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We study the interplay of electric and magnetic order in the one-dimensional Heisenberg spin- 1
2 XXZ chain with

large Ising anisotropy in the presence of the Dzyaloshinskii-Moriya (DM) interaction and with longitudinal and
transverse magnetic fields, interpreting the DM interaction as a coupling between the local electric polarization
and an external electric field. We obtain the ground state phase diagram using the density matrix renormalization
group method and compute various ground state quantities like the magnetization, staggered magnetization,
electric polarization and spin correlation functions, etc. In the presence of both longitudinal and transverse
magnetic fields, there are three different phases corresponding to a gapped Néel phase with antiferromagnetic
(AF) order, gapped saturated phase, and a critical incommensurate gapless phase. The external electric field
modifies the phase boundaries but does not lead to any new phases. Both external magnetic fields and electric
fields can be used to tune between the phases. We also show that the transverse magnetic field induces a vector
chiral order in the Néel phase (even in the absence of an electric field) which can be interpreted as an electric
polarization in a direction parallel to the AF order.
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I. INTRODUCTION

The one-dimensional Heisenberg spin S = 1/2 XXZ model
has long served as a paradigm for the study of quantum
magnetism [1] in low dimensions. The study of effects induced
by external magnetic fields has been of particular interest
since the magnetic behavior in an external magnetic field
can be qualitatively different depending on the magnitude
and direction of the external field [2–13]. This has led to
interest in the study of field-induced quantum phase transitions
[1–3,7–11,13–16]. Such models are also believed to describe
many quasi-one-dimensional compounds like TlCoCl3 [17],
CsCoCl3 [18], Cs2CoCl4 [19,20], SrCo2V2O8 [21]. In recent
years, there has also been a lot of interest in the study of the in-
terplay of electric and magnetic order in quantum spin systems,
motivated by the direct correlation between ferroelectricity
and noncollinear magnetic order discovered in perovskite
multiferroics like RMnO3 with R = Tb, Dy, Gd and Eu1−xYx

and in several edge-sharing copper oxide compounds like
LiCu2O2, LiCuVO4, etc. [22]. The direct correlation between
magnetic order and ferrolectricity implies the existence of an
intrinsic magnetoelectric effect in these systems. This has led
to a resurgence of focus in the study of the magnetoelectric
effect due to the interest in being able to manipulate magnetism
with electric fields and vice versa. A microscopic model which
connects the (ferro)electric polarization with the noncollinear
magnetic ordering of neighboring spins is a lattice geometry
independent model based on the spin current mechanism [23]:

�Pi ∼ γ �eij × (�Si × �Sj ), (1)

where �Pi is the local polarization at the ith site, �eij is the unit
vector pointing from site i to site i + 1, Sa

i (a = x,y,z) is the
ath component of the spin operator at the ith site, and γ is
a material-dependent constant. The electric polarization oper-
ator is also intimately related to the Dzyaloshinskii-Moriya

(DM) interaction [24], �Dij · �Si × �Sj , which arises due to
spin-orbit coupling. The spin-orbit interaction leads to canting
of the spins and hence frustration in the spin system which
makes the study of spin orbit effects in spin chain systems
of special interest. Besides, the DM interaction is known to
modify the dynamic properties and quantum entanglement of
spin chains [25,26]. It also plays an important role in explaining
the electron spin resonance experiments on one-dimensional
antiferromagnets [27].

Recent studies of the magnetoelectric effect in the
anisotropic XXZ spin chain with large anisotropy in the
presence of magnetic field and the DM interaction with the
latter being interpreted as an external electric field [28,29]
showed that the electric field can be used to tune between
phases. Different regimes of electric polarization with the
different regimes being controlled by the magnetic field were
obtained. For a pure transverse magnetic field, there are two
different regimes of polarization corresponding to the Néel
phase and the fully magnetically saturated phase [29]. For
the case of a pure longitudinal magnetic field, there are
three different regimes for the polarization corresponding to
the Néel phase, the Luttinger liquid phase, and the fully
magnetically saturated phase [28,29]. An interesting question
is that of the effect of the electric field when the magnetic
field has both longitudinal and transverse components and the
spin rotational symmetry is completely broken. For example,
recent bosonization studies on the nearly isotropic spin- 1

2
Heisenberg chain with longitudinal and transverse magnetic
fields have shown that the competition between DM interaction
and longitudinal and transverse magnetic fields can lead to
interesting field-induced antiferromagnetic order [30,31]. The
question is also of relevance in the context of neutron scattering
experiments when the magnetic field is applied at an angle to
the anisotropy axis. In this work, we address this question
by studying the interplay of electric and magnetic order
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in the anisotropic spin- 1
2 XXZ chain with large anisotropy

with longitudinal and transverse magnetic fields and with the
DM interaction interpreting it as an electric field. We have
numerically determined the ground state phase diagram using
the density matrix renormalization group (DMRG) method.
Various ground state quantities like the energy gap, magneti-
zation, staggered magnetization, electric polarization, and spin
correlation functions have also been computed. Our main result
is that, for large Ising anisotropy, the electric field does not
lead to any new phase but modifies the phase boundaries. With
increasing electric field, the AF Néel phase region reduces
while the incommensurate phase region grows. We also obtain
the electric polarization induced by the external electric field
and show that both transverse and longitudinal magnetic fields
can be used to tune the electric polarization. Interestingly, we
show that the transverse magnetic field induces an electric
polarization parallel to the AF order as well as nematic order
even in the absence of the electric field.

