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Quantum control of topological defects in magnetic systems
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Energy-efficient classical information processing and storage based on topological defects in magnetic systems
have been studied over the past decade. In this work, we introduce a class of macroscopic quantum devices in
which a quantum state is stored in a topological defect of a magnetic insulator. We propose noninvasive methods
to coherently control and read out the quantum state using ac magnetic fields and magnetic force microscopy,
respectively. This macroscopic quantum spintronic device realizes the magnetic analog of the three-level rf-SQUID
qubit and is built fully out of electrical insulators with no mobile electrons, thus eliminating decoherence due to
the coupling of the quantum variable to an electronic continuum and energy dissipation due to Joule heating. For a
domain wall size of 10–100 nm and reasonable material parameters, we estimate qubit operating temperatures in
the range of 0.1–1 K, a decoherence time of about 0.01–1 μs, and the number of Rabi flops within the coherence
time scale in the range of 102−104.
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I. INTRODUCTION

Topological spin structures are stable magnetic configura-
tions that can neither be created nor destroyed by any continu-
ous transformation of their spin texture [1]. Their topological
robustness, small lateral size, and relatively high motional
response to electrical currents have inspired proposals utilizing
these topological defects as bits of information in future data
storage and logic devices [2,3]. Magnetic skyrmions (vortex-
like topological spin structures) [4] have defined the field of
skyrmionics, in which every bit of information is represented
by the presence or absence of a single skyrmion [2,5,6]. Recent
proposals have exploited their miniature size and high mobility
for skyrmion-based logic gates [7], racetrack memories [8],
high-density nonvolatile memory [9], energy-efficient artificial
synaptic devices in neuromorphic computing [10], as well as a
reservoir computing platform [11]. More recently, storage and
processing of digital information in magnetic domain walls and
their potential uses for logic operations have been discussed
[3,6,12,13]. Although research to exploit topological magnetic
defects for energy-efficient classical information technology is
being actively pursued, the study of how quantum information
can be stored, manipulated, and read out in such defects still
remains unexplored.

Macroscopic quantum phenomena in magnetic systems
have been studied over the past three decades [14]. Recently,
we proposed a spin-based macroscopic quantum device that
is realizable and controllable with current spintronics tech-
nologies [15]. The work proposed a “magnetic phase qubit,”
which stores quantum information in the orientational degree
of freedom of a macroscopic magnetic order parameter and
offers the first alternative qubit of the macroscopic type to
superconducting qubits. In principle, the upper bound for
the operational temperature of a magnetic quantum device is
set by magnetic ordering temperatures, which are typically
much higher than the critical temperatures of superconducting

Josephson devices. Estimates based on the state-of-the-art
spintronics materials and technologies led to an operational
temperature for the magnetic phase qubit that is more than an
order of magnitude higher than the existing superconducting
qubits, thus opening the possibility of macroscopic quantum-
information processing at temperatures above the dilution
fridge range. The proposed qubit is controlled and read out
electrically via spin Hall phenomena [16], which involves a
coupling of the qubit to a current-carrying metallic reservoir.
Based on the current spin Hall heterostructures, significantly
high dc charge current densities in the metal may be necessary
for qubit operation. Therefore, a challenging aspect of the
proposal is how to remove the excess heat that is generated by
this control current. It is also desirable to propose an alternative
macroscopic magnetic qubit that is fully operational without
electrical currents and precludes Joule heating.

In this work, we show how a macroscopic quantum state
can be stored, manipulated, and read out using a soft collective
mode [17] of a topological defect, i.e., a domain wall, in
an insulating magnetic material, and noninvasive control and
readout of this state using ac magnetic fields and magnetic
force microscopy, respectively. As the soft mode collectively
describes a macroscopic number of microscopic spins in the
magnet, such a device is a macroscopic quantum device,
and it can be built, in principle, using existing solid-state
technologies. The device realizes the magnetic analog of a
three-level rf-SQUID qubit that is built fully out of electrical
insulators, thus eliminating any Joule heating or decoherence
effects that arise from mobile electrons. We find that the energy
spacings between the lowest few energy levels of the macro-
scopic quantum variable increase with the volume of
the domain wall. Therefore, within an experimentally acces-
sible range of material parameters, the energy gap between
the qubit’s logical states and the higher excited states can be as
high as 10 K. For reasonable material parameters and operating
temperatures of about 100 mK, we find that decoherence
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times associated with magnetic damping in the material are
in the range of 10 ns, which are shorter than the state-of-
the-art superconducting qubits [18], and the number of Rabi
flops within the coherence time scale is estimated to be 102.
However, decoherence times in the 1 μs range and 104 Rabi
flops within the coherence time can be achieved if the magnetic
damping is in an ultralow damping regime characterized by
a Gilbert parameter α ∼ 10−7. This value is at least two
orders of magnitude smaller than the currently reported values
in magnetic insulators at room temperature [19]. However,
a magnon-phonon theory for Gilbert damping [20] predicts
that the Gilbert parameter vanishes linearly with temperature.
Therefore, in the sub-Kelvin temperature regime relevant to
the current proposal, it is possible that the damping parameter
α is significantly smaller than the reported room-temperature
values. A recent experiment studied Gilbert damping over
a wide temperature range and reported that disorder in the
magnetic insulator can enhance α above the vanishing linear
behavior at low temperatures [21]. The development of clean
magnetic samples may thus be crucial in realizing the above
ultralow Gilbert damping regime.

