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The properties of magnon modes localized on a ferromagnetic skyrmion are studied. Mode eigenfrequencies
display three types of asymptotic behavior for large skyrmion radius Ry, namely, wy o R for the breathing mode
and w_j,; « R and wy,; o R;? for modes with negative and positive azimuthal quantum numbers, respectively.
A number of properties of the magnon eigenfunctions are determined. This enables us to demonstrate that the
skyrmion dynamics for a traveling-wave ansatz obeys the massless Thiele equation.
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I. INTRODUCTION

Chiral magnetic skyrmions [1-9] are particlelike topolog-
ical solitons with an integer topological charge (skyrmion
number). In contrast to a magnetic vortex [10-12], which
has half-integer topological charge, the skyrmion is a truly
localized excitation. As a consequence, the dynamics of the
skyrmion is insensitive to the size and shape of a sufficiently
large sample, and remote skyrmions do not interact with each
other, apart from weak stray field effects. This is in strong
contrast to magnetic vortices. The possibility to manipulate
skyrmions as “individual particles” together with the topolog-
ical stability of these “particles” has prompted a large number
of studies in recent years, where skyrmions are considered key
elements for nonvolatile memory and logic devices [3,13—17].
This perspective has instigated a new area of spintronics:
skyrmionics [16].

On the other hand, magnon spintronics [18] is another re-
cently emerging area of spintronics which is intensively devel-
oping in parallel to skyrmionics. Magnon transistors [19] and
a number of wave-based logic devices [18,20] are proposed as
key elements for wave-based computing [18]. In this regard, the
combination of these two trends, skyrmion-based nonvolatile
memory and magnon-based logic devices, could significantly
advance the development of magnetic computer elements
as an alternative to charge-based semiconductor technology.
However, the concept of a spin-wave- and skyrmion-based
spintronics requires a deep understanding of the skyrmion
magnon modes.

The spectrum of linear excitations of any system reflects its
fundamental properties; for example, the spectrum describes
conditions for instabilities and allows us to analyze their types.
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Knowledge of spectral properties also opens great opportu-
nities for resonance experiments [21-23]. The presence of
skyrmion resonances can be considered proof of the presence
of skyrmions in a system if one knows the distinctive features
of its excitation spectrum, and values of the eigenfrequencies
can be used for the determination of materials parameters.

Due to the fundamental interest and importance for appli-
cations many studies of magnon spectra of skyrmions were
recently carried out [24-33]. However, most of these studies
are numerical, and the existing theories are far from complete.
Some important questions are still unclear, e.g., the presence
of the high-frequency gyrotropic mode, which is a counterpart
of the translational zero mode. It has the same azimuthal
symmetry but nonzero eigenfrequency. In some models this
mode is responsible for the formal appearance of the mass
of the topological soliton [11,29,30,34—41] (see discussion in
Sec. V). In most of the mentioned studies this mode was not
found [24-27]. On the other hand, it was found for some cases
of large-radius skyrmions [29-31].

In this paper we present a detailed study and classification
of the skyrmion magnon spectrum. This paper is organized
as follows. Section II explains our model and introduces
a system of dimensional units (see Table I). In Sec. III
we consider the simplest case of the radially symmetrical
magnon mode, the so-called breathing mode. A general study
of the magnon spectrum is presented in Sec. IV. Here, we
obtain the asymptotic behavior of the eigenfrequencies of all
localized modes. Additionally, we describe various properties
of the mode eigenfunctions, e.g., the orthogonality condition.
These properties are employed in Sec. V, where the skyrmion
dynamics within the traveling-wave model is described by the
approach of collective variables. Here, we demonstrate the
skyrmion dynamics obeys the massless Thiele equation.

II. MODEL AND STATIC EQUILIBRIUM SOLUTIONS

Here, we consider the case of a chiral skyrmion, which is
stabilized in a ferromagnetic film with a perpendicular easy
anisotropy axis and in the absence of external magnetic fields.

©2018 American Physical Society
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TABLEI. Units of physical quantities used in this paper. Values are calculated for the following material
parameters: A = 1.6x107"" J/m, My = 1.1x10° A/m,and K = Ko — 52 M} = 5.1x10° J/m?®, with K, =
1.27x10° J/m? being the intrinsic magnetocrystalline anisotropy.