The plan of our paper is as follows. In Sec. II, we briefly
discuss the XXZ model in the presence of the longitudinal and
transverse magnetic fields and present the results here for the
phase diagram obtained using the DMRG study and compare
with previous studies which were mainly based on the mean
field approximation. There are some earlier numerical studies
on the XXZ model in the presence of a longitudinal field [12]
and a transverse field [10] but, as far as we are aware, there do
not seem to be earlier detailed numerical studies of the phase
diagram for the model in the presence of both transverse and
longitudinal magnetic fields. We also show that the transverse
magnetic field leads to nematic order as well as vector chirality
in a direction parallel to the AF order in the Néel phase. In
Sec. III, we present the results for the phase diagram obtained
in the presence of the electric field when both the longitudinal
and transverse fields are present. We discuss the behavior of
various ground state quantities and their dependences on the
external fields. We summarize our work in Sec. IV.

II. XXZ CHAIN WITH LONGITUDINAL AND
TRANSVERSE MAGNETIC FIELDS

The anisotropic S = 1/2 XXZ chain in the presence of
longitudinal and transverse magnetic fields and with a DM in-
teraction along the z direction is described by the Hamiltonian
H:

H =
N∑

n=1

[
J
(
Sx

nSx
n+1 + Sy

nS
y

n+1 + �Sz
nS

z
n+1

)

+E
(
Sx

nS
y

n+1 − Sy
nSx

n+1

) − hzS
z
n − hxS

x
n

]
, (2)

where Sa
i , with a = x,y,z, denote the components of the spin

operator at the ith site along the chain, � is the easy-axis
anisotropy (the xy plane being the easy plane), hx (hz) the
external magnetic field along the x (z) direction, and E denotes
the strength of the DM interaction which we interpret as an
external electric field E along the y direction coupling to the
polarization operator: P

y

i ≡ S
y

i Sx
i+1 − Sx

i S
y

i+1 (we have taken
the direction along the chain to be the x direction, �eij = �x). The
XXZ model with periodic boundary conditions (PBC) and in a
pure longitudinal magnetic field is known to be exactly solvable
by the Bethe ansatz method [2]. For the anisotropy parameter

� > 1, the longitudinal magnetic field hz leads to a sequence
of three different phases with increasing field strength: (i) a
gapped antiferromagnetic phase with Néel order along the
z direction for 0 < hz < hc1; (ii) critical Luttinger liquid
behavior for hc1 < hz < hc2; (iii) a fully saturated phase for
hz > hc2. The critical fields hc1 and hc2 can be obtained from
the Bethe ansatz solution (for periodic boundary conditions)
to be

hc1 = sinh η

∞∑

k=−∞

(−1)k

cosh kη
, hc2 = 1 + �, (3)

where cosh η = �.
The XXZ model in a transverse field is not integrable and

therefore not amenable to an exact Bethe ansatz solution. For
the XXZ model in a pure transverse field, the phase diagram has
been obtained by studying the model through diagonalization
and DMRG methods [4,6,8] as well as approximate analytic
methods [8]. Mean field studies and exact diagonalization stud-
ies on small length chains [8] showed that two different phases
are possible: the antiferromagnetic phase with Néel order along
the z direction for hx < hc3(�) and the magnetically saturated
phase (along x direction) for hx > hc3(�), where hc3(�) is the
critical field [hc3(�) ≈ √

2(1 + �), the classical value] [8].
The effect of both longitudinal and transverse magnetic fields
were studied using the mean field approximation [11] for a
chain with periodic boundary conditions (PBC) but, as far
as we are aware, there are no reports of exact phase diagram
studies of the anisotropic model (� > 1) in the presence of both
longitudinal and transverse fields. In the presence of the electric
field and in a pure longitudinal field (i.e., hx = 0), the electric
field term can be “gauged” away by a rotation transformation
of the spin operators: S±

m → exp (±imα), tan α = E/J . This
leads to a transformed XXZ Hamiltonian with parameters
J̃ = √

J 2 + �2 and �̃ = �√
1+E2 and with twisted boundary

conditions. However, such a rotation transformation is not
possible when hx 	= 0 and hence the problem cannot be solved
using the Bethe ansatz.

In this work, we study the model [Eq. (2)] using the
numerical DMRG method. We have obtained the energy gap
and also studied the behavior of various physical quantities like
the uniform and staggered magnetization, spin correlations,
electric polarization, etc. The numerical calculations have
been carried out using the ALPS DMRG application [32].
Further, we restrict ourselves to the case � > 1 and have
used open boundary conditions (OBC). We start by discussing
the model [Eq. (2)] in the absence of the electric field.
From the behavior of various physical quantities, we identify
three different phases: a gapped Néel antiferromagnetic (AF)
phase, a gapped paramagnetic (PM) phase, and a gapless
critical incommensurate Luttinger (IC) phase depending on the
relative strengths of the longitudinal and transverse magnetic
fields as shown in the schematic phase diagram in Fig. 1. The
Néel and Luttinger phases are separated by the transition curve
L, while the Luttinger and paramagnetic phases are separated
by the transition curve U . The transition curve G separates the
Néel and the paramagnetic phase. In Fig. 1, critical points HL

lying on the transition curve L denote the critical transverse and
longitudinal fields (hLx,hLz), while points HU on the transition
curve U represent the critical transverse and longitudinal fields
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FIG. 1. Schematic of the phase diagram obtained by DMRG for a
chain of length L = 64 and with open boundary conditions. Here � =
4.5 and E = 0. Region I depicts a gapped antiferromagnetic (AF)
phase, region II a gapless incommensurate (IC) phase, and region
III a gapped paramagnetic (PM) phase. These have been described
in the text.