The paper is organized as follows. In Sec. II, the domain-
wall quantum device is introduced, and a heuristic discussion
of how the qubit can be realized in such a device is presented.
In Secs. II A and II B, a classical theory for the magnetic
domain-wall dynamics is derived in terms of the collective
coordinates (i.e., the soft modes), and the magnetic damping
is incorporated phenomenologically. In Sec. III, the classical
theory is quantized and the domain-wall qubit is defined. Qubit
control using ac magnetic fields is described in Sec. IV, and
the readout based on magnetic force microscopy is discussed
in Sec. V. Various estimates for the physical properties of the
qubit, including decoherence times and the upper temperature
bound for quantum operation, are made in Sec. VII. Conclu-
sions are drawn in Sec. VIII.

II. MODEL

The proposed macroscopic quantum device is shown in
Fig. 1. The insulating magnetic material (shaded in gray),
hosting the domain wall (of width λ), is interfaced by an-
other insulator with fixed single-domain ferromagnetic order
(shaded in gold) with spins ordered in the positive y direction.
In this work, we consider the insulator hosting the domain

FIG. 1. The proposed macroscopic domain-wall qubit. The an-
tiferromagnet (the lower layer) contains a domain wall of width λ

and is exchanged-coupled to a monodomain fixed ferromagnet. The
cross-sectional area of the antiferromagnet is denoted by A .

wall to possess antiferromagnetic ordering, thus allowing us
to ignore any stray field effects arising from the domain-wall
system and to streamline our discussion. We assume that the
antiferromagnet possesses a uniaxial magnetic anisotropy K

along the x axis such that the domain wall involves a gradual
evolution of the Néel vector from the +x to the −x direction as
shown and has an azimuth angle � (the angle the Néel vector
makes relative to the positive y axis) at the domain-wall center.
In this work, we assume an exchange coupling J between the
antiferromagnet and the ferromagnet that energetically favors
a parallel alignment of the Néel vector and the ferromagnetic
spins [22]. Finally, we subject the antiferromagnet to a uniform
magnetic field B along the y axis. Even in the presence of the
exchange coupling and the external field, the Néel vector can, to
a good approximation, maintain the domain-wall spin structure
illustrated in Fig. 1 if the uniaxial magnetic anisotropy (and the
internal exchange scale of the antiferromagnet) is much greater
than the exchange coupling and the Zeeman energy associated
with the antiferromagnetic spins in the field.

Before delving into the detailed microscopic modeling of
the system, let us first give a heuristic description of how
the device in Fig. 1 can realize a macroscopic qubit. We
first note that the domain wall can be described using the
collective coordinate approach, in which the domain-wall
configuration and its dynamics are parametrized in terms of a
few collective degrees of freedom representing the soft modes
of the domain wall [17]. For a spatially pinned domain wall
(which has been achieved for ferromagnetic domain walls by,
e.g., introducing notches along the length of the ferromagnet
or by modulating its material properties) [23], the domain
wall’s only relevant collective coordinate becomes �. We then
find that the (classical) Hamiltonian for the antiferromagnet in
Fig. 1, expressed in terms of this single coordinate �, reduces
to [cf. Eq. (10)]

H0 = p2
�

2M
+ V (�), (1)

which describes a “particle” with effective mass M (which
depends on domain-wall width λ and various microscopic
properties of the antiferromagnet) and coordinate � moving in
a potential given by V (�). Here, p� = M�̇ is the momentum
conjugate to � and is proportional to the angular velocity of
the Néel vector at the center of the domain wall. The precise
shape of the potential V (�) depends on the exchange coupling
J , the magnetic field B, the domain-wall width λ, and the
cross-sectional area of the antiferromagnet A .