Value for Pt/Co/AlO,
Quantity Unit of measurement layer structure [42]
Length ¢ =.A/K 5.6 nm
Time Q' = (%)™ 6.12ps (2 = 26 GHz)
Energy Eyp =87 AL 4x107"J (for L = 1 nm)
Mass M= L2 7.6x1072 kg (for L = 1 nm)
DMI strength o =AK 2.9 mJ/m?

The advantage of the field-free case is that the skyrmion can
have an arbitrarily large radius. The problem of the magnon
spectrum has still not been studied systematically for this case.

In our model we take into account three contributions to the
total energy of the ferromagnetic film,

E= L/ [Ad + K(1 —m?2) + D&]dS, (D

where the integration is performed over the film area and L
is the film thickness, which is assumed to be small enough
to ensure uniformity of the magnetization in the perpendicular
direction. The first term of the integrand is the exchange energy
density with & = Zizx’y’z(a,-m)z, and A is the exchange
constant. Here, m = M /M is the unit magnetization vector,
with M, being the saturation magnetization. The second term
is the perpendicular easy-axis anisotropy with K > 0, and
m, = m - Z is the magnetization component normal to the sur-
face. Here, we assume that the introduced uniaxial anisotropy
incorporates an effective easy-plane contribution, which de-
rives from magnetostatics. This assumption is valid for the
case of ultrathin films [43,44]. The last term represents the
Dzyaloshinskii-Moriya interaction (DMI), with &, = m,V -
m — m - Vm_. This inhomogeneous DMI is associated with
the Coo, symmetry of (idealized) ultrathin films [6,8,45,46] or
bilayers [47], stems from the relativistic spin-orbit coupling
[48,49], and selects a fixed sense of rotation for any twisted
noncollinear magnetization configuration.

In the following we introduce a system of dimensionless
units, explained in the Table 1. The proposed units have the
following physical meaning: the magnetic length ¢ is the
typical width of a domain wall in the given system with
vanishing DMI, o is the energy per unit area of such a
domain wall, Ey; is the energy of the Belavin-Polyakov soliton
[50], which coincides with the energy of a skyrmion with an
infinitesimally small radius, and €2 is the frequency of the
uniform ferromagnetic resonance, where y = gug/h is the
gyromagnetic ratio, with g being the Landé g factor, g being
the Bohr magneton, and 7 being Planck’s constant.

The constraint [m| = 1is encoded using the spherical angu-
lar parametrization m = sin 6 cos X + sin0sin¢y + cos 6%.
Magnetization dynamics is described by the Landau-Lifshitz
equations

. 8
sin 06 = —471—5,
3¢

o 8&
sinf¢ = 471%, 2

where the dot denotes the derivative with respect to the dimen-
sionless time T = 2y and £ = E/Eyp is the dimensionless
energy. Here and below, all distances are measured in units of
£, in accordance with Table 1.

For the proposed system of units the dimensionless DMI
constant d = D /o is the only parameter which controls the
system. The described model is characterized by the critical
value of the DMI constant dyp = 4/m, which separates two
ground states, namely, the uniform state m = +Z for the
case |d| <dp and the periodic helical state for |d| > dp
[5,7,42,49,51,52]. For the case 0 < |d| < dy Egs. (2) have a
stationary skyrmion solution 6 = ®(p) and ¢ = P(x ), where
® = x + ¥y and {p,x} are polar coordinates. This is an
excitation of the uniform ground state. The skyrmion profile is
determined by [5-7,42,52]

S 1 ldl
V,0 —sin © cos © 1~|——2 + —sin“® =0, (3a)
P P

00)=m, O(c0)=0, (3b)

where Vg f=p""9,(pd,[) is the radial part of the Laplace
operator. For the case of boundary conditions (3b) ¥y = 0 if
d > 0, and ¥y = 7 if d < 0. In other words, the considered
type of DMI stabilizes a so-called Néel (hedgehog) skyrmion.
The case of alternative boundary conditions ®(0) = 0 and
®(00) = m is not considered here because it does not result in
fundamentally new properties of the magnon spectra compared
to (3b).