(hUx,hUz). A critical point hG on the transition curve G denotes
the critical transverse and longitudinal fields (hGx,hGz). At
field strengths (hT x,hT z), there is a tricritical point T between
the three phases. For transverse field strengths, 0 � hx < hT x ,
the longitudinal field hz gives rise to a sequence of three
different phases: a gapped AF phase with Néel order along
both z and x direction for 0 � hz < hLz, a gapless Luttinger
phase for hLz < hz < hUz, and a magnetically saturated phase
for hz > hUz. The dependence of the lower critical longitudinal
field, hLz, and the upper critical longitudinal field, hUz, on the
transverse field can be determined from the transition curves
L and U , respectively. At zero transverse field, hLz = hl and
hUz = hu. The lower critical longitudinal field increases with
the transverse field, i.e., hLz(hx 	= 0) > hl , while the upper
critical longitudinal field hUz decreases with the transverse
field or hUz(hx 	= 0) < hu. For transverse fields, hx > hT x ,
two phases are possible: a gapped AF phase with Néel order
for 0 � hz < hGz and a magnetically saturated phase for hz >

hGz. The longitudinal field dependence of the critical field,
hGx , separating the Néel and magnetically saturated phases is
determined by the transition curve G. Also, hGx(hz = 0) =
hc = hc3(�).

The above three phases have been identified from the
numerical results for the energy gap and the various magnetic
orders. We show the hx − hz dependence of the energy gap
in Fig. 2. Here, the first excitation determines the gap for
the nondegenerate ground state and the second excitation
determines the gap for the degenerate ground state. The
hx − hz dependence plots for the staggered magnetization Mz

s

and Mx
s along the z and x direction are shown in Figs. 3(a)
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FIG. 2. hx − hz dependence of the energy gap in units of J (=1)
(white depicts zero gap). The gapped (I and III ) and the gapless (II )
regions are clearly seen. For calculating the energy eigenvalues and
the gaps, we set the maximum number of states to 70 and the number
of sweeps to 10, from which we obtained a truncation error of the
order of 10−15.

and 3(b), respectively, while the corresponding plots for the
uniform magnetization Mz and Mx are shown in Fig. 3(c) and
Fig. 3(d), respectively. The uniform magnetization, Ma , and
the staggered magnetization, Ma

s , have been defined as

Ma = 1

N

N∑

i=1

〈
Sa

i

〉
, a = x,y,z, (4)

Ma
s = 1

N

N∑

i=1

(−1)i+1
〈
Sa

i

〉
, a = x,y,z. (5)

We distinguish between the three different regions shown
in Fig. 1 as follows:

(i) Region I corresponds to a gapped phase with antiferro-
magnetic (AF) Néel order (nonzeroMz

s ) along the z direction as
can be seen from the plot for the gap shown in Fig. 2 and the plot
for the staggered magnetization Mz

s along the z direction shown
in Fig. 3(a). We further distinguish between three subregions
in this phase as described below.

Subregion Ia corresponds to the case of a pure longitudinal
magnetic field. From the plots for the energy gap and staggered
magnetization Mz

s [Fig. 2 and Fig. 3(a)], it can be seen that
here the lower critical field hLz = hl ∼ 1

2hc1, where hc1 is the
lower critical field as given by the Bethe ansatz relation for
PBC [Eq. (3)]. This is because we are considering the chain
with OBC. This subregion corresponds to an AF phase with
order only along the z direction as can be seen from Figs. 3(a)
and 3(b). Also, it can be seen from Figs. 3(c) and 3(d) that both
Mz and Mx are zero in this subregion.

Subregion Ib corresponds to the case of a pure transverse
magnetic field, representing an AF phase with order only along
the z direction as can be seen from Figs. 3(a) and 3(b). Also,
from Figs. 3(c) and 3(d), it can be seen that Mx is finite in this
subregion which tends towards saturation athx = hc. However,
Mz is zero in this subregion.

The subregion Ic corresponds to the case with both longi-
tudinal and transverse fields, representing an AF phase with
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FIG. 3. hx − hz dependence of (a) staggered magnetization Mz
s , (b) Mx

s (Mx
s = 0 along hz = 0), the uniform magnetization, (c) Mz and (d)

Mx , obtained by DMRG for a chain of length L = 64 and with open boundary conditions. Here again � = 4.5 and E = 0. For calculating the
observables like the magnetization, polarization, etc., we used up to a maximum of 70 states, the number of sweeps was set to 10, and we kept
a truncation tolerance of 10−6.

staggered order along both z and x direction as observed from
the plots for the staggered magnetization [Figs. 3(a) and 3(b)].
The staggered order along the x direction arises due to the
oscillations in the local magnetization 〈Sx

i 〉 about a nonzero
mean value. It can also be seen from Figs. 3(a) and 3(b) that
the staggered orders in both the z and x directions are nearly
equal in the region near the tricritical point T . Further in this
case, where both longitudinal and transverse fields are present,
there is a finite uniform magnetization along both z and x

directions as can be seen from Figs. 3(c) and 3(d).
(ii) The region II corresponds to a gapless incommensurate

(IC) Luttinger liquid phase. The energy gap vanishes in this
region as can be seen from Fig. 2. From Figs. 3(a) and 3(b),
it can be seen that the staggered magnetization along z and x

direction are both zero in this region. We do not show this but
the local magnetization 〈Sz

i 〉 and 〈Sx
i 〉 show (in)commensurate

oscillatory behavior.
We distinguish two cases here:
Subregion IIa corresponds to the case of a pure longitudi-

nal field. We can see from Figs. 3(c) and 3(d) that there is a
finite uniform magnetization Mz for hz > hl which saturates at
the upper critical field hUz = hu = hc1 = 1 + �. The uniform
magnetization Mx is zero in this subregion.