For reasonable magnitudes of these various physical
parameters, the potential V (�) has a double-well profile as a
function of � as shown in Fig. 2, thus providing the two minima
that define the two-dimensional logical space of the qubit.
The qubit is eventually defined by promoting the conjugate
variables (�,p�) to quantum operators, i.e., p� → −ih̄∂�,
and quantizing Eq. (1). For a set of parameters (defined later
on), the five lowest quantum states are shown as dotted lines
in Fig. 2. The qubit states are defined by the two lowest
states, corresponding to two stable azimuth orientations of
the Néel vector at the center of the domain wall. In this
work, we identify a regime in which the thermal fluctuations
are reduced well below the level of quantum fluctuations
and the damping is low enough so that the lifetime of the
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FIG. 2. Plot of potential V (�) as a function of �. The five lowest
quantum states have been numerically computed by solving Eq. (11)
for ρ = 1.18 and β = 0.002.

quantum energy levels is much greater than the Rabi time for
coherent oscillations. In this (so-called quantum) regime, the
macroscopic quantum domain-wall variable �(t) is expected
to exhibit all the quantum effects predicted by elementary
quantum mechanics. In later sections, we discuss in detail how
arbitrary single-qubit rotations can be achieved by applying
small ac magnetic-field pulses. We now provide the theoretical
underpinnings for the above heuristic discussion.

A. Theory

We first begin by developing a model for the insulator host-
ing a single domain wall. For a bipartite antiferromagnet, an
effective long-wavelength theory can be developed in terms of
two continuum variables n and m, which, respectively, denote
the staggered and uniform components of the spin density [24].
We consider a quasi-one-dimensional antiferromagnet, whose
axis lies collinear with the x axis and whose cross-sectional
area is A (we assume homogeneity of n and m across the cross
section). Its effective Lagrangian, obeying sublattice exchange
symmetry (i.e., n → −n and m → m), may then be written
as [24]

L = A s

∫
dx m · (ṅ × n) − U [m,n], (2)

where s denotes the spin density on one of the sublattices.
Here, the continuum variables satisfy the constraints |n| = 1
and n · m = 0, and strong local Néel order implies |m| � 1.
The potential energy U [m,n], to Gaussian order in m, may be
expressed as

U [m,n] = A

∫
dx

(
m2

2χ
+ b · m

)
+ U [n],

where χ denotes the spin susceptibility for a uniform external
magnetic field B applied transverse to the axis of the Néel or-
der, and b = γ s B (with γ the gyromagnetic ratio). Throughout
this work, the field B will be confined within the yz plane. The
uniform component m may be eliminated from the Lagrangian
if we note that it is merely a slave variable defined by the
staggered variable, i.e., m = χsṅ × n − χn × (b × n). Upon
eliminating m, the effective Lagrangian (2) reduces to

L = A χ

2

∫
dx(sṅ + n × b)2 − U [n]. (3)

Within the Lagrangian formalism, viscous spin losses in the
antiferromagnet can be represented via the Raleigh dissipation
function R, which for the antiferromagnet may be given by

R = α
A s

2

∫
dx |ṅ|2, (4)

where α is the dimensionless Gilbert damping constant. For
h̄/τ,ba3 � Eex, where τ is the time scale for the Néel dynam-
ics, Eex is the internal antiferromagnetic exchange scale, and
a is the lattice scale, the contribution to the Raleigh function
from the uniform component may be neglected.

Fluctuations of the Néel variable at finite temperature can
be modeled by introducing a stochastic field η. Through the
fluctuation-dissipation theorem, the correlator for the Cartesian
components of this Langevin field relates to the Gilbert
damping constant α as [25]

〈ηi(x,ω)ηj (x ′,ω′)〉 = 2παA sh̄ω

tanh(h̄ω/2kBT )
δij δ(x − x ′)δ(ω + ω′).

Defining the momentum π conjugate to n via Eq. (3),

π ≡ δL

δṅ
= A χs(sṅ + n × b),

Hamilton’s equation corresponding to its dynamics [including
damping Eq. (4) and the stochastic contribution] reads

π̇ = −δU [n]

δn
− δR

δṅ
+ η. (5)

For the potential for the staggered variable, we take

U [n] = A

∫
dx

[
A

2
(∂xn)2 − K

2
n2

x − Jny

]
,

where A is the stiffness constant associated with the Néel
vector, K > 0 is the easy-axis anisotropy along the wire axis,
and J is an exchange coupling between the local Néel vector
and the hard mono-domain ferromagnet (see Fig. 1) whose
spin moments are assumed to be fixed in the y direction.