III. LARGE-RADIUS SKYRMION AND RADIALLY
SYMMETRICAL MODE

The skyrmion profile is a localized function [5,7,42,52],
which enables one to introduce the skyrmion radius R, as a
solution of the equation cos ®(R,) = 0. The skyrmion radius
R, strongly depends on the DMI constant [7,42]: R; — O when
d — 0 (skyrmion collapse), while R; — oo when d — =%d|
[see Fig. 1(a)]. For a skyrmion with a large radius R; >> 1 one
can easily estimate the asymptotic behavior of R;. In this case
the skyrmion profile is well described by the circular domain
wall ansatz

cosf = tanh 2 :
A

p=x+V. “)

Here, the skyrmion radius Ry, phase W, and width A are
treated as collective variables. This is in contrast to some
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FIG. 1. (a) Skyrmion radius as a function of the normalized DMI
constant. The line shows the approximation (6), while dots correspond
to the exact numerical solutions of the differential problem (3).
(b) Breathing-mode eigenfrequency (solid line) and asymptotics (9)
(dashed line) for the case of a large skyrmion radius (§  1).

previous papers [29,38,42], where the model (4) was used
for constant A. The normalized energy of the skyrmion as
described by the model (4) reads

R A

1| Ry
E~ | — 4+ — —28R,cos ¥ + AR, |, 5)
2| A TR TS T
———— DMI anisotr.
exchange

where § = d/d, is the normalized DMI constant. A minimum
of the energy (5) is reached for the following equilibrium values
of the collective variables: Ayg = |§] and Wy =0 (Vg = 7)
when § > 0 (6 < 0). And the skyrmion radius reads

R, ~ [8]/v/1 — 82 ©6)

In the limit 6 — 1 the estimate (6) transforms into the pre-
viously proposed behavior [42], Ry ~ 1//2(1 — §), which
was obtained for constant width, A = 1. The approximate
radius agrees well with the exact values of R for the whole
range of the DMI constant, not only for the case R; > 1
[see Fig. 1(a)].

Let us now consider excitation of the radially symmetrical
mode. This can be easily done by considering the time-
dependent dynamics of the collective variables R(¢) and W(z)
in the vicinity of their equilibrium values. To this end we treat
the equations of motion (2) as extrema of the action functional
§ = [ Ldr with the Lagrange function

ﬁ:i/(l—cose)quS—a. 7
4

Ansatz (4) represents a circularly closed domain wall. It is
well known [53-57] that dynamics of the width A of the one-
dimensional domain wall has an essentially different time scale
compared to the time scale of the domain wall position R, and
phase W. Namely, A quickly relaxes towards its equilibrium
value determined by the much slower variables R; and W.
Therefore, the assumption that A is a “slave” variable works
very well in most cases. Here, we assume that the same is true
for the circularly closed domain wall if Ry >> 1. In this case
the substitution of ansatz (4) into (7) results in the following

effective Lagrange function:
Lo — g2 _ geff
Ry 9

off 1 18]

& _RS(|8| 2<Scos\I/+|6|>+Rs. ¢))
As follows from (8), the skyrmion area is the canonically
conjugated momentum for the skyrmion phase. The effective
Lagrange function (8) generates a set of two equations of
motion for ¥ and R;, which have static equilibrium solutions
(6) and Yy as determined above. The corresponding linear dy-
namics in the vicinity of the equilibrium state is characterized
by the eigenfrequency

1—862 1 1
wo = = ~ —.
‘Tl RJI+R R
The corresponding asymptotics is shown in Figs. 1(b) and 2(b).

€))

IV. GENERAL DESCRIPTION
OF THE MAGNON SPECTRA

The dispersion relation of linear excitations (magnons)
of the uniform ground state is not influenced by the DMI
and coincides with the common dispersion for the easy-axis
magnets w = 1 + g2, with g = k€ being the dimensionless
wave number. Thus, one has a continuum spectrum with
w > 1 for frequencies above the anisotropy-induced gap. In the
following we are interested in magnons over the equilibrium
skyrmion state. For this purpose we introduce small excitations
of the stationary solution: 6 = ® + 39, ¢ = ® + ¢/sin O.
Equations (2) linearized with respect to the excitations result
in

o=V +U®+ W,
—% = =V + Usp — W, 0.