Subregion IIb corresponds to the case where both lon-
gitudinal and transverse fields are present (hLz < hz < hUz,

0 < hx < hT x). In this subregion, both Mz and Mx are finite
as can be seen from Figs. 3(c) and 3(d).

(iii) Region III is a gapped phase described by a mag-
netically saturated state with uniform magnetization along the
direction of the applied field. The energy gap can be seen from
Fig. 2. Here we distinguish between three subregions.

Subregion IIIa corresponds to the case of a pure longitu-
dinal field (hx = 0, hz > hu). In this subregion, the uniform
magnetization Mz is fully saturated as can be seen from
Fig. 3(c).

Subregion IIIb corresponds to the case of a pure transverse
field. In this subregion, the uniform magnetization is along the
x direction as can be seen from Fig. 3(d). However, Mx does
not saturate completely because of the competition between the
Néel ordering due to the Ising anisotropy along the z direction
on one hand and the quantum fluctuations caused by the effect
of the strong transverse field in the easy plane on the other.

Subregion IIIc corresponds to the case where both longi-
tudinal and transverse magnetic fields are present. As can be
seen from Figs. 3(d) and 3(e), there is uniform magnetization
along both the z and the x directions, i.e., along the direction of
the applied field, which tends towards saturation at very large
fields.

The behavior of the uniform and staggered magnetization
in the different phases and the nature of the transitions between
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FIG. 4. Dependence of the staggered magnetization on hz and hx in the absence of the electric field. (a) Mz
s as a function of hz, for different

values of hx . (b) Mz
s as a function of hx , for different hz. (c) Mx

s as a function of hz, for different hx . (d) Mx
s as a function of hx , for different

hz. All other parameters are as in Fig. 3.

the phases can be understood better by studying their depen-
dence on the longitudinal (transverse) field for fixed values of
transverse (longitudinal) field. In Fig. 4(a), we plot Mz

s as a
function of hz for fixed hx . Mz

s is nonzero only in the Néel
phase (region I ). For a pure longitudinal field, we see that
Mz

s is a constant which drops sharply to zero at the lower
longitudinal critical field hl . In the presence of the transverse
field, the magnitude of Mz

s decreases; also the drop to zero
at the lower longitudinal critical field hLz gets smoothened.
We show the hx dependence of Mz

s in Fig. 4(b) from which
we find a nonzero value only for longitudinal fields hz < hT z.
From Figs. 4(a) and 4(b), we also observe that for small
transverse and longitudinal fields Mz

s − const ∼ −ah2
x − bh2

z .
In Figs. 4(c) and 4(d), we plot Mx

s as a function of hx(hz)
for fixed hz(hx). It can be seen from the figure that Mx

s is
nonzero for longitudinal fields hz < hT z and shows a linear
dependence on the longitudinal field, i.e., Mx

s ∼ hz. For very
small transverse and longitudinal fields, it can also be seen
from Figs. 4(c) and 4(d) that Mx

s ∼ hzhx . Further, we see from
Figs. 4(a) and 4(c) that hLz increases with the transverse field
for hx < hT x . For transverse fields hx > hT x , the longitudinal
critical field hGz can be seen to decrease with increasing
transverse field. Figures 4(b) and 4(d) show that the lower
critical transverse field hLx increases with the longitudinal
field, while the upper critical transverse field hGx decreases
with the longitudinal field.

We next study the behavior of the uniform magnetization. In
Fig. 5(a), we plot the uniform magnetization Mz as a function
of the longitudinal field for different (fixed) transverse field
values. The small step seen in Fig. 5(a) for Mz at hl = hc1/2
for the case of a pure longitudinal field (subregion Ia) is due to
the finite size effect arising in chains with OBC. Otherwise, the
field dependence of Mz is similar to that for a chain with PBC
and in a pure longitudinal field [2]: the magnetization vanishes
in the Néel phase and increases monotonically in the Luttinger
phase reaching saturation at the upper critical field hc2 = 1 +
�. It shows square root singular behavior [33] in the vicinity
of the transitions from the Néel phase to the Luttinger phase
and from the Luttinger phase to the magnetically saturated
phase. In finite transverse fields, 0 < hx < hT x (hT x ∼ 2.0
for our case), the behavior is similar; however, Mz is now
nonzero in the Néel phase. Also, the singular behavior near
the transition from the Néel phase to the Luttinger phase
gets smoothened by the transverse field. For transverse fields,
hx > hT x , Mz increases with hz monotonically; however, it no
longer reaches saturation value as can be seen from Fig. 5(a).
Further, we observe that, in general, for small longitudinal
fields, Mz ∼ hz. We show the corresponding dependence of
Mz on the transverse field in Fig. 5(b). For small transverse
fields and for longitudinal fields hz < hLz, it can be seen that
Mz ∼ h2

x . For hLz < hz < hUz, Mz increases slowly with the
transverse field, showing a maximum near the transition from
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FIG. 5. Dependence of the uniform magnetization on hz and hx in the absence of the electric field. (a) Mz as a function of hz, for different
values of hx . (b) Mz as a function of hx , for different hz. (c) Mx as a function of hz, for different hx . (d) Mx as a function of hx , for different
hz. All other parameters are as in Fig. 3.

the Luttinger IC phase to the magnetically saturated phase,
and then decreases with further increase in hx as can be seen
from Fig. 5(b). For hz > hUz, Mz decreases with increasing hx .
From Figs. 5(a) and 5(b), we conclude that, for small transverse
and longitudinal fields, Mz ∼ hzh

2
x , which is in agreement with

mean field theory results [11]. In Fig. 5(c), we plot the uniform
magnetization Mx as a function of the longitudinal field for
different (fixed) transverse field values, while in Fig. 5(d) we
plot the transverse field dependence of Mx . From the two
plots, we can see that Mx ∼ hx for small transverse fields
and that it tends towards saturation in subregions IIIb and
IIIc.