B. Domain-wall dynamics

The dynamics for the antiferromagnetic domain wall can
be derived by following the standard collective coordinate
approach [26–29]. The static domain-wall solution can be
obtained by extremizing Lagrangian (3) in the static limit. In
the limit of strong easy-axis anisotropy K 	 b2χ,J , we may
well approximate the domain-wall solution with the solution
at B = 0 and J = 0, i.e.,

n = {cos θ (x), sin θ (x) cos �, sin θ (x) sin �}, (6)

where cos θ (x) = tanh[(x − X)/λ], λ ≡ √
A/K quantifies the

width of the wall, and the two “soft modes” X and �,
respectively, denote the position of the domain wall and its
azimuth angle within the yz plane. These variables describe
the dynamics of the domain wall well if the dynamics is slower
than the spin-wave gap set by the easy-axis anisotropy [17]. A
strong domain-wall pinning (at, e.g., X = 0) effectively gaps
out the positional soft mode X such that for dynamics that are
slow compared to this gap, � remains the only relevant mode.
The damped Langevin dynamics can be obtained by taking
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the inner product of both sides of Eq. (5) by ∂n/∂�, inserting
Eq. (6) into the equation, and integrating over x,

M�̈ + M

τ
�̇ = −∂V (�)

∂�
+ f (t), (7)

where the stochastic force f (t) obeys the correlator

〈f (t)f (0)〉 =
∫

dω

2π
Sf (ω)e−iωt , (8)

where Sf (ω) = (Mh̄ω/τ ) coth(h̄ω/2kBT ). The dynamics for
�, i.e., Eq. (7), is equivalent to the dynamics of a particle with
mass M ≡ 2λA χs2 and a damping constant proportional to
the inverse relaxation time τ ≡ χs/α, moving in a potential
given by

V (�) = −EJ

[
cos � − ρ

2
(cos � + β sin �)2

]
, (9)

where EJ ≡ πλA J is the exchange energy stored within the
domain-wall volume, ρ ≡ 2χb2

y/πJ parametrizes the strength
of the magnetic field along the y axis, and β ≡ Bz/By quanti-
fies the canting of the field away from the axis.

III. DOMAIN-WALL QUBIT

Noting that the momentum conjugate to � is p� ≡ M�̇, the
Hamiltonian corresponding to the dynamics Eq. (7) (ignoring
the damping but including the stochastic contribution) is given
by

H (t) = p2
�

2M
+ V (�) − �f (t) ≡ H0 − �f (t). (10)

We only consider the regime of ρ � 1 and small field canting in
the z direction, i.e., 0 � β � 1. The potential V (�) is plotted
as a function of � in Fig. 2 for, e.g., ρ = 1.18 and β = 0.002.
At β = 0, the potential has two degenerate minima separated
by a central barrier, which disappears as ρ → 1. A finite β

removes this degeneracy and raises the right minimum to a
higher energy than the left minimum for β > 0 (and vice versa
for β < 0). The two minima correspond physically to two
stable azimuth orientations of the Néel vector at the center
of the domain wall.

The deterministic part of the Hamiltonian H0 can be
quantized by promoting the conjugate variables to operators,
i.e., p� → −ih̄∂�,

Ĥ0 = −EM∂2
� + V (�), (11)

where EM ≡ h̄2/2M . For the system to operate in the so-called
phase regime, we require

EJ

EM

= 4πS2 BJ

Bex
	 1,

where the prefactor S ≡ λA s/h̄ gives the total spin (in units
of h̄) on one sublattice located inside the domain-wall volume
λA , BJ is the exchange field corresponding to the coupling
between the ferromagnet and the antiferromagnet, and Bex is
the internal antiferromagnet exchange field. While typically
BJ � Bex, a large enough total spin inside the domain-wall
volume would satisfy the above inequality.

At low temperatures, the quantization of energy levels near
the two potential minima becomes important, as shown in

Fig. 2. By solving the Schrödinger equation (11) numerically,
the lowest five states are shown by dashed lines in Fig. 2. If
the system is in the lowest energy state of a well, spontaneous
thermal excitation up into higher energy levels can be avoided
by lowering the temperature to T � (E2 − E0)/kB ∼ (E3 −
E1)/kB ≡ Tmax, where En are the energy eigenstates for state
|n〉. We find from Fig. 2 that Tmax ∼ 0.01EJ /kB .

Considering a finite but small β (to linear order in β), the
splitting between the two lowest energy levels reads h̄ω10 ≡
E1 − E0 ≈ 2EJ β

√
1 − ρ−2. We assume h̄ω10/kBTmax � 1

so that interwell resonances are avoided.