(10a)
(10b)

Here, the Laplace operator has the form V* = V2 4+ p=297

xx’
and the “potentials” are as follows:
1 ld| .
Up =c0s20( 1+ — | — —sin20,
p p
1 N ©® cos ©
=1 ) - 200
o
2 jd| .
W:—ZCOS@)——s]n@' (IOC)
p o

Here, a prime denotes the derivative with respect to p.
Equations (10) have the solution 9 (p,x,7) = f(p)cos(wt +
ux +mn), op,x,7) = g(p)sin(wt + wx + n), where the az-
imuthal wave number p € Z determines the node number
(2|u|) when moving around the skyrmion center in the az-
imuthal direction and 7 is an arbitrary phase. The eigenfre-
quencies w and the corresponding eigenfunctions f, g are
determined by the following eigenvalue problem (EVP):

HY = wo, ¥
for a Hermitian operator

V245 4U
H = P e 1
uw

(11a)

uw
22 . (11b)
-V, + z T U,
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FIG. 2. The eigenfrequencies w,, of localized modes as functions
of (a) the normalized DMI constant § = d/d, and (b) skyrmion radius
are obtained from numerical solution of the EVP (11). Thin lines are
the asymptotes (13) for the case R, > 1. Modes with || > 3 are not
shown. Frequency w; belongs to the zero translational mode, while
w_; corresponds to the high-frequency gyrotropic mode.

Here, ¥ = (f,g)", and o, is the first Pauli matrix. The formu-
lated EVP (11) structurally coincides with the corresponding
EVP previously formulated for the case of magnons over pre-
cessional solitons in easy-axis magnets [38—40], magnetic vor-
tices in easy-plane magnets [37,58], and magnetic skyrmions
[24-27]. Note that there is an alternative formulation of (10) in
the form of the generalized Schrodinger equation [39,58] (see
Appendix B for details).

The EVP (11) is analyzed both analytically and numerically
(for details see Appendix A). Equations (11) are invariant
with respect to the simultaneous change of sign of three
quantities: w - —w, u - —u,and f - —f (or g —> —g).
This invariance results in a symmetry of the spectrum, which
simplifies classification of the modes: one can fix either the sign
of w considering both signs of w or the sign of @ considering
both signs of . Following the previous studies [24,37-39,58],

we choose the latter classification and consider non-negative
frequencies > 0.

A number of localized modes are found below the edge
of the continuum spectrum. Frequencies of the localized
modes strongly depend on the DMI constant [see Fig. 2(a)];
alternatively, we demonstrate the dependence on the skyrmion
radius [Fig. 2(b)], which can be useful for applications. For any
value of the skyrmion radius (DMI constant) there are at least
three localized modes: the radially symmetrical (breathing)
mode | = 0) and two modes |+1) which are called gyrotropic
[41]. Due to the translational invariance one of the gyrotropic
modes has zero eigenfrequency w; = 0 (in our case this is
the mode |41)). This mode is called translational; it has the
following eigenfunctions [59]: f; = —®' and g, =sin®/p
(see Fig. 3). Although the other gyrotropic mode |—1) has the
same azimuthal symmetry as the translational one, its eigen-
functions f_; and g_; are completely different (see Fig. 3). For
a small-radius skyrmion the eigenfrequency w_; of the mode
|—1) practically coincides with the edge of the continuum,
while for large skyrmions it is inversely proportional to the
skyrmion radius [see Fig. 2(b)]. It is natural to call the mode
|—1) the high-frequency gyrotropic mode.

With the skyrmion radius increasing, the localized modes
with higher azimuthal numbers |u| > 2 appear in the gap.
However, it is important to note that for a given p there
is no more than one localized mode. Some examples of
eigenfunctions of other localized modes are shown in Fig. 3.
Far from the skyrmion the functions f}, and g, have the same
asymptotic behavior because U; — U, when p — oo. Note
also that the localization area of the eigenfunctions increases
when the corresponding eigenfrequency reaches the bottom of
the continuum.