We also study the behavior of the spin-correlation decays
in order to confirm the above identification of the different
phases. We define the two-spin correlation functions Ca(n) as

Ca(n) ≡ 〈
Ca

i,i+n

〉 = 〈
Sa

i Sa
i+n

〉
, a = x,y,z, (6)

where n is the distance between the two spins. In general,
in the gapped regions I and III , the spin correlations show
long range AF order and long range FM order, respectively,
while in the gapless phase II , the spin correlations show an
algebraic decay. For a pure longitudinal field, the transverse
spin correlations are isotropic in nature because of the spin
rotation symmetry about the z axis. In the subregion Ia (Néel
phase), the longitudinal spin correlations (along the z direction)
show AF staggered long range order while the transverse spin
correlations (x and the y components) decay exponentially
to zero. In subregion IIa (IC phase), the spin correlations

show a power-law decay. In subregion IIIa (magnetically
saturated phase), the longitudinal spin correlations show long
range FM order, while the transverse spin correlations decay
exponentially. These results are described in Fig. 6, where
we show the semilog plots of the absolute values of the two
spin correlation decays |Ca(n)|, a = x,y,z as a function of
the distance n for representative field values in the various
phases focusing on the effect of transverse field. Panel (a) of the
figure shows the spin correlation decays for a pure transverse
field (subregion Ib). It can be seen that the longitudinal spin
correlations show long-range (AF) order. The spin correlations
along the x direction decay to a finite uniform value, while
the spin correlations along the y direction decay exponentially
to zero (the spin rotation symmetry in the x − y plane is
broken due to the transverse field). In the presence of both
longitudinal and transverse fields (subregion Ic), as can be
seen from Fig. 6(b), both longitudinal and transverse spin
correlations along the x direction show long range order with
small oscillations about the mean values. The transverse spin
correlations along the y direction decay exponentially. Panel
(c) of Fig. 6 depicts the two spin correlation decay behavior for
representative values of longitudinal and transverse fields in the
gapless incommensurate phase (subregion IIb). We see here
that the transverse and longitudinal spin correlations decay in
accordance with a power law, albeit with fluctuations about the
mean decay. Also, the x − y isotropy is broken. In panel (d)
of the figure we show the behavior of the spin correlations for
a pure transverse field in the fully saturated phase (subregion
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FIG. 6. Semilog plots for the spin correlation decays as a function of the distance for L = 64, � = 4.5, and E = 0.0, for representative
values of hx − hz in the different phases. We only plot here the absolute values. Panel (a) shows the long range (AF) order of the longitudinal spin
correlations in subregion Ib (hx = 0.5, hz = 0.0) of the Néel phase. A small induced paramagnetic order in the transverse x component spin
correlations can also be observed. Panel (b) describes the effect of both transverse and longitudinal field on the spin correlations in subregion
Ic (hx = 2.0,hz = 1.8) of the Néel phase. There are additional fluctuations in the paramagnetic x spin correlations due to the longitudinal field.
Panel (c) shows the absence of long range order in the subregion IIb (hx = 0.5, hz = 4.3) of the critical incommensurate phase, while panel
(d) shows the induced long range ferromagnetic order for the spin correlations in the subregion IIIb (hx = 4.0, hz = 0.0) of the magnetically
saturated phase.

IIIb). There is long range ferromagnetic order of the spin
correlations along the direction of the applied field, hx . The
y and the z correlations decay exponentially. We do not show
this but, in the presence of both transverse and longitudinal
fields (subregion IIIc), the spin correlations show long range
FM order along the direction of the applied field.

While the above phase diagram is in general consistent with
earlier mean field approximation studies [11], there are some
differences. The phase boundary of the critical phase which
we have determined shows that in a small applied transverse
field hx , the sequence of phase transitions with increasing
longitudinal magnetic field hz is similar to that in the absence of
the transverse field. This is in contrast to what was suggested
in Ref. [11] that there is an intermediate AF phase between
the critical phase and the saturated phase due to the induced
anisotropy operator

∑
i[S

x
i Sx

i+1 − S
y

i S
y

i+1] becoming relevant
beyond a certain field strength hz > hz1. We do observe such
an induced anisotropy as discussed in the next paragraph;
however, it does not lead to any intermediate AF phase. We
argue that this is because, at these field strengths, the Zeeman
coupling −hz

∑
i S

z
i becomes much larger and hence there is a

transition directly from the IC phase to the saturated phase. For
higher transverse field strengths (hx > hT x), with increasing
hz, there is only one phase transition from the AF Néel phase
to the fully saturated phase.