IV. COHERENT CONTROL OF THE
DOMAIN-WALL QUBIT

To discuss how the qubit can be controlled, we introduce
a small oscillating component to the magnetic field in the y

direction, i.e., by(t) = by[1 + ζ (t)], where by is the original dc
component already accounted for above, and (dimensionless)
ζ (t) quantifies the small oscillating component. From Eq. (9),
to lowest order in small quantities ζ (t),β � 1, this oscillating
field gives rise to a new contribution,

h(t) = EJ ρ cos2 �ζ (t), (12)

to the (deterministic) classical Hamiltonian H0 in Eq. (10).
For qubit control, we consider an oscillating component

ζ (t) = 2[ζ0 cos(ω0t) + ζ1 cos(ω1t)], where frequencies ω0 and
ω1 are detuned from energy separations ω04 and ω14 to an
excited state |4〉 with a (symmetric) detuning ω04 − ω0 =
ω14 − ω1 ≡ �/h̄. We assume ω0 and ω1 are far-detuned from
all the other levels so that we may consider a three-level
subsystem as shown in Fig. 3. Here, the use of state |4〉 is
somewhat arbitrary; in principle, any excited state can be used
as long as there are appreciable transition matrix elements
[generated by Eq. (12)] between the state and the logical
states and the resonance condition above can be satisfied. We
further assume that ω0 is far-off-resonant with ω01 and ω14

(i.e., |ω01 − ω0| 	 �
(0)
01 and |ω14 − ω0| 	 �

(0)
14 , where �

(0)
01

and �
(0)
14 are Rabi frequencies for on-resonance 0 ↔ 1 and

1 ↔ 4 transitions, respectively, generated by the ζ0 pulse) and
that ω1 is far-off-resonant with ω01 and ω04 (i.e., |ω01 − ω1| 	
�

(1)
01 and |ω04 − ω1| 	 �

(1)
04 , where �

(1)
01 and �

(1)
04 are Rabi

FIG. 3. Three quantum levels (the two logical states |0〉 and |1〉
and an auxiliary excited state |4〉) involved in qubit control. Drive
frequencies, ω0 and ω1, are symmetrically detuned from energy
separations,ω04 andω14, to the excited state with detuningω04 − ω0 =
ω14 − ω1 ≡ �/h̄. We assume ω0 and ω1 are far-detuned from all the
other levels so that we may consider this three-level subsystem.
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frequencies for on-resonance 0 ↔ 1 and 0 ↔ 4 transitions,
respectively, generated by the ζ1 pulse). Invoking the rotating-
wave approximation, the effective three-level Hamiltonian can
then be written as

Ĥ
(3)
eff =

∑
n=0,1,4

En|n〉〈n| +
∑
n=0,1

h̄�ne
iωnt |n〉〈4| + H.c.,

where �n = EJ ρζn|〈n| cos2 �|4〉|/h̄. For large detuning, i.e.,
� 	 �0,�1 (and if the initial state is in the logical subspace),
the excited state is expected to play a small role in the dynamics
of the system because they are far-off-resonantly and weakly
coupled to the logical subspace. In this case, we may eliminate
the (irrelevant) excited state in the adiabatic approximation,
which can be carried out by first going to a rotating frame
defined by Û = e−iÂt/h̄ and Â = diag{E0,E1,E4 − �} and
solving the Schrödinger equation in the new frame under
the constraint ∂t |4〉 ≈ 0. After elimination, the Schrödinger
equation for the qubit subspace reads ih̄∂t�(t) = Ĥ

(2)
eff �(t),

where the effective two-level Hamiltonian is given by

Ĥ
(2)
eff = − h̄

2
�zσ̂z − gσ̂x,

with �z = h̄(�2
0 − �2

1)/� and g = h̄2�0�1/�. Arbitrary
single-qubit rotations can be achieved by controlling the pulse
amplitudes ζ0 and ζ1.

V. DOMAIN-WALL QUBIT READOUT

The two states of the qubit correspond to two classically
distinct orientations of the Néel vector within theyz plane at the
center of the domain wall. Since the two minima of the double-
well potential in Fig. 2 are located at � = �0 ≡ cos−1(1/ρ),
the |0〉 state corresponds to n = (0, cos �0, − sin �0) and the
|1〉 to n = (0, cos �0, sin �0). At the end of the computation,
the Néel vector should be in one of the two classical con-
figurations and should remain in the same configuration even
when the field component in the z direction is adiabatically
switched off. The presence of the remaining magnetic field in
the y direction implies that a small total spin component m
is present in the antiferromagnet since m = −χn × (b × n).
In particular, we expect a magnetization of approximately
Ms = χγ sbyn × ( ŷ × n) within the domain-wall volume. If
the qubit state is in |0〉, Ms = Ms(0, sin �0, cos �0) with
Ms = χγ sby sin �0, and Ms = Ms(0, sin �0, − cos �0) in
state |1〉.