The eigenfunctions f,, and g, have several properties,
which are important for further analysis. Here, we present the
orthogonality condition

/0 olfug—n— f-nguldp =0, (12)

which follows from (A3) when the symmetry between
branches u and —u is taken into account (for details see
Appendix A). The analogous orthogonality condition was
previously obtained for magnons over precessional solitons
[40]. Other properties are listed in (A5), (A6), (A8), and (A11).

The properties of the eigenfunctions enable us to find the
eigenfrequency asymptotics for the case of a large-radius

fos 90 fi,91 f-1,9-1 f2,92 f-2,9-2 .
fo — N — [ s — f2 — [
1.0 ’
s 90 g-1 92 05 g2
0.8 0.6
04
0.6
1.0 04 03
04 02
05 02
wo = 0.089 02l J/\ w_y = 0.537 ‘ wp = 0.075 o1 w_p = 0.97
p 14 p P
5 10 15 20 25 s 1015 20 25 5 10 15 20 25 5 10 15 20 25

FIG. 3. Eigenfunctions and eigenfrequencies obtained from the numerical solution of (11) for the case § = 0.95 (R; = 3.51) and free
boundary conditions. The eigenfunctions are normalized by the rule o, = 2.
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skyrmion with Ry > 1:

L [2ml/R, w<o,

I
27 " 3
R; cu/R;,

13)

wy ~
u >0,

where ¢, is a constant (for details see Appendix A). Compar-
ison with the numerical solution justifies the assumption that
¢, = n(u? — 1)/2. The asymptotics (13) are shown in Fig. 2
by thin lines.

For the case |§| — 1 (or, equivalently, Ry, — 00) the num-
ber of local modes grows infinitely. In the critical point |§] = 1
all the modes become unstable (the frequencies of these modes
vanish). The skyrmion instabilities at point |§| = 1 for zero
field were predicted earlier for the particular cases pu =0
(radial instability) [60] and || = 2 (elliptical instability) [61].

V. EFFECTIVE SKYRMION MASS IN THE APPROACH
OF COLLECTIVE VARIABLES

Since the skyrmion is an exponentially localized excitation,
there is a notion that its dynamics can be approximated
by the dynamics of a point particle with coordinates R =
{X,Y}, which are called collective coordinates. However,
the definition of the skyrmion center R is not unique. The
essential dependence of the collective coordinate dynamics
on the definition of R was already indicated in Ref. [40] for
the example of the precessional solitons. A recent analysis
of numerically simulated skyrmion motion shows [52] that
the different definitions result in essentially different types
of trajectories R(7). In order to describe more complicated
trajectories the internal degrees of freedom of the skyrmion
must be taken into consideration [29], which results in the
appearance of an effective-mass term in the equations of
motion for the collective coordinates [29,41]. The aim of this
section is to utilize the properties of the magnon eigenfunctions
in order to (i) determine a physically sound definition of
the skyrmion center and (ii) clarify the appearance of the
effective-mass term.

Collective-variable approaches [62] are widely used to
analyze the dynamics of solitonlike excitations in magnetic
media [11,57,63-65]. They are based on the assumption
that the time dependence of the continuum magnetization
vector field m can be reduced to the time dependence of
a discrete set of collective variables & = {&,&,...}, ie.,
m(r,t) = m(r,&(t)). This enables one to proceed from the
coupled partial differential equations (2) to a set of the ordinary
differential equations

. o0&
Z Gfiéjgj = a_é."

i
1 .
Gge, = P sin 6

where d§ = dS/¢? is a dimensionless area element. See also
the tutorial papers [11,53].

A case where the only variables are collective coordinates
describing the placement of a soliton (§ = R) is called the
traveling-wave model m(r,7) = my(r — R(t)), where my is a

30 3¢ 96 a¢)
I Nas, (14
(3&' 0&;  0&; 0§ {14

stationary solution. Let us consider a more general ansatz:

60, x,T) = OP) + D fulp)lAu(r)cos ux
U=—00
+ Bu(r)sinpuyx],
1

an
T = Yo+ ———
¢ (o, x,T) = x + °+mn®@)

X Y gu(PIAL(D)sin puy — By (t)cos uxl,

H=—00

5)

which corresponds to (A4) but where only localized modes are
taken into account. Here, ®(p) determines the static skyrmion
profile. The time-dependent collective variables A, B, play
the role of the amplitudes of the magnon modes. Thus, in our
case & = {Ay, By}, withk € Z.