The transverse magnetic field also leads to other kinds of
order. One such effect is the nematic order 〈S+

i S+
i+1〉 which

arises due to the x − y anisotropy induced by the transverse
field. The real and the imaginary parts of the uniform nematic
order are defined as [34]

Re Nu = 1

N

∑

i

〈
Sx

i Sx
i+1 − S

y

i S
y

i+1

〉
,

Im Nu = 1

N

∑

i

〈
Sx

i S
y

i+1 + S
y

i Sx
i+1

〉
. (7)

In the absence of the electric field, the transverse field
induces only the real part of the uniform nematic order Re[N ]u.
From Fig. 7(a), where we show the dependence of the uniform
average of the real part Re[N ]u on the transverse field for fixed
hz, we can see that the nematic order increases monotonically
with increasing transverse field tending to saturation in the
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FIG. 7. Behavior of the uniform average of the real part of
the nematic correlations Re[N ]u as a function of the longitudinal
and transverse fields and in the absence of the electric field. The
different panels describe (a) transverse field dependence of Re[N ]u
for fixed longitudinal field values, (b) longitudinal field dependence of
Re[N ]u for fixed transverse field values, and (c) the combined hx − hz

dependence of Re[N ]u. Re[N ]u is identically zero for hx = 0. All
other parameters are as in Fig. 3.

magnetically saturated (along x direction) phase. We plot
the longitudinal dependence of Re[N ]u in Fig. 7(b) for fixed
transverse fields. We observe that, for small transverse fields,
the nematic order increases slowly with hz, reaches a maximum
near the transition to the magnetically saturated (along z

direction) phase, and then decreases in the fully saturated
phase. For larger transverse fields, the nematic order is large

for small hz and then eventually decreases with increasing hz.
The combined effects of both the transverse and longitudinal
fields on Re[N ]u are shown in Fig. 7(c). It can be seen from
the figure that the nematic order is small in the Néel and
Luttinger (IC) phases, increases with the transverse field, and
attains its maximum value in the magnetically saturated phase
(subregions IIIb and IIIc).

The transverse field also induces a small real part of the
staggered nematic order (with magnitude two orders smaller
than the uniform part), where the real and imaginary parts of
the staggered nematic order are defined as

Re Ns = 1

N

∑

i

(−1)i
〈
Sx

i Sx
i+1 − S

y

i S
y

i+1

〉
,

Im Ns = 1

N

∑

i

(−1)i
〈
Sx

i S
y

i+1 + S
y

i Sx
i+1

〉
. (8)

The presence of both the uniform and staggered nematic orders
suggests that the transverse field induces a bond dimeriza-
tion [34]. Further, the breaking of the spin U (1) rotational
symmetry by the transverse field also leads to a small nematic

order of the type N±
u = 1

N

∑
i〈(Sz

i S
±
i+1 + S±

i Sz
i+1)〉.

More interestingly, the transverse field also induces a vector
chirality in the x − y plane, where we define the uniform and
staggered in-plane vector chirality as

K±
u = 1

N

∑

i

〈(
Sz

i S
±
i+1 − S±

i Sz
i+1

)〉
, (9)

K±
s = 1

N

∑

i

(−1)i
〈(
Sz

i S
±
i+1 − S±

i Sz
i+1

)〉
. (10)

The real and imaginary parts of K+
u can be written as

Ky
u ≡ ReK+

u = 1

N

∑

i

〈(
Sz

i S
x
i+1 − Sx

i Sz
i+1

)〉
, (11)

Kx
u ≡ −ImK+

u = − 1

N

∑

i

〈(
Sz

i S
y

i+1 − S
y

i Sz
i+1

)〉
, (12)

and similarly for the staggered chirality. The vector chiral
order arises due to the competition between the AF ordering
due to the Ising anisotropy and the magnetic ordering due to
the transverse field hx . From Fig. 8(a), where we show the
hx − hz dependence of K

y
s , it can be seen that there is a large

staggered vector chiral order in the Néel phase. For fixed hz,
and in the Néel phase, the vector chirality K

y
s shows a linear

dependence on the transverse magnetic field, hx , as can be
seen from Fig. 8(b). Further, we can see from Fig. 8(b) that
K

y
s goes to zero sharply at the transition from the Néel phase

to the magnetically saturated phase. The hz dependence of
K

y
s for fixed hx is shown in Fig. 8(c). In the Néel phase, K

y
s

shows almost plateaulike behavior and then goes to zero in the
critical phase. We also find a small uniform K

y
u (two orders of

magnitude smaller than the staggered chiral order) in the Néel
phase. The AF order along the z direction is responsible for
the fact that the magnitude of the staggered chiral order K

y
s

is much larger than the uniform chiral order K
y
u . Within the

spin current mechanism, Ky can be considered as an electric
polarization along the z direction.
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FIG. 8. Behavior of the real part of the staggered vector chirality
Ky

s as a function of the longitudinal and transverse magnetic fields
and in absence of the electric field. The different panels describe
(a) hx − hz dependence of Ky

s , (b) transverse field dependence of
Ky

s for fixed longitudinal field values, and (c) longitudinal field
dependence of Ky

s for fixed transverse field values. Ky
s is zero for

hx = 0. All other parameters are as in Fig. 3.

