant digit, while for magnetization m = 1

2 the results are
fully converged.
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