First of all, it is important to note that the ansatz (15) in-
cludes the infinitesimal skyrmion displacements in the spirit of
the traveling-wave model. Indeed, the expansion of expressions

6 =0 (x —X)2+(y—Y2),

¢ = arctan (16)

v,
DC+0

in X,Y up to the linear terms and comparison with (15)
result in

X=A;, Y=3B an

if the form of the eigenfunctions f; = —®'(p) and g =
sin ®(p)/p is taken into account.

The second important observation is that the collective
coordinates, which correspond to the traveling-wave model,
coincide with the first moment (center of mass) of the topolog-
ical density:

1
.‘R_47TQ/r3dS, (18)
where § = —m - [0,mx 0,m] is the topological charge density
and Q = (47)~' [JdS is the total topological charge of the
skyrmion [66]. Expression (18) directly follows from (15) and
(17) if the orthogonality property (12) of the eigenfunctions is
considered. The definition of the skyrmion center in the form
of (18) was used in a number of papers [12,52,67-70].

Let us obtain the collective-variable equations (14) in the
approximation that is linear with respect to &; and &;. For this
purpose we substitute the ansatz (15) into (14) and perform
the integration using the orthogonality property (12) of the
eigenfunctions. Finally, we obtain the following components
of the gyrotensor:

o
__“5%“,,
2

Gan,=6Gs,3,=0, Ga,3, = (19)

where o, = fooopfﬂgudp. Note that oy = 29Q. The effective
energy corresponding to the model (15) has the form (up to the
second-order terms in A, and B,,)

1
=22 el +3)) +&.

n

(20)
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Here, ¢, = s,{ + aﬁ [see (AT)], and &( is a contribution to
the energy which is independent of the collective variables.
Expression (20) is a result of the straightforward integration of
the energy (1) using the property (AS8).

Substituting (19) and (20) into (14), one obtains the set of
equations for collective coordinates:

& =A;: B, =0,

=B : A =0,

§i = Aurr gn = —wu Ay,

& =Bus: Au=w,B,, D

where the properties (AS) and (A11) were utilized. Following
the terminology of Ref. [30], one can conclude from (21)
that the mode |1) is a special zero normal mode, which, in
contrast to inertial zero normal mode [30], does not lead to
mass generation. Introducing now a driving potential £ — € +
W(X,Y), which is assumed to be small enough not to change
the eigenfunctions significantly, and taking into account (17),
one obtains from (14) the well-known Thiele equation for a
massless particle [11,57,63]:

[e. x R] — axU = 0. (22)

Earlier it was shown [71] that in the absence of external
driving the translational mode of the magnetic vortex in an
easy-plane ferromagnet does not exist. In other words, the
zero translational mode is not inertial [30] for this case. The
same results are valid for the case of magnetic skyrmion in a
ferromagnetic film with the perpendicularly oriented easy axis
when the analysis proposed in Ref. [71] is applied. Thus, the
inertial mass term is not expected in equations for collective
coordinates for the case of a ferromagnetic vortex or for the
ferromagnetic skyrmion. This is in contrast to the cases of
antiferromagnets [72] and weak ferromagnets [73], where the
mass term appears in a natural way since the second-order
time derivative is initially present in the equation of motion
written in terms of the Néel order parameter [74—77]. However,
the inertial mass term is often used in collective-coordinate
equations for ferromagnetic vortices [11,34-37], precessional
solitons [38—40,78], and skyrmions [9,29,41]. In part, this
ambiguity originates from alternative methods of definitions
of the soliton center. A frequently used method is based on the
first moment of the perpendicular magnetization component
[29,30,41,52]

Jr(l —m.)ds

(23)
Thus, R signifies the “center of mass” of the m, distribution.