III. XXZ CHAIN WITH MAGNETIC AND
ELECTRIC FIELDS

In this section, we discuss the combined effect of the exter-
nal electric field along the y direction and the longitudinal and
transverse magnetic fields. We present our numerical DMRG
results for the phase diagram and the physical observables
when both the longitudinal and transverse magnetic fields are
present and there is an electric field as well. The main result
we find is that the electric field does not give rise to any new

order; it however tends to destroy the AF order and increase
the fluctuations of the transverse spin components, leading
to a modification of the phase boundaries. This can be seen
from Figs. 9(a)–9(d), where we show the hx − hz dependence
of the energy gap and the staggered magnetization for two
representative values of the electric field E = 0.1 and E = 1.0.
It can be seen from panels (a) and (b) of the figure that, with
increasing electric field strengths, there is an increase in the
extent of the IC gapless Luttinger liquid phase at the cost of the
AF Néel and the magnetically saturated phases. This can also
be corroborated from Figs. 9(c) and 9(d), where we see that the
staggered magnetization Mz

s is nonzero in a smaller parameter
region as compared to that in the absence of the electric field.
Also, the magnitude of the order parameter decreases with
increasing strength of the electric field. The behavior of all
other quantities like Mz, Mx , and Mx

s is consistent with the
above phase diagrams. The spin correlation decay also behaves
as expected in the different phases. The only difference is
that the electric field induces small fluctuations in the spin
correlations along the y direction in the critical IC phase.

Besides the uniform and staggered magnetization, in the
presence of an electric field, the other observable of interest is

the uniform electric polarization P y = 1

N

∑
i〈P y

i 〉. While the

polarization P y is induced by the external electric field (P y =
0 when E = 0), its behavior is influenced both by the electric
and magnetic fields. We show the hx − hz dependence of P y in
Figs. 9(e) and 9(f) for the two representative values of E = 0.1
and E = 1.0, respectively. Since the electric polarization is
due to the canting of the x − y components of the spins, P y

is significant in the AF Néel and the IC critical phase, i.e.,
in the regions where the nearest neighbor spin correlations
are antiferromagnetic. P y takes its maximum value in the IC
phase [region M of Figs. 9(e) and 9(f)]. It is very small in
the magnetically saturated phase. It can also be seen from the
figure that the magnitude of the electric polarization increases
with the electric field. We can understand the behavior of the
electric polarization in the different phases better by studying
the hz(hx) dependence of the electric polarization for fixed
transverse (longitudinal) field values as shown in Figs. 10(a)
[10(b)] for E = 1.0. It can be seen from Fig. 10(a) that, in a
pure longitudinal field (hx = 0), P y shows a plateau in the Néel
phase, nonmonotonic dependence on hz in the critical IC phase,
and then eventually vanishes in the fully saturated phase. This
is consistent with earlier results [28,29]. The nonmonotonic hz

dependence of the polarization in the IC phase can be related
to the fact that in the critical spin liquid phase for � > 1, there
is a crossover from an Ising-like phase with dominant incom-
mensurate longitudinal spin correlations to an XY-like phase
with dominant staggered transverse spin correlations [35,36].
The crossover takes place at a field, h∗, hl < h∗ < hu. We
suggest that the nonmonotonic behavior of the polarization in
the incommensurate LL phase is also due to this crossover.
The polarization increases with decreasing longitudinal spin
correlations and then decreases with increasing transverse spin
correlations (the transverse spin correlations also decrease in
magnitude but the longitudinal spin correlations go to zero
faster and before the transverse correlations do). The maximum
value of the polarization is near the field value where the
crossover takes place. From Fig. 10(b), we see that, in the
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FIG. 9. hx − hz dependence of (a),(b) the energy gap, (c),(d) staggered magnetization Mz
s , and (e),(f) polarization P y for E = 0.1 and

E = 1.0, respectively. All other parameters are as in Fig. 3. The white color depicts zero for all observables.

presence of a pure transverse magnetic field, P y is maximum
at zero field and then decreases monotonically with increasing
hx until it vanishes in the magnetically saturated phase at
hx = hGx . Since a finite transverse field favors alignment of
spins along the field direction, this leads to a decrease in the
AF spin correlations and hence a decrease in the canting of the
spins or the electric polarization. Such a monotonic decrease
with increasing hx is also observed in the presence of finite
longitudinal fields in the Néel phase (0 < hz < hLz). This can
also be seen from Fig. 10(a), where finite transverse leads to
a decrease in the magnitude of the polarization. However, the
maximum value that P y can attain changes nonmonotonically
for longitudinal fields in the range hLz < hz < hUz, again for
reasons described in the previous paragraph.

We can also study the combined effect of the magnetic
and electric fields of the various physical observables like
the uniform and staggered magnetization and the polariza-
tion. In the absence of the transverse field, the longitudinal

magnetic field dependence of the staggered magnetization
Mz

s and Mz are similar to that shown in the absence of
the electric field (Fig. 4 and Fig. 5); only the critical
field values hl and hu change due to the electric field.
The effect of a transverse field on the hz dependence
of the uniform and staggered magnetization, Mz,Mx,Mz

s ,
and polarization P y are shown in Figs. 11(a)–11(d)
for different E values. It can be seen from Figs. 11(a) and 11(b)
that, for small electric fields, the uniform (Mz) and staggered
magnetization (Mz

s ) show similar qualitative behavior in the
three different phases as in the absence of the transverse field.
The main effect of the transverse field is that we now no longer
observe the cusp square root singular behavior near the critical
fields hLz and hUz. Interestingly, it can also be observed from
the figures that the singular behavior is restored for electric
field strength values comparable to that of the transverse field.
Finite electric fields also tend to reduce the magnitude of Mx as
can be seen from Fig. 11(c). The polarization P y [Fig. 11(d)]
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FIG. 10. Polarization P y as (a) a function of the longitudinal field for different transverse field values and as (b) a function of the transverse
field for different longitudinal field values. The electric field value is set at E = 1.0. All other parameters are as in Fig. 3.

also shows similar qualitative behavior as in the absence of the
transverse field. Again, for electric fields small compared to the
transverse field, there is a smoothening of the cusp singularity
near the critical fields. Further, since the transverse field tends
to align the spins along the x direction while the electric field
tends to rotate the spins in the x − y plane, the magnitude
of the electric polarization decreases for electric fields small
compared to the transverse fields. For electric field strength
values large compared to that of the transverse field, one finds

that the magnitude of the polarization does not change very
much compared to that in the absence of the transverse field
and also the square root singular behavior near the critical fields
is restored. Or, in other words, the effect of the transverse field
is reduced by large electric fields.