We now estimate the sensitivity required to probe the
orientation of Ms using, e.g., magnetic force microscopy
(MFM) [30]. An MFM consists of a magnetized tip placed
at the end of a cantilever as shown in Fig. 4. In the dynamic
mode, the cantilever (assumed here to be oriented parallel to
the xy plane) is oscillated in the z direction at its resonance
frequency �res = √

keff/mt , where mt is the mass of the tip
and the cantilever combined. The effective spring constant
keff = k0 − ∂Fz/∂z, where k0 is the cantilever spring constant
and Fz is the z component of the force acting on the magnetic
tip (with magnetization M t ) when it is brought in close
proximity to the magnetic sample (with magnetization Ms)
[30]. The force F acting on the magnetic tip is given by F =
μ0

∫
dVt ∇(M t · H s), where the volume integral is performed

over the tip and H s is the device’s stray field acting on the

tip

sample

cantilever

|0
|1 z

yM s

M t

FIG. 4. An illustration showing how magnetic force microscopy
can be used to probe the magnetic state of our qubit.

tip. If we consider a magnetic tip with uniform magnetization
M t = Mt ẑ, the (z component of the) force simplifies to Fz =
μ0Mt

∫
dVt ∂zH

z
s . To estimate Fz, we model our device as

a rectangular prism with a uniform magnetization Ms and
occupying the region −λ/2 � x � λ/2, −w/2 � y � w/2
(w being the width of the antiferromagnet, which we assume
to obey w2 = A ), and −w � z � 0, and we model our tip
as a rectangular prism occupying the region −wt/2 � x �
wt/2, −wt/2 � y � wt/2, and z0 � z � z0 + lt . Noting that
H s(x) = −∇φm(x), where the magnetostatic scalar potential
here is given by [31]

φm(x) = 1

4π

∫
d2s′ · Ms(x′)

|x − x′| ,

and s′ is the outward normal vector from the sample surface,
the relative shift in the resonance frequency corresponding to
the two states then becomes

��res√
k0/mt

= μ0Mt

2k0

∫
dVt ∂3

z φm(x). (13)

VI. DECOHERENCE MODEL

Decoherence can arise due to viscous spin losses [recall Gilbert
damping incorporated via Eq. (4)], which, from the fluctuation-
dissipation theorem, gave rise to the stochastic contribution in
the classical Hamiltonian (10) for the collective coordinates.
Additional decoherence can arise from fluctuations in the static
background magnetic field by [which we denote δby(t)] and
in the amplitudes of the pulse fields ζ0,1 [which we denote
δζ0,1(t)]. We focus here on the noise due to Gilbert damping, as
estimating decoherence rates due to field fluctuations requires
specifying their spectrum, which depends on the precise details
of how the fields are generated in our device, and such details
are beyond the scope of the current work.

By numerically solving Eq. (11) for ρ = 1.18 and β =
0.002 (the parameters used in Sec. III), we find that the
off-diagonal elements of |〈i|�|j 〉| [see Eq. (10)] are small
compared to the diagonal terms, so we ignore them. Upon
performing the adiabatic elimination and linearizing in the
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fluctuations, we may write the stochastic contribution to the
effective two-level Hamiltonian as

δĤ
(2)
eff (t) ≈ �0f (t)σ̂z.

To study decoherence, we go to a new eigenbasis, defined
by a total effective field with z component −h̄�z/2 and x

component −g, which can be achieved by a unitary trans-
formation ˜̂U = e−i(π/2−θ)σ̂y/2 with θ = tan−1(h̄�z/2g). The
effective two-level Hamiltonian in the new basis then reads

˜̂H (2)
eff = − h̄

2
�̃zσ̂z + �0f (t)(sin θσ̂z − cos θσ̂x),

where h̄�̃z = 2[(h̄�z/2)2 + g2]1/2. Then using standard re-
sults for noise and decoherence in quantum two-level systems,
we find for the longitudinal relaxation and dephasing rates [32],

�1 = 2�2
0 cos2 θ

h̄2 Sf (�̃z), �2 = �1

2
+ �ϕ, (14)

where the pure dephasing rate is

�ϕ = 2�2
0 sin2 θ

h̄2 Sf (0). (15)

VII. DISCUSSION

To make numerical estimates, we use a domain-wall width
of λ = 10 nm, and we consider an antiferromagnet with a
simple-cubic lattice of spin-1’s, lattice constant a = 5 Å,
width w = 10 nm, and χ = a3/h̄γBex, with Bex = 90 T.
Assuming an exchange field between the antiferromagnet
and the ferromagnet of BJ = 50 mT [and noting that J =
(h̄γBJ /a3) and by = h̄γBy/a

3], ensuring ρ = 1.18 requires
By ≈ 2 T, which is relatively large but still experimentally
manageable. This also implies that the uniaxial anisotropy
for the Néel vector must obey K 	 7000 J/m3 in order
for the device to remain in the strong anisotropy regime
(i.e., K 	 χb2

y,J ). Since EJ /kB = πλA J/kB ≈ 2000 K,
spontaneous thermal excitations to higher energy levels (recall
the discussion in Sec. III) are suppressed for temperatures
T � Tmax = 0.01EJ /kB ≈ 20 K. For β = 0.002 (used in the
numerics in Fig. 2), the interwell resonances are avoided since
2EJ β

√
1 − ρ−2 ≈ 4 K � Tmax. Finally, the device is ensured

to be within the phase regime since EJ /EM ∼ 105 for these
parameters.