Using (15), one obtains (in a linear approximation in ampli-
tudes A;, B;)

X =c A1+ e A,

wherec; = 1 [° p381(p) fi(p)dp/ [, p[1 — cos O(p)ldp.In
this way a formal coupling between modes |1) and |—1) is
introduced into the system, and as a result, an effective-mass
term appears [29,30]. Indeed, excluding amplitudes A_; and
B_, from Egs. (14) and (24), one obtains a set of second-
order ordinary differential equations for X and Y. For the case

Y=c¢B) —c1B_y, (24)

of a radially symmetrical potential U = wgR?/2 they can be
written in the vector form

MR —[e, x R]+ kR =0, (25)

where M = 1/(w_; — wg) and k = w_ wg/(w—] — wg). How-
ever, it should be emphasized that treatment of the position
vector R # R as a skyrmion collective coordinate is not
physically sound because R does not describe the skyrmion
displacement in the sense of the traveling-wave model.

Note that here we take into account only the localized
modes. Recently, it was predicted that a skyrmion driven by
the spin Hall torque could display an inertial behavior due
to the delocalized modes of the continuum [79]. Also in
quantum systems, a ferromagnetic skyrmion can behave as
a massive particle in the presence of defects or a potential
trap [80].

VI. CONCLUSIONS

The main results of this paper are as follows: (i) We obtained
the asymptotic behavior of localized magnon modes over the
chiral skyrmion [see (13)]. (ii) The high-frequency gyrotropic
mode is always present in the spectrum; however, its frequency
practically coincides with the edge of the magnon continuum,
except in the vicinity of the critical point |d| = 4 /. (iii) Using
the orthogonality relation (12) for the magnon eigenfunctions,
we showed that the collective skyrmion coordinates, which de-
scribe its motion in terms of a traveling-wave model, coincide
with the first moment of the topological charge distribution.
(iv) In terms of these collective coordinates the skyrmion
dynamics is massless.
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APPENDIX A: PROPERTIES
OF THE MAGNON SPECTRUM

For each given value of p the EVP (11) generates a “v
spectrum,” which is described by the eigenfunctions f, , and
&u,v with the corresponding eigenfrequencies w,, ,. They are
determined by the EVP

Hu¥y = ou¥y, (A1)

where ¥, = (fu.8,)" and H,, = o, H [see (11b)]. Operator
J(,, is Hermitian in the Hilbert space H* with the scalar
product

Vool = /0 PV o dp.  (AD)

This results in real-valued eigenfrequencies w, ., and (A2)
enables us to formulate the orthogonality condition (for the
given [):

00
/ p[fp.,vgp.,v/ + fu.u’gp.,v]dp = Cav,v’v (A3)
0

with C being the normalization constant.
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FIG. 4. Schematics of the magnon spectrum. (a) The symmetry between branches u and —u (only one pair {v',v”} is shown). (b) The

structure of the localized mode spectrum for |u| < 3.

Assuming that for all © the EVP (A1) has no degenerate
eigenvalues, one can present the general solution of (10) in the
form of a partial wave expansion:

9= DY fun(PAy, cos(uy + @u,7)

H=—00 v

- Bu,v SiH(MX + wu,uf)]»
oo

o= > Y guu(PIAuysin(ux + w,,7)

H=—00 v

+ By cos(uy + w1l (A4)

Equation (A1) is invariant with respect to the simulta-
neous transformation w, — —w_,, fi. = f-u, 80 = —&—pu>
and u — —pu. This means that the v spectra can be split
into the pairs ¥ = {v’,v”}, which have the properties w,, v =
—w_p vy fuw = fopv,and g, v = —g_, . This symmetry
is schematically shown in Fig. 4(a).

It can be used to present the general solution in a form which
coincides with (A4), but (i) summation over v is replaced by
summation over pairs ? = {v’,v”}, and for each pair only one
index v € {V',v”} is chosen, which corresponds to a certain
sign of the frequency w, ,, and (ii) A, , — A, = A, v +
A_,vand B,, — B,, =B, — B_, .

Analyzing numerically the spectrum of the EVP (A1), we
found a number of localized modes with |w,, ,| < 1. Remark-
ably, for each given p there is no more than one pair v = {v’,v"}
which corresponds to the localized modes [see Fig. 4(b)].
This fact and the above-described possibility to fix the sign
of the frequency permit us to omit index v when classifying
the localized modes. Thus, in the following we consider that
for each given p there is no more than one localized mode
with eigenfunctions f,,(p), g.(p) and eigenfrequency w, > 0
(the equality holds only for u = 1). Several examples of
eigenfunctions are shown in Fig. 3.