We next discuss the effect of the electric field on the nematic
order and the vector chirality. Qualitatively, the behavior of
the real part of the nematic order and the vector chirality as
a function of the longitudinal and transverse field does not
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FIG. 11. Combined effect of the transverse field hx and the electric field E on the hz dependence of the observables (a) Mz, (b) Mz
s , (c) Mx ,

and (d) P y . Here the transverse field is kept fixed at hx = 1.0 and E takes zero and different nonzero values, all other parameters being as in
Fig. 3. The effect of hx (smoothening of the transitions) is suppressed by the electric field, clearly seen in panels (a) and (b).
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FIG. 12. (a) Transverse field dependence of Ky
s for fixed lon-

gitudinal field value hz = 2.0 and for different E values; (b) the
longitudinal field dependence of Ky

s for fixed transverse field value
hx = 2.0 and for different E values. All other parameters are as in
Fig. 3.

change very much in the presence of the electric field. The
main difference is that the hx − hz parameter regimes where
the nematic and chiral order become significant change due to
the modification of the phase boundaries by the electric field.
We demonstrate this in Fig. 12. From Fig. 12(a), where we plot
the staggered vector chirality as a function of hx for different
E values at a fixed value of hz, we can see that with increasing
electric field strengths, while larger threshold transverse fields
are required to induce the vector chiral order, the functional
dependence on the transverse field in the IC phase does not
change very much in the presence of the electric field. Electric
field strengths large compared to that of the transverse field tend
to reduce the chiral order. This can be seen from Fig. 12(b),
where have shown the vector chirality as a function of hz for
different E values at a fixed value of hx . It can be seen from
the figure that the magnitude of the chiral order decreases with
increasing electric field strengths. Also, larger electric field
values tend to restore the sharpness of the transition. We do
not show this but, in addition, the electric field also induces
the imaginary part of both the nematic order and the vector
chirality; however, in comparison to their real counterparts,
these are two orders of magnitude smaller. ImNu(s) is nonzero
only in the Néel phase, while Kx

u(s) = −ImK+
u(s) is nonzero

only in the IC phase.

IV. CONCLUSIONS

We have studied the joint influence of longitudinal and
transverse magnetic and electric fields on the ground state
properties of the anisotropic Heisenberg spin- 1

2 XXZ chain
with large Ising anisotropy using the DMRG method. We have
obtained the ground state phase diagram in the presence of both
the longitudinal and transverse magnetic fields. There are three
different phases corresponding to a gapped Néel phase with AF
order, gapped saturated phase, and a critical incommensurate
gapless phase when both longitudinal and transverse fields are
present. In the presence of the transverse field, the nature of
the behavior of the uniform and staggered magnetizations near
the critical fields changes from a cusp square-root singular
behavior for pure longitudinal field to a smooth behavior.
The external electric field does not lead to any new phase;
however, the phase boundaries get modified. With increasing
electric field, the AF Néel phase region reduces while the IC
critical region grows. Electric field strengths comparable to
and larger than the transverse field tend to reduce the effect of
the transverse field and restore the sharpness of the transitions
near the phase boundaries. The electric field induces an electric
polarization which takes its maximum value in the IC phase.
We argue that the maximum value of the electric polarization
occurs at field values where there is a crossover from an
Ising-like phase with dominant longitudinal spin correlations
to an XY-like phase with dominant transverse spin correlations.
Interestingly, we show that, even in the absence of an electric
field, the transverse magnetic field induces a uniform and
staggered nematic order in the fully saturated phase and a
staggered vector chiral order in the Néel phase. Within the
spin current mechanism, the induced vector chiral order can be
identified with a staggered electric polarization in a direction
parallel to the AF order. The presence of both uniform and
staggered nematic order suggests that the transverse magnetic
field may be used to induce a bond-order dimerization.

Since our results indicate that the main effect of the electric
field is to change the critical magnetic field strengths and
the nature of the transitions between the different phases, it
implies that both external magnetic fields and electric fields
can be used to tune between different kinds of order and
phases in the spin system. This can be tested experimen-
tally by investigating the magnetization and electric polar-
ization in quasi-one-dimensional Ising-like magnetic systems
[18–21,37] in the presence of applied magnetic and electric
fields. Also, neutron scattering [17,21,38] and electron spin
resonance (ESR) experiments [39,40] can be used to study
the interplay of external electric and magnetic fields. Previous
experimental studies showed that magnetic fields can induce
an incommensurate order due to a crossover in quasi-1D
antiferromagnets due to the crossover from an Ising-like phase
to an XY-like phase [36]. Our results suggest that an external
electric field can also be used to tune such a crossover from
an Ising-like phase to an XY-like phase and hence induce
incommensurate order.

Note added in proof. Recently, laser driven ways of control-
ling spiral spin order and spin currents in a class of multiferroic
magnets, including spin chains, has been proposed [41].
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