The frequencies of the ac magnetic field pulses ω0 and ω1

needed for qubit control are set by energy-level spacings E4 −
E0 and E4 − E1, respectively (see Fig. 3), which are both of
order kBTmax. For Tmax = 20 K (as above), we obtain ω0/2π ∼
ω1/2π ≈ 350 GHz.

The relative resonance frequency shift that is necessary for
qubit readout was given by Eq. (13). For a magnetic tip with
dimensions 100 nm × 100 nm × 500 nm placed directly above
the sample at a height of 5 nm, Mt = 1000 emu/cm3, and
k0 ∼ 0.1 N/m (and noting that here Mz

s ≈ 1600 A/m) [31], we
require a relative frequency shift of |��res/

√
k0/mt | ∼ 10−5

in order to detect the qubit state. For cantilevers with resonance
frequencies in the range of 100 kHz, the necessary frequency
resolution is in the 1 Hz range.

The noise spectrum for the stochastic field f (t) was
specified by fluctuation-dissipation theorem in Eq. (8). From

Eqs. (14) and (15), we then obtain

�1 = 2�2
0Sf (�̃z)

h̄2

[
1 +

(
h̄�z

2g

)2
] ,

�2 = �2
0

h̄2

⎡
⎢⎣ Sf (�̃z)

1 +
(

h̄�z

2g

)2 + 2Sf (0)

1 +
(

2g

h̄�z

)2

⎤
⎥⎦ .

For concreteness, we compute the decoherence rates for h̄�z =
2g = h̄2�0�1/�. Since � ∼ 0.01EJ and the large detuning
limit implies h̄�n � �, we may take g ∼ 10−4EJ . Since
kBT � 0.01EJ as well (for quantum operation), we assume
kBT ∼ g (which implies T ∼ 100 mK), so that

�1 ∼ �2 ∼ α�RλA s

h̄
(16)

(up to constants of order 1), where �R = g/h̄ is the qubit
Rabi frequency. Equation (16) shows that while increasing the
domain-wall volume λA (i.e., making the qubit more macro-
scopic) is beneficial in that it increases the upper temperature
bound Tmax for quantum operation (since Tmax ∝ EJ ∝ λA ),
it is unfavorable in that it decreases the coherence time of the
qubit. Using a Gilbert damping parameter of α ∼ 10−5, and
since λA s/h̄ ∼ 103 and g ∼ 10−4EJ , we find a decoherence
time of τdec ∼ 10 ns. The number of Rabi flops within the
coherence time scale can be estimated by h̄/αλA s. With the
above parameters, we have h̄/αλA s ∼ 102, which is within
the range of 102-104 that in principle could allow for quantum
error-correction procedures.

To achieve longer decoherence times and a lower threshold
of 104 Rabi flops within the coherence time scale, one may
reduce α and/or λA , i.e., the domain-wall volume. Reducing
the domain-wall volume leads to a reduction in EJ and hence
the operational temperature. This may not be desirable as
this reduces the operational temperature further below the
100 mK range. The desired benchmark can also be reached if
Gilbert damping is decreased to the ultralow damping regime
of α ∼ 10−7, which gives decoherence times in the 1 μs
range and 104 Rabi flops within the coherence time scale.
The value of α ∼ 10−7 is much smaller than the currently
reported values in magnetic insulators at room temperature
(e.g., α ∼ 10−4-10−5 for yttrium iron garnet [19]). However,
a magnon-phonon theory for Gilbert damping by Kasuya and
LeCraw [20] predicts that Gilbert damping vanishes linearly
with temperature. Therefore, in the sub-Kelvin temperature
regime relevant to the current proposal, it is possible that the
damping parameter α is significantly smaller than the reported
room-temperature values. A recent experiment studied Gilbert
damping from 5 to 300 K, and reported that α vanishes linearly
with temperature for T > 100 K but develops a peak below
100 K [21]. The experiment attributes the dominant relaxation
mechanism at low temperatures to impurities, suggesting that
the use of clean magnetic samples may be crucial in realizing
the above ultralow Gilbert damping regime.