The eigenfunctions have a number of useful properties.
First of all, for the case of the localized modes, the pre-
viously described symmetry between branches p and —p
can be used to write the orthogonality condition (A3) in the
form of (12). The next important property can be described
by integral relations between the eigenfrequencies and the

eigenfunctions:
_si_sﬁ_x,{_xﬁ
Wy =—=—=——=—. (AS)
oy Oy Bu Bu
Here, the condition
f— g8
€y = € (A6)

[e'e) MZ
8;5:/0 :0|:f,12+(;"‘Ul)f,f"‘ﬂwfugu]dpv

oo 2
7
g8 = /0 p[gf + (? + Uz)gﬁ + Mqugui|dP (A7)
mean that the energy is equally distributed between the f and
g components of the mode. The condition

(A8)

A
Ky = Kps

00 /‘L2
K,{ =/(; /0|:f,if/“+ <F+U1>fufu+ll«wfﬂgui|dp’

o0 2

) 3
Ky = /0 p[guglu + (F + UZ)gp.g—u + MWfMg—u]dp,
(A9)

results in the absence of coupling between modes |x) and
|—m). Here,

) 00
aﬂ:/{) ofu8udp, By =/(; Pfu8—udp. (A10)

Note that g, = B_,, while «, # «a_,. For the translational
mode one has «; = 2 and also

el =8 =« =« =0, (A1)

which results in zero eigenfrequency w; = 0.
Properties (A5), (A6), (A8), and (A11) directly follow from
Egs. (11), which have the explicit form

2
"
~V2fu+ (? + U1>fu +uWg, = w,.8,, (Al2a)

2
nw
Vg + (? + Uz)gu +uWf, = w,f.. (Al12b)
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Using integration by parts, one can present the quantity 5,’:
in the form

[} 2
125
8{: = / p[—VﬁfM + (? + Ul)fu + H’ngt]fl’-dp‘
0
(A13)

Applying (A12a), one obtains 8/: = w,a,. In a similar way,
using (A12b), one obtains &}, = w,a,,. Property (A8) can be
proved analogously by applying the same procedure for the
quantities K,{ and «j;. Property (A11) can be checked straight-
forwardly by substituting into (A12) the explicit form of the
eigenfunctions f; = —®’ and g; = sin ® /p. Properties (12),
(A6), (A8), (AS), and (A11) have been verified numerically.

In order to estimate the asymptotic behavior of the eigenfre-
quencies for the case R, > 1 we apply the variational approach
[38] with the following trial functions:

fam— g = (Al4)
" cosh £=Rs |_6|R Toon p cosh £=2s l_sf .
Substituting (A14) into (A6), one obtains
2 az a,b
85 A R—S(,uzai — payb,) + G‘J;R_l; + Me%,
2 b’ a,b
&8 ~ R—S(bi — uauby) + Cf 25 + pC—sE (AL

Generally, G,C # Cf. This means that for the ansatz (A14)

the conditions &} = ¢ and & =¥ =0 can be satisfied

simultaneously only with accuracy O(RS’3). In this case b, =
|nla,. Using now the expressions for eigenfrequencies (A5)
and taking into account that «,, & 28a,,b,,, one obtains w,, ~

2|/L|R;1 when ¢ <0 and w, ~ ¢, R;3 when © > 0. The
constant ¢, cannot be determined from the model (A14).
Comparison with the numerical solution leads to the estimate

cp = w(pu? —1)/2.
APPENDIX B: GENERALIZED
SCHRODINGER EQUATION

Introducing the function ¥ = ¥ + i@, one can write (10)
in the form of the so-called generalized Schrodinger equation
[39,58],

—id = U +Wy*, # =(—iV—A>+U, (B

with the potentials

cos® |d| .
A(p) = Aey, A=— +75m®,
U U
Up) = =22 - a2 (B2)
U, —-U
W(P)=%-

The vector function A acts as a vector potential of the effective

magnetic field with the flux density

(—cos® + 4 psin @)/
o

The first term in (B3) is the gyrocoupling density; finally, the
total flux is determined by the m, homotopy group for the
topological properties of the skyrmion (cf. Ref. [58])

B=VxA=B2 B= (B3)

o= / Bd*x = —47Q. (B4)
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