VIII. CONCLUSION AND FUTURE DIRECTIONS

This work introduces a way to coherently control and
read out a nontrivial macroscopic quantum state stored in
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a topological defect of a magnetic insulator. We find that
the logical energy states of the qubit are separated from all
excited states by an energy gap that is proportional to the
volume of the domain wall λA . This, in principle, allows us to
exploit the high magnetic ordering temperature and increase
the temperature window for quantum operation by going to
a larger domain-wall volume. We also find, however, that the
qubit decoherence rate is also proportional to the domain-wall
volume, so the quantum coherence in the device would be
compromised in large systems. For reasonable domain-wall
volumes and temperatures in the 100 mK range, we find that
the decoherence time and the number of Rabi flops within
the coherence time can, respectively, reach 1 μs and 104 if
Gilbert damping is reduced into the range of α ∼ 10−7. This
ultralow Gilbert damping may be attainable within the above
temperature range and for very clean magnetic samples.

It is interesting to consider how the final state can be read
out using means other than MFM. Recently, a scanning probe
microscopy technique was developed using a single-crystalline
diamond nanopillar containing a single nitrogen-vacancy (NV)
color center [33]. By recording the magnetic field along the NV
axis produced by the magnetization pattern in the film, all three
components of the magnetic field were reconstructed [34].
This technique allows one to obtain the underlying spin texture
from a map of the magnetic field [34], so it may serve as an
alternative way to determine the direction of the magnetization
at the domain-wall center.

In principle, two coupled qubits can be realized in the
above proposal by placing an additional domain wall inside the
same antiferromagnet in Fig. 1 and bringing the two domain
walls spatially close together. While the precise quantitative
theory for the domain-wall coupling in an antiferromagnet is
beyond the scope of the current work, we can heuristically see
how a coupling between the two macroscopic qubit variables,
i.e., the angles �1 and �2 (corresponding, respectively, to
the azimuth angles at the centers of the domain walls for
qubits 1 and 2), can be engendered. Néel order stiffness
of the antiferromagnet should lead to a smaller interaction
energy for two nearby domain walls with �1 = �2 than for
�1 �= �2, since in the latter case the Néel texture must twist
from �1 to �2 as one moves from qubit 1 to qubit 2. This
should give rise to an interaction energy between two domain
walls that depends on the two angles, i.e., Eint = Eint(�1,�2).
By projecting the resulting interaction energy to the qubit
logical space, a qubit coupling should then arise. While the
interaction energy between two transverse domain walls has
been investigated theoretically in a ferromagnetic wire [35],

a similar calculation for antiferromagnets has not been done
to the best of our knowledge. It is indeed interesting to
study domain-wall coupling in antiferromagnetic systems and
how the result engenders a two-qubit coupling in the current
proposal.

Finally, while an antiferromagnetic domain-wall qubit is
more attractive because it reduces the effects of stray fields
(which may generate unwanted crosstalk between qubits when
multiple devices are coupled), we note here that an analogous
domain-wall qubit can be realized using a ferromagnetic
insulator. To this end, one can consider a ferromagnetic domain
wall as in Fig. 1 with a parabolic pinning potential with
curvature κ pinning its center at, e.g., X = 0; a combination of
external fields and an appropriate magnetic anisotropy within
the yz plane can be used to construct a double-well potential
as a function of the domain wall’s azimuth angle � (the angle
of the spin within the yz plane at the center of the domain
wall), as shown in Fig. 2. If the dynamics is projected down
to the two soft modes of the domain wall, i.e., domain-wall
position X and the angle �, the Hamiltonian exactly analogous
to Eq. (1) can be constructed with the conjugate momentum
P� given by X and with the effective mass M given by
the (inverse of the) pinning potential curvature κ . The main
difference between the ferromagnetic domain qubit and the
antiferromagnetic one is that the momentum conjugate to the
domain-wall angle � is the domain-wall position X in the
former case while it is the angular velocity �̇ in the latter. The
fact that the domain-wall position is the momentum conjugate
to the angle � may pose a problem when coupling qubits in the
ferromagnetic scenario. If the qubits are operating in the “phase
regime” (as was assumed in the current proposal), quantum
fluctuations in X would be strong in the quantum regime. If
two domain-wall qubits are coupled by bringing them spatially
close together, the two-qubit coupling strength is expected to
depend on their spatial separation. Therefore, the fluctuations
of the positional variables would lead to fluctuations in the
two-qubit coupling strength (which is likely to depend on the
interqubit distance) and to sources of noise. This issue does not
arise in the antiferromagnetic case because the position and the
angle variables completely decouple.
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